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Abstract. This study introduces a novel class of fractional differential equations characterized by
antiperiodic parametric boundary conditions of order u € (2,3]. The parameters 6 and £ play a
crucial role in shaping the boundary conditions by defining specific values and functional behav-
ior. By employing fixed point theorems, we establish existence results for a fractional differential
equation equipped with nonlocal antiperiodic boundary conditions involving a Caputo fractional
derivative at one of the boundaries. Our investigation centers on a nonlocal point 0 < 6 < b, in
conjunction with a fixed endpoint at the interval’s extremity (0,b]. This approach enables us to
extend the interval of interest to (—oo, b]. The findings presented in this study serve to expand and
generalize the existing body of knowledge pertaining to nonlocal and classical fractional differential
equations.
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1. Introduction

In this paper, we find the existence and uniqueness of a solution to the following
fractional problem:

“DFw(p) = Q(p,w(p)), p€0,b], 2<p<3, 0€][0,b), (1)
w(®) = —w(b), w(0)=—-w(b), ‘DTlw(@) = —Dswb), 0<E<1.

where “D* denotes the Caputo fractional derivative of order p, © : [0,0] x R — R is
a continuous function, w(p) represents the solution of (1) for a variable p € [0,b], and
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w(B) = —w(b), w (0) = —w'(b), <DEHw(h) = —DET1w(b), 0 < £ < 1 represents the non-
local boundary conditions imposed on the solution w(p). Problem (1) describes a physical
phenomenon based on the nonlocal boundary conditions that restrict the solution’s be-
havior at the domain boundaries.

To utilize these conditions, consider a fractional heat conduction problem. Then, we
can understand these conditions as defining specific characteristics of the system at the
boundaries. For example, w(f) = —w(b) indicates a symmetry requirement in which
the temperature at 0 is equal in magnitude but opposite in sign to the temperature at
b, suggesting a reflective boundary of some kind. Likewise, the other statements could
impose further restrictions on the derivatives of w at these boundaries.

The exploration of differential equations with a fractional order became extensively
researched. Models with non-integer order can grant an astonishing description of mem-
ory and hereditary properties of many physical phenomena. Moreover, using fractional
derivatives in non-integer order models of real systems can be more accurate and adequate
than the integer order models. Fractional differential equations can provide a comprehen-
sive scheme to examine complex and regular systems in numerous fields, such as physics,
biology, economics, engineering, social sciences, and material science [17-19, 27]. For
example

e In Physics, the nonlinear fractional-stochastic wave equation can be used to describe
numerous nonlinear physical phenomena with gas bubbles in liquids. Moreover,
fractional kinetic equations describe a system’s evolution over time and fundamental
in modeling anomalous diffusion [25].

e In Biology, models of a fractional order can be used to investigate the spread of a
disease in communities. In particular, an accurate and efficient description of the
COVID-19 pandemic and its growing variant can be obtained by using a noninteger
order of COVID-19 models [26].

e In Economics, growth model of fractional order with time delay can effectively de-
scribe the economic growth by adding a time lag to the capital stock [23].

e In Engineering, fractional order sliding mode is used to progress the control perfor-
mance by reducing the error of steady-state and saturate. Also, fractional-order fast
adaptive sliding mode control ensure prompt convergence of the human Knee Joint
Orthosis state and its finite-time stability to the intended trajectory [22].

Boundary conditions have a significant impact on comprehending physical systems and
solving differential equations. Periodic and antiperiodic boundary conditions are crucial
in solving fractional differential equations. In quantum mechanics, antiperiodic boundary
problems will give a meaningful description of the system and how it behave in a cer-
tain domain. In spin systems, problems with antiperiodics can assist in examining the
characteristics of spins located at the extremities of limited chains. In general, fractional
differential equations with antiperiodic boundary conditions offer a flexible mathematical
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tool for comprehending and modeling different engineering and physical systems that dis-
play cyclic or alternating behaviors at their boundaries.

Fractional derivatives have been defined in various ways by mathematicians, includ-
ing Grinwald-Letnikov, Liouville, Hadamard, Marchaud, Riesz, and Caputo derivatives.
These definitions have been used to investigate solutions and stability of systems, as well as
to define and characterize spaces [12, 30]. In this work, we focus on the Caputo fractional
derivative because of its similarity to ordinary differential equations and its effectiveness
in handling antiperiodic boundary problems.

Tremendous papers discuss the existence and uniqueness of a solution or solving dif-
ferent types of the boundary problems of fractional differential equations. For interesting
results see [5, 8, 10, 13, 14, 16, 24, 28]. In [4], the author investigated and confirmed the
existence of solutions to the following problem:

_ 0) — o iy — (2)
w(0) = —w(b),w (0) = —w (b), w (0) = —w(b),

{CD“w(m =Qp.w(p). pel0b), 2<p<s,
where Q : [0,0] x R — R, by using fixed point theorem of Krasnoselskii’s.
An interesting result was proved in [2], in which the domain [0, ] was not considered
for both its boundaries for the fractional differential equation of order u € (1,2]. They
selected a nonlocal intermediate 6 point and one of the fixed endpoints of the interval (0, b]
for:

(3)

/

{CDMw(p) =Qpw(p), PO, 1<p<2 0<0<b,
w(B) = —w(b), W' (0) =—w(b),

where Q : [0,b] x R — R is a given function. The existence of a solution for this type

of problems is based on standard fixed point theorems. In [6], the author studied the

existence of solutions for the following NFDE:

“Dhw(p) = Up,w(p)), pel0,b], 1<p<2,0<60<b, ()
aow(0) = —bow(b), arw () = —biw (b),

where a;,b; € RT, for i = 0,1 and a continuous function € : [0,b] x R — R, by using the
Krasnoselskii fixed-point theorem and the contraction principle. In recent work [15], pos-
itive solutions of fractional order Riemann Liouville and Caputo type Langevin equations
was investigated. The results was obtained by upper and lower solution techniques along
with fixed point theorems.

The paper is organized into four main sections, each serving a specific purpose in
presenting and analyzing the research. The introduction provides a general overview
of the topic, serving as an entry point into the study. The preliminary section delves
deeper into the theoretical framework, methodological approach, and essential background
information, providing context for the subsequent analysis. The third section presents and
demonstrates important theorems that establish the existence of solutions to Equation (1).
Finally, the conclusion summarizes the key findings and contributions of the research.
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2. Basic facts

In this manuscript, we consider A = C([0,b],R) is the Banach space of all contin-
uous functions on the interval [0,b] equiped with the norm [|w|| = sup,cp ) [w(p)|, and
L1(]0,b),RT") is the space of all integrable functions on the interval [0, b].

Definition 1. [1] For the function § € L1([0,b],RT), the Caputo fractional derivative of
order > 0 s described as

I p— ) / "= )PSO )y, B-1<p< BB =[]+,

L(B—p) Jo
where [p] is the integer part of .

Definition 2. [1] For the function 6 € L1([0,0],R"), the Riemann-Liouville fractional
integral of order p > 0 s defined by

1

IN0D)

Lemma 1. [1] Assume that p > 0, then, the solution of equation *D"w(p) = 0 is given by

R O

(]+1

= > mp (5)
k=1

where 7, € R, for k=1,2,--- ,[p] + 1.

Lemma 2. Assume that v € C[0,b]. The solution of the fractional differential equation

cDrw(p) =~(p), p€[0,b], 2<pu<3, 0<6<Db, (6)
w(B) = —w(b), w'(0) = —w'(b), D) = —<DEFlw(b), 0 < € < 1,
s given by
_ ”(/)—V)“1 1 99—”)’“‘1 Ny P b -t Ny
G 7 =3 ([ e [ S ew)
(2 —&)[(0+b) —2p] (0—1/)“ &1 b(b—p)rtt
U </0 i+ [ i)
4p025+bz Or2—-¢)
2 — —2p°T(3 = €)(0' ¢ +b'7%)
TIrE - 9w1£+w£ 20+ b)(02E + BOT(2 — €)

92+b2 (3 —&) (0% +b'7¢)

9(9 u£2 ) u£2 Ny
([ Tatemy e+ || r ey ). g
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Proof. By Lemma 1 there are constants 7; € R, for j = 1,2, 3 such that

14 —v —1
w(p) = 1" 8(p) — 71 — Tap — 3" :/ lp—v)—

; () S(V)dv — 11 —Top — 3p°. (8)

Applying the conditions (6), we have

)
S ;(/0 W (v )du+/bW5(u)dy>

(0+b _Vﬂ £—-1 b(b—y),uf*g*l
2(01€ + b1-¢€) f—l—bl 3! < 5(V)d1/+/0 Md(u)du)
(0 +b) 92 5+bQ HIER-¢) (02+0?)
+915+b1§)< TEB_O@ 16§ 2 )
-

ATy -yt
</0 (- 5 Ta—c—1° "1 +/0 M1 ”)’
T@-g ([0t b (b — e
T e </0 L R < ‘“”””)

(0> C+ )T (2—€) [ [?(0—v)r52 b(b— €2
TT(B - 6) (01 € + b1€)2 (/0 TGi—e—1 W +/0 WWW) :

and

. re-9 0(6— pyp—t-2 b (b -yt
T3 = 2(b1=¢ 4 91-¢) </0 T(i—€—1) 6(v)dv —i—/o Wé(u)du) .

Substituting the values of 71, 7% and 73 in (8), we obtain the result.
Remark 1. [t’s important to note that when a equals 0, the first three terms in Equation
(7) represent the solution to the fractional problem of order p € (1,2] [3]. Additionally,

two more terms are added to the solution when the order u is increased to a number in
the interval (2, 3], as demonstrated in Lemma 2.

Remark 2. The solution of the fractional problem

{CD“w(p) =u(p), p€[0,b, 2<p<3, (©)
w(0) = —w(b), ' (0) = =p'(b), w"(0) = —w"(p),

1 equivalent to

= pi(p_y)u_luy 1/—1 bi(b_y)u_luy v
o) = [y [ S

b—2p [*(b—v)"? po—p) [P0
+ 1 /0 T —1) u(v)dv + 1 /0 ) u(v)dv,  (10)
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which is given in [4].

Observing that the solutions (7) and (10), we notice that there are additional terms in
7. Moreover, when & — 17, it will be the solution of the monlocal antiperiodic boundary
condition of order u € (2,3].

If we set 0 = 0 then take £ — 17, we obtain

A R A Ul
o) = [Py g [ O

b—2p [*(b—v)'? 20(2b — p) = b [* (b—s)"3
- 9 /0 T(u—1) u(v)dv + 1 /0 ) u(v)dv].(11)

The solution of (10) and (11) will be different and contains additional different terms.
Therefore, the boundary conditions give rise to a new class of problems. However, if we
take first ¢ — 17 and then set every a = 0, the solution will stay the same, due to the
shifting in the position at the left end of the interval [0,b]. Other results with different
boundary conditions can be found in [7, 9, 11, 20, 21].

Theorem 1. [29] Assume that P is an open bounded subset of a Banach space Y with
0 € P and the operator L : P — Y is a completely continuous with ||Lw|| < ||w]|| for
every w € OP. Then, there is a fived point of the operator L in OL.

Theorem 2. [29] Suppose that A is a non-empty closed and convex subset of a Banach
space B, W1y, and Wy are operators such that

o Wiwi + Waows € A, whenever wy,ws € A;
o Wi is compact and continuous;
o W5 is a contraction mapping.

Then there is O € A satisfies the equation & = Wi + Whk.

3. Main results

We begin this part with the definition of the operator £: A — A by

P AT
(Lw)p = /O(pr(u);ﬁ(u,w(l/))du

fl ’ 7(0 _ Z/)uil v,w(v))dv ' 7@ — V)uil v,w(v))dv
2(/0 e R ”)d)

P2 [0 +8)—20] [ [* (0 —wy—t)
e e R O

b (b—v)r=&t
v [ G g o )
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4p(02~C +B2OI(2 - €)
['(2-¢) —4p*T(3 —€)(0' ¢ +b'7¢)
TGO+ 062 | 200+ 0)(0> S+ 1> OT(2 - ¢)
+(62 4+ )03 —€)(0 € +b17%)

0 (0 — V)u—£—2 b (b— V)u—£—2
(] T e etenan+ [ o). 42

where A = C([0,b],R) is a Banach space.

Remark 3. The existence of the fized point of the operator L (Lw = w) is equivalent to
the existence of the solution to the problem (1).

For simplicity, we consider the following notations:

B 3bE 408 T(2—&)[(0+b) —2p| (#5714 pr=87)
M= pel0,6] 19000 [=n<oo {F(u +1) (01— + 01T (n—E+1)
n r'2-¢
T3 =)0+ 01 4)2T (1 — §)
X |4p(02~¢ + b2 OT(2 — €) —4p*T (3 — &)(A* ¢ +b179)
— 200+ bD) (07 +ODR2 - &) + (A2 + V)3 — &) (0 + bl—ﬁ)‘} . (13)
B b0t T(2—&)[(0+0b) —2p| (471 4 pr071)
My = o oo { T(u+1) O+ 01O (— €+ 1)
Ir'2-¢

TGO O (¢
X |4p(02~¢ + b2 OT(2 — €) —4p*T (3 — €)(A1 ¢ +b179)

—2(0 + D) (0> + b2 02— &)+ (B2 + )T (3 — €) (8¢ + bl—ﬁ)]} . (14)
Lemma 3. The operator L : A — A is completely continuous.

Proof. Suppose S C A be bounded. Then there exists K7 > 0 such that |Q(p,w)| < K7,
Vp € ]0,b] and w € S. Let L be the operator defined in (12), then, we have

el
(L)l = /Opwmww(v)ﬂdv

INOD)
L= o woniav+ [ =2 o o)y
5 ([ O awwiars [T 0wl
D@~ ©)I(0+5) ~ 20| ( [7 (0 —v)—¢! T
e () s e+ [t

20sv)ldv )
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AT(3 — 5)((291_—»5)4r pi€)2 ‘4/)(92_5 FHEOT(2 - €) — 4p’T(3 — £)(01¢ 4 b179)

=20+ B)(0*C + TR~ €) + (62 + P03 - (0" + 79|
(= o i [ T 0 o))
(/ Q)i+ [ 20 wv)av)

D(p—¢&—1) o T(p—¢&-1)
N I T W A e e L )
= 5 [2/0 T ¢ +/0 T ¢ +/0 T ¢
P2 =)0 +b)— 2| [ [7 (0 —v)r& e
NG [/ M~ &) | i — &) d}
et PO I - 9~ 403 - 0 11
20+ b) (02 E+ BEEOT(2— &) + (02 + BIT(3 — €)(0 € + blff))
0 9 — ,,)u—&—Z b (b— V)u—£—2
g </o F(u—f—l)d”/o F(u—f—l)dyﬂ
< Kl;\/[l = Ko,

which implies that ||(Lw)|| < K2, Now,

_ )2
(L) (0)] < /Opwmw,w(u))\du

P(p—1)
re-g ([ 0-v> O
—l—m </0 1_‘(M_l)|Q(V,w(u))|du+/0 T 1) |Q(l/,w(u))|du>

r2-¢

FrE e | TP TN - 6) - 2T (3 -0 401
TO— o+ [ O )l
([ Foremiowewar+ [ eiotsmia)
200" + e (09 + )
=0 (;g[gfg]{ 20 (1)
r3- g((jljﬂ pi-€)2 (675 + 6> )T (2 = &) = 2pT(3 = €)(0'° + b1‘5)|}>

- K.

Hence, for any pi, p2 € [0, b], we have

(Co)lp) = (L)ool < [ (L) W)l < Koz — ).

p1

Therefore, £ satisfies equuicontinuity on [0,b]. By Arzela-Ascoli theorem, we conclude
that £ is completely continuous.
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Theorem 3. Assume that Q : [0,b] x R — R is jointly continuous function such that
[122(p, w1) — Q(p, w2)| < Lfw1 — wal,

for all p € [0,b] and wy, we € R, where M is defined in (13). The problem (1) has a
solution, provided that LMy < 1.

Proof.  Assume that max,c(op [2(p,0)|| = n < oo and selecting r > = where
K1 = ’7];41 and ko = L]yl, we will demonstrate that LB, C B, where B, = {w € C[0,}] :

llw|| < r}. Now, for w € B,, we have

— )p-1
(L) ()| < APWF@E

1 0 (6 —v)r1 -
*3 (/0 W[Hﬁ(v,w(v)) Q(v,0)|| + [|2v, 0)||dv]

P—nt o)) — Oy y )
+/0 i (190w) = Qw01+ 12 ,0>||>d>

P2 =)0 +b)— 20| [ [°(0— vy
T e <A T(u—€)

| (12, w(v)) = Qv 0)[| + (|2, 0)][]) dv

b(b—p)rtt
+/0 M(Hfz(v,w(u))—Q(v,0)|r+uﬂ<u,0)|r>dv>
. T2 -¢) 3 ‘4/)(92—5 +V N2 - &) —4p’T(3 = €)(0' ¢ +b'7%)

AL(3 = &)(01 ¢ + b1—¢
=20+ B)(0*C + 2L — ) + (0 + BT (3 - (0 + 57|

0 (0 — v)H—E=2
<[ 190w ~ 200+ 120,01 )

Fp—¢§—1
b(p_ yn—E-2
o[ L ot — 00+ w0 i

IN

(Lr +n) PMV GMV bwy
2 (2/0 () d+/o () d+/0 () d)
O (=

! (017¢ 4 b1=¢) </0 Tz —9) d+/0 T ¢ d>

2(3 - £F)((201_—§ )+ b)) [4p(627€ + BT (2 — €) = 4p°T(3 — €)(6' € + 1)

—2(0+ ) (025 + b2 ET(2— €)) + (62 + bD(3 — £)(0¢ + bl_f)‘
N N L ) iy
([ e [ e )

(Lr +n) [21[)1# + b + G- N T(2 — &)|(0 + b) — 2p|(O#¢ + b+—F)
2 L(p+1) 20(p =&+ 1)

_l’_

IA

(12, w(v)) = Qv 0)[ + [[2(v, 0)]]) dv
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PE—- <+t
2l(p =€)
— 200+ b) (0> +OT(2 - ) + (0% + )13 — &) (01 + bl—f)H

4p(0* + 27 OT(2 - €) —4p°T (3 — )0 +b17%)

M
< (Lr+77)71 <r.

This proves that LB, C B,. Now, we prove that the operator £ is a contraction. For
w1, ws € B, we can write

— v -1
IEae) = Ean)] < [T v () - )
0 (g _ -1
w3 [ [ 2 100 0)) — 2w i
1

b(b_,/)u— — Q(v, wa (v 1%
o [ 2 00 sl
9 —
PSS ([ 90,1 () — 2w, )

2(01=€ + b1—¢) F(p—¢)
b (b _ V)M*§*1
o [ 2 ot ) 0 ) )
re-y¢

_l’_

4T(3 — €)(01-€ + b1—¢)2 [’41)(9275 +UOT(2 - &) —4p’TB = &)(0C +b' %)

—2(0 +b)(62€ + b2 ET(2 — &) + (6% + B)T(3 — €)(0~€ + bl—f)H
0 (6 —v)r=t—2
<[ S 10w w) - el

b(b_’/)u_g_2 — Q(v,wa (v v
o[ 0 0) s ]

Lws — ] [/0 (”;(Z))“ldwi (/09 G ;(Z);ldqu/Ob <b;(”/j)‘”dy)

TR2—=8[0+b) —2p| [ [7(0—v)—tt! N )
- 2(61-¢€ + p1—¢) </0 T(i—¢) du+/0 Tl —8) d)

AT (3 - ;ﬁf_gf )+ e [ 18 PN~ 6) — 4T3 - (0 +5)

—2(0+ b) (62 + bXET(2 — &) + (6% + B)T(3 — ) (0 5 + blfﬁ)‘

S LMlel —ng.

IN

_l’_

Since LM, < 1, we conclude that £ is a contraction operator. According to Lemma 3 and
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Theorem 1, £ has a fixed point, which is a solution to the problem (1).

Theorem 4. Assume that Q : [0,b] x R — R is continuous such that
[122(p, w1) = Q(p, w2)|| < Ljwr — w2,
for all p € [0,b] and wy,ws € R. If for all (p,w) € [0,1] x R and ¢ € L*(]0,b],RT),

1Q(p,w)| < Y(p).

Then, the problem (1) has at least one solution on [0,b], provided that LMy < 1, where
My is defined in (14).

Proof. Define the operators £; and Lo by

P (p— )il
<&ww=4(ﬁw§fwam%

and

0 (g _ -1 b (p_ -l
(Law)(p) —% </0 wl_‘w))g(l/,w(l/))dl/-i-/o (bI,('Lz)Q(V,w(V))dV>

L2 =90 +b) —2p]
2(01-¢ 4+ b1-¢)

(0 —v)p—t-1 ol Mdy b(b—p)rtt bl )\dy
><</o Lp—§) v wiv))d +/0 [ —§) o ())d>

Ar(3 — :5[‘)((291_51 pE)2 [4P(92*€ FO2OT(2 — €) — 4p2T(3 — £)(0V€ + b1—%)

=20+ b)(07¢ + BTEOT(2 = €) + (67 + BT (3 — )(0'~¢ +5'9)|

P e N
X<A R Hu—é—m”<’(”d>

+

on B, ={w € L: ||w|| <r} where r > 7”“”21‘/11.
Clearly, for wi,ws € By,

<r

— Y

M
aen + Lownl] < 1D

which implies that £iw1+ Lows € B,.. By the same steps of Theorem 4 and the assumption
LMy < 1, we have Lo is a contraction mapping.
Further, the continuity of €2 implies that the continuity of £1. Since

[

Il < 55,55
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then, £ is uniformly bounded on B,. In a view of the second assumption, for all (p,w) €
[0,0] x By, we have

1

I'(p)

+f " (02— ) Qv w(w))do]

o1

[(£1w)(p1) = (Lrw)(p2)l| =

/opl[(m — )P = (o2 = ) Qv w(v))dy

9
(p)EL0.b] X B, [p. )l

< 2(py — p1)* + pM — phl.
< T+ 1) 12(p2 — p1)! + P} — py|

When p; — pa, then ||(Liw)(p1) — (Liw)(p2)|| — 0. By using Arzeld-Ascoli theorem, £
is compact on B,. Based on Theorem 2, there exists at least one solution to the problem

(1).

Theorem 5. Assume that Q : [0,b] x R — R is a continuous function and there exists a
constant 0 < x < ﬁ and § > 0 such that

2(p,w)| < xlw| +96,

for all p € [0,b], and w € R. Then, the problem (1) has at least one solution, where

= max { S On T(2—€)|(0+b) — 2| (046 + bt
p€[0,8]]|2(p,0)||=n<oo | 2" (1t + 1) 207=¢ 1 01T (1 — €1 1)
r'2-¢

+4F(3 — (01 + 12T (1 — &) Ap(0*~C + 0> 02— &) —4pT (B — &) (0"* +b'7%)
=2(0 4+ D)(62 €+ BT — ) + (02 + BTE - (0" + b9}

Proof. Define the operator £ : A — A as in (12), then (Lw)p fulfills a fixed point
problem w = Lw.

Define a ball B, C C[0,b] with a suitable radius » > 0, where r > %, such that

B, = {w € C[0,}] : ||w]| < r}. We want to show that Lw : B, — C[0, b] satisfies
w # AMw, for all w € 9B, and all A € [0, b]. (15)

For w € C(R), X\ € [0,1], setting H(\,w) = ALw. Consequently, the complete continuity
of

ha(w) =w—H\w) =w— AMw

can be deduced via the Arzeld-Ascoli theorem. If (15) is satisfied, and since

deg(hy, By,0) = deg(hy, By,0) = deg(hg, B,0) =1 # 0 € B,,
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then by Leray-Schauder degree there is at least one w € B, such that hi(w) = w—ALw = 0.
So for some A € [0,1] and for all p € [0, ] we conclude that w = A\Lw. Now,

— p)pl
wp) = IMw(p)| < /Op(pr(/j)ww(u)ndv
0 (g _ -1 b (p_ el
—i—% </0 mlﬁ(y,w(y))dy|+/] ([)P(M))Q(u,w(y)ﬂdy)
L@ 0 +5)— 2] [ [ (09— )t b (b e
Ty </0 R I A s

['2-¢
AT(3 =&)< + b€

= 20+ B¢+ BOT(@ - €) + (62 + B3 — (0"~ + 51|

(9 —v)r—t-2 b (h— €2
<[ ool + [ )l

E ‘4;;(92*5 PO — ) — 4p2T(3 — €)(0¢ + b17¢)

= T (1) 2 I'(p) I'(p)
L@ )0 +b)— 20| [ [* (0 )t (b e
T </0 gy e+ o+ [ B

I'2-¢)
AD(3 — £)(01 ¢ + b1=¢)2

—2(0 4+ b)(0% + b7ET(2 — €) + (02 + B)D(3 — €)(0'¢ + bl—f)H

PO st [ O T s
><</O 1w&_g_l)(xl | +4)d +/O 11(M_§_1)(X| |+5)d>,

+

()4/)(92—5 FOOT(2 — €) — 4p2T(3 — €)(9¢ + b17¢)

which implies that
jwl < (xllw[| +0) M.

Hence,

< .
loll < 72577

This proves that the relation (15) is satisfied. By applying Theorem 1, we get the desired
result.

4. Tllustrative examples

This section is devoted to studying some illustrative examples that support the theo-
retical results.

0 w)lav)

2 (p— vyt Lyt O
/0 A (X|w| 4+ d)dv + = (/0 —————(x|w| + §)dv +/O ——(x|w| + 6)dy)

(xlel + 8)av )
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Example 1. Consider the following fractional problem

{ C‘D§(")(IO) = (p_l3)4 lﬁ(‘.ﬂ’ p € [072]37 5 (16)
w(

Clearly, the problem (16) is a special case of the problem (1) with u = % €(2,3], ¢= % €

(0,1), b=2>0,0€10,2), p€[0,2], and 2 (p,w () = 57 1

Now, for each wi,ws € R, we have

1 |W1| |w2|
Q1(p,w1) — Q1(p,w = -
[€21(p, w1) 1(p, wa) (p=3)4 |14 |wi| 14+ |wol
< Ll - wal
< 3 w1 — wal| .

Hence, L = %. By simple calculations, according to Eq. (13), if we choose 8 = 1 €

[0,2), we get My ~ 7.59. Thus, LMy = (g7)(7.59) ~ 0.0937 < 1. Therefore, all conditions
of Theorem 3 are fulfilled. Then the problem (16) has a solution on [0, 2].

Example 2. Assume the boundary value problem below

{ “D3w(p) = Jw(p) cos(p), p € [0,1],
/ / 3 3 1 (17)
w(f) = —w(l), W'(0) = -w'(1), ‘D2w(f) = —°D2w(l), 0=3

It is clear that, the problem (17) is a special form of the problem (1) with p = 3 € (2,3],
£=1e(0,1),b=1>0,0¢[0.1), pe [0,1], and © (p,w(p)) = dlp) cosp).
Now, for each wy,ws € R, we get

[94(prn) ~ Do)l = g leos(o)] er(p) — r (o)

< w1 — wal| .

g
Thus, L = %. Further, for all (p,w) € [0,1] x RT, we have

[wlp) cos(p)] < geop)

O =

2(p, w)| =

which implies that ¥ (p) = $w(p) € L*([0,1], RT). Utilizing Eq. (14). Since 0 = 1 € [0,1),
we get My ~ 1.13. Thus, LMy = (§)(1.13) ~ 0.1256 < 1. Therefore, all conditions of
Theorem 4 are satisfied. Then the problem (17) has a unique solution on [0, 1].

Example 3. Assume the following fractional problem:

an’1 w
“Diw(p) = 5 (e + L), pe0,2),
w(f) = —w(2), W'() = —'(2), “Diw(d) = —*Diw(2), 6=

NI
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Obviousely, problems (17) and (1) are identical with p=1%¢€ (23, ¢&=1¢€(01),

2
b=2>0,0¢c(0,2), pecl0,2], and Q(p,w(p)) = 15 (e p—i—%) .
Now, for each wy,ws € R, we get
tan 1) _ tanfl(ua)
Q -0 = _emp 2 \W2)
19215, 0) — 1o, 2] H e et
< = IIW1 — wal|.

15
Therefore, L = % Additionally, for all (p,w) € [0,2] x RT, we have

- tan~!(w) ' - 1 <1 N tanl(w)> |

1
Qp,w)| = — 1+ w2(p)| = 15 1+w?(p)

15

14+w?(p)
select 0 = 3 € [0,2), we get My ~ 4.18 and LM, = (%5)(4.18) ~ 0.2787 < 1. Hence,
the requirements of Theorem 4 are satisfied. Then the problem (18) has a unique solution
n [0,2]. Moreover, the same result can be obtained by Theorem 5 as follows: for all
(p,w) €0,2] x R, we can write

which implies that ¥ (p) = 1—15 (1 + tan_l(w)) € LY([0,2],RT). Utilizing Eq. (14), if we

an_l w
90,0 ()] = 15 e+ S <oy S,

which implies that § = e > 0 and x = % By simple caculations, we have M = 1.28.

C’learly,0<X:%<ﬁ:ﬁ.

Example 4. Assume the following problem

z Tw in(w
“Diw(p) = CEAo 1 el pe (0,1, (19)
w(0) = —w(1), W'(0) = —w'(1), °D3w(f) = —°D3w(1), 6=0
The problems (17) and (1) are the same with p = % € (2,3], £ = £ € (0,1), b =2 >0,

0=0¢€[0,2), pe(0,2], and Q(p,w (p)) = COS(?;;’(p)) + l_lill;gl(( ()p))|)| According these values,
we have M = 1.17 and

cos(2mw(p)) | [sin(w(p)) 1
Q = <1+ = R.
2.0 ()] = [T 4 B <1 )] w e
Thus, § =1, x = , and the inequality 0 < x < ﬁ holds. Therefore, the assertions of

Theorem & are fulﬁlled Then, the problem (18) has at least one solution on [0, 2].

5. Conclusion

The paper introduces a new approach to nonlinear fractional order nonlocal antiperi-
odic boundary conditions. The study reveals additional terms in the integral solutions that
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differ from classical antiperiodic boundary conditions. It is observed that under certain
conditions, the resulting solution aligns with that of classical antiperiodic boundary con-
ditions, extending the existing results, specifically as £ approaches 1~ before 6 approaches
0" .However, a distinct solution for this problem type is encountered under different con-
ditions. This offers a fresh perspective on the behavior of fractional differential equations
under specific boundary conditions, potentially leading to novel solutions in various sci-
entific fields. These new solutions could significantly impact resolving complex problems
where traditional approaches fall short.
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