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Abstract. In this paper, we present several singular value inequalities for special types of functions
of matrix sums and products. Some of special cases of our results give a generalization of some
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1. Introduction

Let M,,(C) be the C*-algebra of all n x n complex matrices. A matrix X € M,,(C)
is said to be positive semidefinite if z* Az > 0 for all x € C™. The singular values of
X € M,,(C), denoted by s1 (X) > s2(X) > ... s, (X) > 0 are the eigenvalues of |X|. In
this paper, when we write s; we mean sy (X),s2(X),....s, (X), e, j=1,2,...,n

The spectral norm of X € M, (C) is defined by [|.X|| = max,—; [|Az].

For X, Y € M,,(C), let X @Y be the direct sum of X and Y, that is, the matrix given

by X @Y = )0( 3 . It is known that || X @& Y|| = max (|| X]||, [|Y]]) -
It is known [14] that if X,Y € M, (C), then
i (X+Y)<2sj(XY), (1)
A generalization of inequality (1) has been given in [8] by

si(XZ+2Y) <2|Z| (X & Y). (2)

The authors in [7] have proved several singular value inequalities. One of these in-
equalities asserts that if X, Y € M, (C), then

1
5; (XY =Y X) < |V]]si (X & X) + gsjmin (XY =Y X) @ (XY ~YX))
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for 1 <14 < j <mn. In particular, if j = 4, then
1
5 (XY =Y X) < V|55 (X & X) + 5 | XY~ VX]. (3)

Singular values of a matrix play a critical role in various applications, including data
compression, noise reduction, and the resolution of ill-posed problems (see, e.g., [1], [2],
and [12]), particularly in fields such as electrical and mechanical engineering, where these
concepts are used to optimize signal processing and system performance. The spectral
norm, defined as the largest singular value, is fundamental for assessing the stability
of the matrix and quantifying its maximum impact as a linear transformation, which
is crucial because it ensures that small perturbations in the input data do not lead to
disproportionately large errors in the output, making computations reliable and consistent
in practical applications.

In this paper, we give several singular value inequalities. Among other results, we give
a related inequality to inequality (2) and we give a generalization of inequality (3). For
recent articles related to matrix and singular value inequalities, we refer the reader to [4],
[3], [5], [10] and [11].

2. Main results

To start our analysis, we need the following lemmas. The first lemma is a consequence
of the spectral theorem for matrices (see, e.g., [13, p. 5]), the second lemma was given in
[7], while the third lemma can be found in [13, p. 75].

Lemma 1. Let X € M,,(C) and let f be nonnegative increasing function on [0,00). Then
f(s5(X)) = s;(F(1X]));
where | X| is the absolute value of the matriz X.

Lemma 2. Let X,Y € M, (C). Then
5 (X 4Y) < 5;(XOY) + 5| X +7].
Lemma 3. Let X,Y, Z € M,,(C). Then
$(X2Y) < | X] Y] 35(2).
Theorem 1. Let A, B, X,Y € M,(C). Then
(=)
5 (FOXAY +YBX]) < (XIS (V)80 (4D & £ (1B])
+7(3) £ Qxay + Y B, (@

where f is a nonnegative increasing submultiplicative concave function on [0, c0)

with f(0) = 0.
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(b)

si (f ([XAY +YBX])) < 12) , XD A s5(F (LAD @ £ (1B)

2
57 (IXAY +YBX]), 5)

where f is a nonnegative increasing submultiplicative convex function on [0, c0) .

Proof. We have

sj (f (| XAY +YBX]))

IN

IN

IN

f(s; (XAY + YBX)) (by Lemma 1)
f <sj (XAY ® YBX) + % ||XAY+YBX|> (6)
(by Lemma 2)
f(s; (XAY ® (YBX)") + f @ IXAY + YBX|>
(since f is concave and f(0) = 0)
F 55 (XAY & (YBX)")) + f (;) [ (IXAY +YBX|)
(since f is submultiplicative)

Ol

+f (;) (IXAY +YBX])) (7)

(Il S Il =)

+f( > (|IXAY + YBX]||) (by Lemma 3)

s (5 p)))+7(3) £ocar +vexp

FUXDIAVIDCsia @ B + £ (5 ) £ (IXAY + Y BX])

FUXDAAYIDsF 1D @ £ (48D)+ £ (5 ) 7 QXAY +¥EXI).

which proves part (a). For part (b), we start from inequality (6), so we have

sj (f (| XAY +YBX]))
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IN

1
f <sj (XAY & YBX) + 5 | XAY + YBX||>

IN

% f (2s; (XAY & (YBX)")) + % F(IXAY +YBX]|) (since f is convex)

= 5 (25 (XAY & (YBX)") + 5/ (|XAY + YBX])
- (= (5 2l sl )

+%f(||XAY+YBXH)
q()

o/ (1l Al ]
+%f (|XAY +YBX]|) (by Lemma 3)

.y <2||X|| IIYIISJ'({IS1 gD)

1
+5/ (IXAY + YBX])

IO XI55 ® BY) + L F (IXAY + Y BX))

f(2)

= o SUXIDFAY s (F (AD @ f (1B]) + %f (IXAY +YBX])),

IN

IN

which completes the proof.

Taking f(t) =t,t € [0,00) in inequalities (4) and (5), we have
5, (XAY + YBX) < | X||[V]|s; (A B) + % IXAY +YBX]|. (8)
Letting X = [ in inequality (8), we obtain
s; (AY +YB) < Y| 54 (AEBB)—I—%HAY—FYBH. 9)
Replacing A by X, Y by Z, and B by Y in inequality (9), we have
5 (X2 4 2Y) < |2l 5 (X @ ¥) + 3 |XZ+ 2. (10)
Combining inequalities (2) and (10), we have

1
s;(XZ + ZY) < min {2 12]1s;(X @ Y),[1Z]ls; (X & Y) + 5 IXZ + ZY||} ,



A. Al-Natoor, F. Alrimawi / Eur. J. Pure Appl. Math, 18 (1) (2025), 5689 5o0f 11

which is a refinement of inequality (2).
Inequality (8) generalizes inequality (3). In fact, replacing B by —B in inequality (8),
we have 1
s; (XAY —YBX) < || X||||Y]s; (A® B) + 3 |XAY - YBX]||, (11)

which is a generalization of inequality (3). To see this, let X = I and then replace A and
B by X in inequality (11), we have
1
5 (XY —¥YX) < [V]s (X & X) + 5 |XY ~ VX,
which is inequality (3).
We need the following lemma [6] to give our second result.
Lemma 4. Let X,Y,Z € M,,(C) be such that Z is positive semidefinite. Then
X*X Y'Y

2 T o || XTI s; (2) -
2 2 J
X1 1Y

1
sj (XZY") < 5 H

Theorem 2. Let A, B, X,Y € M, (C) be such that A and B are positive semidefinite.
Then

(a)
sj (f (| XAY +YBX]))

1 XPe x> [YPe | |
< 1(3) Hf ( e o )Hf(HXH)f(HYH)sJ(f(A)@f<B))
o @) f(IXAY + YBX]). 12)

where f is a nonnegative increasing submultiplicative concave function on [0, c0)

with £(0) = 0.

s; (f (| XAY +YBX]))

1
-2

1x* Y|

2 %12 2 * |2
f(|X| oIXT | o] )Hf(IIXII)f(HYH)Sj(f(A)@f(B))

57 (IXAY + YBX]), (13)

where f is a nonnegative increasing submultiplicative convex function on [0, c0) .
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Proof. By inequality (7), we have

sj (f (| XAY +YBX]))

IN

IN

IN

which proves part (a). For part (b), we start from inequality (6), so we have

e <l #] b 2])

+f (;) FIXAY +YBX]|)

Lol =] Bl

2 2
X1l ¥l

ol

x | X [|Y] s (A B)
Lf (;) FIXAY +YBX])

(by Lemma 4)
1
(3

XPolX? | YEey
+f< ) (IXAY + YBX]|)

2
(s 1Y

X1 @ X IYI2 oY
1x* Y|

)f(IIX

+f ( > (IXAY + YBX]))

(since f is submultiplicative)
1 XPelx?  YPe|ve
()|

1P P
+7 (3) £ Qxay + Y B,

si (f (| XAY +YBX]))

1
< f <sj (XAY @ YBX) + 5 | XAY + YBX||)

= f (sj (XAY & (YBX)") + % | XAY +YBXH>

IXTHY 1|55 (A@B)>

£ AL f(s; (A® B))

6 of 11

> H FAXN LAY 5 (F (A) @ f(B))
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R

1
+§f(HXAY +YBX]||)

x* 0][x o0 v ol[y o
1 0o x|lo x 0o vllo v
5f B3k + VI

IN

<[ X[HY ] s (A® B)
+-f (| XAY + Y BX]|)
(by Lemma 4)

B ( XP e X Yy
- 2
X2 1Yl

IXTHY [l 's (A@B)>

+= f IXAY +YBX|)

IN

Ly ( XPal|x > [YPo|ye?
1X2 4k

) FAXD FAXD f (55 (A B))

1
+§f (| XAY +YBX||)
(since f is submultiplicative)

P (|X|2 e|X  Y[Pe

2 Ix* ey

) H FAXID LAY s (f (A) © f(B))

1
+§f(||XAY+ YBX]|),

this completes the proof.
Taking f(t) =t,t € [0,00) in inequalities (12) and (13), we have
XPe X [YPe v
2 2
Xl 1Yl

s; (XAY +YBX) [ XY s; (A® B)

)

1
+5 | XAY + YBX]|.

To state our next result, we need the following lemma [9].

Lemma 5. Let A, B, X € M,,(C) be such that X is positive semidefinite. Then

1
5 (AXB") < | X]| 5; (A" A+ B"B).

7of 11
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Theorem 3. Let A, B, X,Y € M, (C) be such that A and B are positive semidefinite.
Then

(a)
sj (f (| XAY +YBX]))

< 7 (3) max (UL IFB) 5 (F (XX + YY) 0 ( (XX +77T)
+1(5) Fxay +vex)). (1)

where f is a nonnegative increasing submultiplicative concave function on [0, c0)
with f(0) =

(b)
sj (f (| XAY +YBX]))

< gmax (LA 1B 55 (f (XX + YY) & (f (XX +¥°Y)

45 (IXAY +YBX]), (15)

where f is a nonnegative increasing submultiplicative convex function on [0, c0) .
Proof. By inequality (7), we have

si (f (| XAY + Y BX]))

< (o ([ 2[5 8]0 )
i (;)NXAHYJE;)O [X O
<o 3 1 3.4
<;>f IXAY +YBX]|) (by Lemma 5)
< Q)0 B e tir]))
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+1(3) £ XAy + Y BX])

RIS o)

| X*X +YY* 0
5 <f<[ 0 XX*+Y*Y]>>

+7(3) £ XAy + Y BX])

= f <;> max ([[f (A, [F(B)) s; (f (XX +YYT)) @ (f (XX +Y7Y)))

+7 (3) £0xAY Y BX]).

which proves part (a). For part (b), we start from inequality (6), so we have

sj (f (| XAY + YBX]))

IN

IN

IN

IN

f <sj (XAY @ YBX) + % IXAY + YBXH)

f (sj (XAY & (YBX)") + % | XAY + YBX||>

(o (5 20510 )

4 f(HXAY +YBX||)

o T 6 &
163l Y

+= f(HXAY+YBX|| (by Lemma 5)

b Bl b))

4o f (IXAY + YBX]||)

1 Al (5 i)

1
+5/ (IXAY +YBX])

%max U LB s ((F (XX +YYT)) @ (f (XX +Y7Y)))

1
+SF(IXAY +YBX]),

9of 11
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this completes the proof.
Taking f(t) =t,t € [0,00) in inequalities (14) and (15), we have

1
5 (XAY +YBX) < Zmax(JA]L[B])s; (XX +YY") & (XX* + YY)
1
+5 [ XAY + Y BX]. (16)

Corollary 1. Let A,B,X,Y € M, (C) be such that A and B are positive semidefinite.
Then

1
s; (AY + Y B) <maz(||A|l,||B])s; (Y @Y) + 5 |AY + Y B||.

Proof. Letting X = I in inequality (16), we have

1 I+YY* 0
s; (AY +YB) = 2lfnaX(IlAH,HBH)SJ'([ 0 ]+Y*YD
1
+5 [4Y + Y B|
1 I 0] [Yy* 0
= 2maX(||AH,HBH)Sj<[0 I_*[ 0 Y*YD
1
+5 147 + Y B|
. [YY* 0
= gmax (| B]) <1+Sj<_ 0 Y*Y]))
1
+5 4Y + Y B|

= gmax(JA]IB) (1+ 5 (YY" YY) + S| AY + VB
= Smax (AL 1BI) (1 + 83 (Y @) + 3 AV +VB|.
Replacing Y by tY and taking the min over £ > 0, we have
5 (AY + YB) < max (14 IB) s; (v ) + L 14y + v B

as required.

Conclusion. In this paper, we present several inequalities related to singular values for
funcions of matrices and we give a general version of interesting recent results.
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