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Abstract. The interaction between cancer and HIV underscores the paramount significance of
immune response mechanisms in both diseases, illuminating the necessity for tailored management
and treatment approaches to address cancer in individuals living with HIV. In this study, a math-
ematical model is formulated to conceptualize the interaction between HIV and tumors in relation
to the immune system’s response. The basic theory and concepts of the Caputo-Fabrizio operator
are presented to analyze the recommended dynamics. The dynamics of HIV and tumor interactions
in the context of immune response are systematically investigated. A numerical scheme has been
developed to analyze the proposed system and evaluate the impact of various input factors on its
dynamics. The numerical findings highlight the key parameters driving the intricate interactions
between HIV, tumors, and immune dynamics, providing valuable insights to guide public health
interventions and treatment strategies.
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1. Introduction

The progression of HIV in the presence of a tumor involves a complex interplay
between viral dynamics, immune suppression, and cancer biology [8]. HIV targets CD4+
T cells, leading to significant immunosuppression, which weakens the body’s ability to
detect and combat cancerous cells. This compromised immune system allows tumors to
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grow more aggressively and evade immune surveillance more easily. Chronic inflammation
caused by HIV further alters the tumor microenvironment, promoting tumor growth and
metastasis. The introduction of antiretroviral therapy (ART) has improved the immune
function of HIV-positive individuals, reducing the incidence of AIDS-defining cancers [10].
However, the increased life expectancy due to ART has led to a higher prevalence of non-
AIDS-defining cancers, which can be more challenging to manage in the presence of HIV.
The interaction between ART and cancer therapies, coupled with the underlying immuno-
suppression, complicates treatment strategies and can adversely affect the prognosis. As
such, managing the progression of HIV in the presence of a tumor requires a multidisci-
plinary approach that addresses both the viral infection and the cancer while navigating
the challenges posed by drug interactions and immune recovery.

HIV still affects millions of people worldwide, making it a serious global health prob-
lem [23]. HIV continues to place a heavy financial and health burden on afflicted indi-
viduals and communities even in the face of tremendous advancements in antiretroviral
therapy, which have changed the status of the infection. HIV disproportionately affects
marginalized populations, exacerbating social and economic inequalities. Consequently,
HIV remains not just a medical issue but a complex social and public health challenge
that demands sustained global efforts and resources [29]. Mathematical modeling is crucial
for understanding and managing viral infections because it allows researchers to simulate
the spread and progression of viruses within individuals and across populations [17, 24].
These models provide insights into key factors such as transmission dynamics, immune re-
sponse, and the impact of interventions like vaccination or antiviral treatments [6, 28]. By
capturing the complex interactions between a virus and its host, as well as the broader pop-
ulation, mathematical models enable the prediction of disease outcomes, the assessment of
potential public health strategies, and the optimization of treatment protocols [11]. Even
though HIV is still a serious worldwide health concern, current studies and developments
in biomathematics present encouraging opportunities for enhancing the management and
treatment of this fatal illness.

The intricate phenomena of the HIV viruses and CD4+ T-cells have been studied pre-
viously using mathematical modeling, as mentioned in [25]. By clarifying the relationship
between HIV and host cells, these findings contribute to our understanding of the effects
on immune response, depletion of CD4+ T-cells, and viral replication rates. Several clin-
ical aspects of HIV, such as the decrease in CD4+ T-cells, lower amounts of free virus,
and the extended latency period inside the patients, are successfully captured by the work
introduced by Perelson and Nelson [26]. First of all, the model was presented by Perelson
et al. [26] which was then examined by the authors in their work [7]. They presented
the interaction of T cells and HIV in more precious way. This streamlined formulation
enhances the understanding of HIV dynamics. In [4], the authors investigated the stability
of the equilibria of HIV model. The research by Bushnaq and his friend [4] enhanced the
existing models by including memory related factor in the dynamics. Later studies by
other researchers [22, 30] used a variety of techniques and approaches to look at the pro-
gression of HIV. This study focuses on the progression of HIV in the presence of a tumor,
aiming to elucidate the interactions between HIV, the tumor, and the immune system.
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Fractional calculus is employed to model the dynamics of infectious diseases with
greater precision and accuracy [14, 16]. This approach allows the model to capture mem-
ory effects and non-local interactions, which are often present in biological systems but
are not well-represented by traditional integer-order models [9, 13]. Fractional epidemic
models provide a more comprehensive and accurate framework for modeling the dynamics
of vector-borne infections [15]. They incorporate memory effects, capture complex and
heterogeneous dynamics, and offer better fits to real-world data. These advantages make
fractional models a powerful tool for understanding, predicting, and controlling vector-
borne diseases, ultimately leading to more effective public health interventions and better
outcomes [3]. Recent advancements in the theory of fractional calculus have significantly
expanded its mathematical foundations as well as its applications [1, 20, 21]. The ability
of FO derivatives is to incorporate memory effects and non-local interactions provides a
more accurate representation of the complexities inherent in the transmission and pro-
gression of HIV and tumor in the response of immune. The fractional framework provides
a more effective means of capturing the intricate dynamics of diseases compared to tradi-
tional integer-order models, enabling improved predictions and the development of more
effective control strategies. In this study, we employ fractional derivatives to investigate
the in-vivo dynamics of HIV progression and its interaction with the immune system,
influenced by the presence of a tumor.

This study is arranged as: In Section 2, we formulate the dynamics of HIV-tumor
interaction in the response of immune. Section 3 presents the key concepts and idea of
Caputo-Fabrizio derivative. A numerical method has been outlined in Section 4 for the
model analysis. In Section 4, the impact of input factors has been investigated. The
conclusion and final remarks are stated in Section 5.

2. HIV and tumor-immune dynamics

Here, we have structured a mathematical model to represent the progression of HIV
in the presence of tumor to immune response. Numerous studies [2, 19, 30, 31] have
significantly advanced the understanding of the intricate dynamics governing HIV infec-
tion. These models have examined diverse facets of HIV pathogenesis, identifying various
factors that contribute to the infection’s progression. Notably, the work in [30] provided
detailed insights into the dynamics of HIV as:

dT
dt = s− ηTT+ rT(1− T+I

Tmax
)− kVT,

dI
dt = kVT− ηII,
dV
dt = NηII− ηV V,

where particles of HIV, uninfected and infected T-cells, indicated by V, T, and I, re-
spectively. In addition, the factor s represents the addition of new T-cells, whereas ηT
measures the rate of T-cell death. Within the framework given, k indicates the infection
rate, whereas r represents the proliferation rate of healthy CD4+ T-cell. The dynamics
of HIV with saturated incidence that was first put forward by Perelson and Nelson [27]
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looks like this mathematically:
dT
dt = rT(1− T

Tmax
)− βVT

1+αV ,
dI
dt =

βVT
1+αV − ηII,

dV
dt = NηII− ηV V.

Additionally, we have considered the case where CD4+ T-cells that are not yet infected
can infect previously infected T-cells; this is denoted by the mass infection terms αTI.
Furthermore, α is supposed to equal the recovery rate. Consequently, the dynamics of
HIV in light of the above described factors can be stated as follows:

dT
dt = s− ηTT+ rT(1− T

Tmax
)− kVT− αIT,

dI
dt = kVT+ αIT− ηII,
dV
dt = NηII− ηV V − kVT,

where ν denotes the protease inhibitor’s efficiency and α indicates the rate of cellular
infection. Fractional epidemic models have attracted interest in recent years because they
effectively capture the intricate dynamics involved in the transmission of infectious diseases
[12]. These models serve as a robust and adaptable approach for analyzing and forecasting
the transmission of infectious diseases, offering benefits that enhance and broaden the
capabilities of traditional integer-order models. Here, we assume tumor cells, health T
cells, infected T cells and HIV particles by T, H, I and V, respectively. Then, the dynamics
of HIV and tumor in the presence of immune response is as:

CF
0 Dξ

tT(t) = ℏ+ rT(1− T
ℵ )− k1TH,

CF
0 Dξ

tH(t) = s− k1HT− k2HI− k3HV+ r1H(1− H
Hmax

)− δHH,
CF
0 Dξ

t I(t) = k2HI + k3HV − δII,
CF
0 Dξ

tV(t) = NcI− kHV − δV V,

(1)

where CF
0 Dξ

t denotes the Caputo-Fabrizio operator which is a relatively new concept. Its
unique properties make it more attractive for modeling real-world phenomena.

3. Fractional theory and results

Here, we present the following concepts and ides of Caputo-Fabrizio (CF) operator to
investigate our model.

Definition 1. Consider g ∈ H1(a, b), then the CF fractional operator [5] with normality
W(ℏ) can be stated as

Dℏ
k(g(k)) =

W(ℏ)
1− ℏ

∫ k

a
g′(x) exp

[
−ℏ

k − x

1− ℏ

]
dx, (2)

where b > a and ℏ ∈ [0, 1], additionally, W(ℏ) represents normalization function with
W(0) = W(1) = 1. If g /∈ H1(a, b), then we get

Dℏ
k(g(k)) =

ℏW(ℏ)
1− ℏ

∫ k

a
(g(k)− g(x)) exp

[
−ℏ

k − x

1− ℏ

]
dx. (3)
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Remark 1. If σ = 1−ℏ
ℏ ∈ [0,∞) and ℏ = 1

1+σ ∈ [0, 1], then from (3), one can get

Dℏ
k(g(k)) =

M(σ)

σ

∫ k

a
g′(x)e[−

k−x
σ

]dx, (4)

furthermore, the below is obtained

lim
σ−→0

1

σ
exp

[
− k − x

σ

]
= δ(x− k), (5)

where σ ∈ [0,∞] and M(σ) is the normalized term of W(ℏ) with M(0) = M(∞) = 1.
Moreover, σ → 0 as ℏ → 1.

Definition 2. [18], Integral for the above fractional operator can be stated as

Iℏk(g(k)) =
2(1− ℏ)

(2− ℏ)W(ℏ)
g(k) +

2ℏ
(2− ℏ)W(ℏ)

∫ k

0
g(u)du, k ≥ 0, (6)

with the order ℏ and 0 < ℏ < 1.

Remark 2. From the above Definition (2), we have

2(1− ℏ)
(2− ℏ)W(ℏ)

+
2ℏ

(2− ℏ)W(ℏ)
= 1, (7)

where W(ℏ) = 2
2−ℏ . From [18], we have

Dℏ
k(g(k)) =

1

1− ℏ

∫ k

0
g′(x) exp

[
ℏ
k − x

1− ℏ

]
dx, k ≥ 0. (8)

4. Numerical scheme for the dynamics

Here, we will present the dynamics of the recommended through a numerical method
to analyze the significance of different scenario. We use the Adams-Bashforth technique
of two step for solution of the model. For the first equation of the model, we have

y1(t)− y1(0) =
1− ξ

U (ξ)
H1(t, y1) +

ξ

U (ξ)

∫ t

0
H1(ϑ, y1)dϑ. (9)

In the next step, by take t = tm+1,m = 0, 1, . . . ,, we have

y1(tm+1)− y1(0) =
1− ξ

U (ξ)
H1(tm, y1(tm)) +

ξ

U (ξ)

∫ tm+1

0
H1(t, y1)dt. (10)

and

y1(tm)− y1(0) =
1− ξ

U (ξ)
H1(tm−1, y1(tm−1)) +

ξ

U (ξ)

∫ tm

0
H1(t, y1)dt. (11)
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Next, the difference of successive terms are

y1m+1 − y1m =
1− ξ

U (ξ)

(
H1(tm, y1m)− H1(tm−1, y1m−1)

)
+

ξ

U (ξ)

∫ tm+1

m
H1(t, y1)dt. (12)

Here, the function H 1(t, y1) is approximated over [tk, tk + 1] using an interpolation poly-
nomial, yielding

Pk(t) ∼=
H1(tk, yk)

h
(t− tk−1)−

H1(tk−1, yk−1)

h
(t− tk), (13)

where h = tm − tm−1 is the time spent. Moreover, Pk(t) is utilized to evaluate the below
integral∫ tm+1

m
H1(t, y1)dt =

∫ tm+1

m

(
H1(tm, y1m)

h
(t− tm−1)−

H1(tm−1, y1m−1)

h
(t− tm)

)
dt,

=
3h

2
H1(tm, y1m)−

h

2
H1(tm−1, y1m−1). (14)

Now, put (14) into (12), we have

y1m+1 = y1m +

(
1− ξ

U (ξ)
+

3ξh

2U (ξ)

)
H1(tm, y1m)

−
(
1− ξ

U (ξ)
+

ξh

2U (ξ)

)
H1(tm−1, y1m−1), (15)

which is the necessary scheme for the first equation of the model (1). By following a
similar procedure, the corresponding schemes for other equations of (1) of HIV-tumor can
also be determined, as given by

y2m+1 = y2m +

(
1− ξ

U (ξ)
+

3ξh

2U (ξ)

)
H2(tm, y2m)

−
(
1− ξ

U (ξ)
+

ξh

2U (ξ)

)
H2(tm−1, y2m−1), (16)

y3m+1 = y3m +

(
1− ξ

U (ξ)
+

3ξh

2U (ξ)

)
H3(tm, y3m)

−
(
1− ξ

U (ξ)
+

ξh

2U (ξ)

)
H3(tm−1, y3m−1), (17)

and

y4m+1 = y4m +

(
1− ξ

U (ξ)
+

3ξh

2U (ξ)

)
H4(tm, y4m)

−
(
1− ξ

U (ξ)
+

ξh

2U (ξ)

)
H4(tm−1, y4m−1). (18)

This approach uses an exponential decay rule for the CF operator.
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Figure 1: Time series analysis of the model (1) HIV and tumor in the response of immune system by taking
ℏ = 1, r = 0.3 and ξ = 1.00.

5. Results and discussions

The significance of analyzing the progression of HIV in the presence of a tumor using
a fractional approach lies in the ability to model complex interactions between the im-
mune system, viral load, and tumor dynamics more accurately. HIV and tumor cells both
impact the immune system, particularly CD4+ T-cells. Traditional integer-order models
may fall short in capturing the long-term memory and hereditary properties inherent in bi-
ological systems. By applying fractional calculus, especially with non-singular kernels like
Atangana-Baleanu operator, the intricate feedback loops and interactions between HIV,
immune cells, and tumors can be better represented. This offers a more realistic simulation
of the disease progression, accounting for the time-dependent changes in immune system
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Figure 2: Time series analysis of the model (1) HIV and tumor in the response of immune system by taking
ℏ = 1, r = 0.3, s = 1 and ξ = 0.90.

efficacy and viral load, which are vital for designing effective treatment strategies.
Moreover, a fractional approach to immune response dynamics allows researchers to

explore the oscillatory and potentially chaotic behaviors observed in the immune system
under the dual pressure of HIV infection and tumor growth. This mathematical frame-
work provides deeper insights into how both HIV and tumor cells may exploit the immune
system’s vulnerabilities, causing destabilization in immune function. Such modeling is
not only significant for understanding the co-progression of HIV and cancer but also for
optimizing therapeutic interventions. It enables the development of combined treatment
strategies that take into account both infections, targeting not just the viral load or tu-
mor growth individually but considering the overall immune system dynamics, leading to
improved patient outcomes in co-infection scenarios.
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Figure 3: Representation of the tracking paths of the proposed system (1) by taking the value of s = 0.1,
ξ = 0.85 and r = 0.3.

Here, various simulations are performed to conceptualize the intricate phenomena of
the dynamics of HIV and tumor with the response of immune. For simulation purposes,
we assumed the values T = 120, H = 200, I = 300 and V = 150. We conducted various
simulations to demonstrate the influence of various factors on the tracking paths of the
system and its chaotic behavior. In the first simulation, we set the parameter values to
ℏ = 1.00, s = 1, and r = 0.3, while the value of ξ is assumed to be 1.00 in Figure 1
and 0.90 in Figure 2. We observed the influence of the fractional order on the solution
pathways. The simulation outcomes clearly reveal the substantial effect of the fractional
order on the infection dynamics. Importantly, υ shows potential as an effective instrument
for controlling the infection spread. Consequently, we advise policymakers to undertake a
more thorough examination of this fractional parameter to obtain a better knowledge of
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Figure 4: Visualization of the tracking paths of the proposed system (1) by taking the value of s = 0.01,
ξ = 0.85 and r = 0.3.

its ability to mitigate the infection. This thorough examination could provide important
insights for developing focused policies for infection prevention and control.

In the second simulation, shown in Figures 3 and 4, we illustrate the effect of the
CD4+ T-cell source term on solution pathways of the recommended system. In Figure 3,
the source term is set to s = 0.1, while in Figure 4, the value of s is reduced to 0.01. The
variation in the oscillatory behavior of the system has been noticed with the variation of
the source term of the CD4+ T-cell. CD4+ T-cells influence the tumor microenvironment,
promoting anti-tumor immunity by activating macrophages and other immune cells that
can inhibit tumor growth. An increased source term of CD4+ T-cells leads to a stronger
immune response, potentially reducing tumor growth. CD4+ T-cells are the primary
target of HIV, and the progressive depletion of these cells leads to immune system failure.
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Figure 5: Graphical view analysis of the time series of the proposed system (1) by taking the value of r1 = 3,
ξ = 0.85 and s = 1.

The source term reflects the replenishment rate of CD4+ T-cells, which is critical for
maintaining immune function in HIV-positive individuals. The source term of CD4+ T-
cells is essential for maintaining a robust immune response, and its modulation can have
significant therapeutic implications for both tumor reduction and HIV management.

In Figure 5, we illustrate the effect of tumor growth rate on the dynamics of HIV-tumor
interactions in response to the immune system. In this simulation, the tumor growth rate r
is varied from 0.3 to 3.0 to highlight the resulting changes in the system’s time series. The
results indicate that this input parameter amplifies oscillatory behavior within the system,
thereby increasing the risk of infection. The chaotic nature of HIV and tumor dynamics in
the presence of an immune response is characterized by complex, unpredictable behavior
that arises from the nonlinear interactions between viral replication, tumor growth, and
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Figure 6: Chaotic nature of the recommended model (1) of the HIV and tumor in the response of immune by
considering the input values ξ = 0.9, ℏ = 0.1, s = 1.00 and r1 = 0.35.

the body’s immune defense. In Figures 6-8, the chaotic behavior of the proposed system is
depicted. In Figure 6, the parameters are set to ξ = 0.90, ℏ = 0.1, s = 1.0, and r = 0.3 to
demonstrate the system’s chaotic dynamics. We assume N = 2000, Hmax = 1000, r = 0.3
and 0.85 in Figure 7 while the value of ℏ = 0.1, s = 2.0 and k1 = k1 = 1 ∗ 10(−5) in Figure
8 to conceptualize the chaotic behavior of the system.

The interactions between HIV, tumor cells, and immune components exhibit nonlinear
feedback loops. These feedback mechanisms can lead to sensitive dependence on initial
conditions, where small variations in the system’s parameters or state can result in vastly
different outcomes over time. Chaotic dynamics often manifest as irregular oscillations in
viral load, tumor cell populations, and immune cell levels. These oscillations are driven
by the immune system’s efforts to control HIV and tumor growth, as well as the adaptive
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Figure 7: Dynamical behavior of the model (1) of HIV and tumor in the response of immune by considering the
input values N = 2000, r = 0.3, Hmax = 1000 and ξ = 0.85 to visualize the chaotic nature of the system.

strategies of the virus and tumor to evade immune detection. Moreover, HIV weakens
the immune response by infecting CD4+ T-cells, while tumors can evade immune surveil-
lance through various mechanisms, such as altering antigen expression or promoting an
immunosuppressive microenvironment. This dual interference from HIV and tumors can
lead to complex and chaotic dynamics, where the immune system’s response becomes
highly variable and unpredictable. The chaotic nature of these dynamics presents chal-
lenges for treatment strategies, as the system may respond in unexpected ways to inter-
ventions like antiretroviral therapy, immunotherapy, or chemotherapy. Effective treatment
must account for the potential for sudden shifts in the behavior of the system due to the
sensitivity of chaotic dynamics.

We demonstrated distinct patterns in HIV viral load and tumor growth in response to
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Figure 8: Dynamical behavior of the model (1) of HIV and tumor in the response of immune by considering the

input values s = 2, ℏ = 0.1, Hmax = 1000 and k1 = 1 ∗ 10(−5) to visualize the chaotic nature of the system.

variations in immune system dynamics. Specifically, changes in immune response parame-
ters led to observable shifts in both HIV and tumor trajectories, highlighting the sensitivity
of these dynamics to immune modulation. Variations in CD4+ T-cell dynamics, such as
changes in the source term and growth rate, influenced the system’s stability and os-
cillatory behavior. Higher source terms for CD4+ T-cells were associated with a more
robust immune response, which in turn impacted both HIV control and tumor growth.
The system exhibited chaotic behavior under certain parameter settings, as evidenced by
irregular oscillations in HIV viral load and tumor cell populations. This chaos was at-
tributed to the complex interactions between HIV, tumor cells, and the immune response.
Numerical simulations revealed sensitive dependence on initial conditions and parameter
values, underscoring the importance of precise and adaptive treatment strategies. Future
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research directions should aim to refine mathematical models, explore novel therapeutic
approaches, integrate diverse data sources, and address global health challenges to advance
our understanding and treatment of HIV and tumors in the context of immune responses.

6. Concluding Remarks

The study on HIV and tumor dynamics within the framework of immune responses
holds substantial importance. It deepens our understanding of the intricate interactions
between these diseases, facilitates the optimization of treatment strategies, enhances dis-
ease management, and guides public health policies. This comprehensive approach not
only contributes to better patient outcomes but also drives advancements in scientific
knowledge. In this study, a mathematical model was developed to conceptualize the in-
teraction between HIV and tumors in relation to the immune system’s response. The
foundational theory and concepts of the Caputo-Fabrizio derivative were presented to in-
vestigate the proposed dynamics. The dynamics of HIV-tumor interactions in the context
of immune response were systematically explored. We presented a numerical scheme to
conceptualize the dynamics through numerical results. Numerical results are presented
to illustrate the impact of various parameters on the infection dynamics. The system’s
trajectories have been analyzed numerically, revealing distinct patterns in HIV viral load
and tumor growth under varying immune system dynamics. Specifically, alterations in im-
mune response parameters resulted in notable shifts in both HIV and tumor progression,
underscoring the sensitivity of these dynamics to immune modulation. Our findings high-
light key parameters that critically influence system behavior, offering valuable insights
for designing targeted therapeutic interventions.
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