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1. Introduction

The expansion of the competencies has the effect of reducing the electric plans’ customer
lifetime. This is the cause of a large river of electrical excess leftover from obsolete elec-
tronic devices. These existing methods have several drawbacks and challenges, including
several characteristic removal procedures for e-waste of the later ecologically and financially
interpreted. Careful reprocessing was therefore necessary for effective waste organization
decisions. The hard substructure was lacking in the area. Burning and disposing of it
in landfills expected to be the primary method for removing e-waste from porcelain. A
thoughtful cargo within our vicinities may be the basis for the increase in landfill require-
ments [22, 41]. However, the realization of original plans depends on distinct fundamentals.
The resulting appearances are covered by the existing policy requirement. Preserving and
restoring EOL microelectronic designs was the most important aspect of an established
technique. Nowadays, it is well known that e-waste recycling has a thorough foundation in
the area and a little historical significance in porcelain. illustrating the approximate global
significance of Microchip technology Over 700 workers in the US unbiased recyclers in the
e-waste salvage industry. This implies to salvage EOL microchip technology, meetings and
skills must be complex [30]. The greatest option fixed of limited choices that match to
specific qualities is provided by MADM, which is regarded as the unpack-aged faster, and
emerging field of study. When assessing applicants’ information, certain problems because
decision experts’ perspectives are not always clear. These kinds of issues are resolved by
using the indication of fuzzy sets, which was projected by Zadeh in 1965. Atanassov [7]]
expanded the concept of the intuitionistic fuzzy sets as the membership and non-belonging
degrees. A versatile and successful framework for handling complex MADM scenarios is
probability fuzzy sets. Yager [45] expanded this approach by introducing q-rung orthopair
fuzzy sets.

1.1. Literature review

Zadeh [47] introduced the fuzzy sets. Fuzzy sets are widely applied in modeling uncer-
tainty across fields such as decision-making and artificial intelligence, while intuitionistic
fuzzy sets and others extend this framework by incorporating hesitation degrees, enhanc-
ing applications in complex decision-making scenarios [31–33]. Pythagorean fuzzy sets,
and q-rung orthopair fuzzy sets introduced by Yager [44], as well as Fermatean fuzzy sets
introduced by Senapati and Yager [34]. Notably, FFSs provide a higher level of generaliza-
tion and applicability than both intuitionistic fuzzy sets and PFSs, due to their enhanced
ability to capture and represent relevant information effectively. Additionally, he devel-
oped four distinct cosine similarity measures for fuzzy sets, demonstrating the utility of his
approach through a numerical example evaluating third-party logistics firms in cold chain
management.

Ahmad et al. [2] conducted an analysis of the performance of various graph opera-
tions within these frameworks. Following this, Ahmad et al. [1] explored the comparative
analysis that confirmed the model’s credibility and reliability while thoroughly outlining
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its strengths and limitations. They also introduced an enhanced Assessment Founded on
Distance from Average Solution approach, integrating novel concepts to address decision-
making challenges arising from entirely unknown criteria weights [6]. Akram et al. [3]
utilized these operators to investigate a range of recurring issues, implementing them in
multi-attribute decision-making problems and for wireless location detection. Foundational
ideas and important results for the Pythagorean fuzzy Laplace and Fourier transforms were
established by Akram et al. [4, 5]. Zadeh proposed fuzzy sets in 1965, in which every el-
ement has a membership function given to it. Since then, several extensions have been
created, such as Atanassov’s intuitionistic fuzzy sets [7]. Aydin [8] developed a new fuzzy
entropy metric based on the Euclidean distance between fuzzy integers and their comple-
ments using entropy theory. Additionally, Deng and Wang [10] created two innovative
distance measurement techniques especially suited for Fermatean fuzzy sets in order to
tackle difficulties in medical diagnosis and pattern identification. Triangular cubic fuzzy
sets were proposed by Aliya et al. [14]. In [16], Aliya and colleagues proposed Einstein
aggregation operators. The vikor approaches were proposed by Aliya et al. [13]. The
operational laws of triangular cubic fuzzy sets were suggested by Aliya et al. [12]. The
generalized interval-valued bipolar neutrosophic Einstein fuzzy aggregation operator was
proposed by Aliya et al. [18]. The fermatean fuzzy sets were proposed by Aliya et al.
[17]. The blending regret philosophy DDAS method in Fermatean fuzzy numbers was pro-
posed by Aliya et al. [15]. The TOPSIS approach was proposed by Aliya et al. [11]. The
natural gas was suggested by Aliya et al. [19]. The benefits of these suggested opera-
tors were thoroughly discussed by Garg et al. [21], who also presented a multi-attribute
decision-making approach and showed how to use it in practice when choosing a trustwor-
thy laboratory for COVID-19 testing. In the context of Fermatean fuzzy sets, Hadi et al.
[23] created new techniques based on the Hamacher T-conorm and T-norm, highlighting
their key features. Motivated by the ideas of FFSs and Hamacher operations, they also
presented FFHamacher arithmetic and geometric AOs. Children from the nearby town
of Chendian and those from the e-waste recycling village of Guiyu had their lead levels
compared by Hoa et al. [24]. The suggested method was used to present a step-by-step
algorithm for decision-making as well as a multi-criteria decision-making strategy [25].
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Figure 1 is e-waste as below

Figure 1: Different technique of e-waste

A framework called FF-CRITIC was created by Mishra et al. [29] to address multi-
attribute decision-making problems. A number of aggregation operators under Fermatean
fuzzy sets were introduced by Shahzadi et al. [35]. In order to efficiently aggregate interval-
valued data and metadata, Wang and Liu [37] used Einstein AOs. For evaluation, Wang
et al. [36] used PF with entropy weights. Wei [38] contributed by proposing PF inter-
action AOs and exploring their uses within the MADM framework. Wei [40] presented a
comprehensive suite of Pythagorean fuzzy Hamacher power aggregation operators. Their



A. Fahmi et al. / Eur. J. Pure Appl. Math, 18 (1) (2025), 5691 5 of 32

application in multi-attribute decision-making was covered by Wu and Wei [42]. The au-
thor concentrates on the similarity measures of Fermatean fuzzy sets, providing definitions
for both similarity measures and weighted similarity measures in the contexts of discrete
and continuous universes [20, 25–27, 33, 43, 46]. Its goal was to assist decision-makers
in formulating effective policies to address the challenges of electric power shortages [48].
Innovative concepts for interval-valued fuzzy Einstein hybrid AOs were introduced by Zhao
and Wei [51], who also described how they might be used in MADM scenarios. Recently,
the bipolar fuzzy set [9, 28, 39, 49, 50] has drawn interest as a practical approach for
dealing with uncertainty in MADM situations. A positive membership degree and a neg-
ative membership degree are the two values it uses to represent an object. The bipolar
fuzzy set permits membership degrees to fluctuate within the range [−1, 1], in contrast to
intuitionistic fuzzy sets (IFS), which have membership degrees ranging from 0 to 1.

Problem statement
There are financial of e-waste disposal techniques of the environmental associated. This

necessity of creative approaches to e-waste management of recycling. The subject of elec-
tronic recycling is still in its infancy, lacks infrastructure, e-waste recycling partners can be
challenging, this study presents certain Hamacher aggregation operators in a bipolar fuzzy
framework to help with decision-making. Establishing a MADM framework to determine
the best recycling partner is the main goal of this study. Porcelain is currently one of
the biggest manufacturers of e-waste in addition to being a significant consumer of elec-
tronic goods. These a case analysis centered on choosing a recycling partner in Porcelain
is included.

Motivation
In the realm of multi-criteria decision-making, handling uncertainty and imprecision

is a crucial challenge. Traditional fuzzy set theories and aggregation operators primarily
address situations with binary membership, often overlooking the more complex scenarios
where both positive and negative membership, as well as hesitation degrees, are equally
important. Bipolar Fermatean Fuzzy Sets, which extend classical fuzzy sets to incorporate
dual membership and non-membership, offer a promising solution to this problem. How-
ever, existing aggregation methods are not sufficiently equipped to handle the complexity
and uncertainty inherent in Bipolar Fermatean Fuzzy Sets based decision-making tasks.

The primary issues identified in the current decision-making frameworks are as follows:
Traditional aggregation operators are designed for conventional fuzzy sets and fail to

fully integrate the duality present in Bipolar Fermatean Fuzzy Sets. While they capture
membership values well, they struggle to incorporate non-membership values and hesitation
degrees in a coherent manner. This limitation hinders the ability to accurately evaluate
alternatives that involve both positive and negative criteria.

Classical aggregation techniques, such as the Weighted Average or Ordered Weighted
Average, are not well-suited for environments where both positive and negative information
are crucial. In particular, these methods cannot address the intricacies of interactions
between membership and non-membership components in Bipolar Fermatean Fuzzy Sets,
leading to potential inaccuracies in decision-making.

A significant gap in the literature is the lack of operational laws that govern the in-
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teractions of membership, non-membership, and hesitation degrees in Bipolar Fermatean
Fuzzy Sets. The development of these operational laws is essential for building aggregation
functions that can process such complex information consistently and meaningfully.

Limitations in Existing Decision-Making Systems: Many existing decision-making sys-
tems based on aggregation operators are primarily designed for conventional fuzzy sets, and
they encounter difficulties when applied to Bipolar Fermatean Fuzzy Sets. These systems
cannot handle the uncertainties and ambiguities inherent in Bipolar Fermatean Fuzzy Sets
based data, limiting their effectiveness in fields requiring nuanced decision-making under
uncertainty.

Challenges in Real-World Applications (e.g., E-Waste Management): In practical ap-
plications such as e-waste management, where decisions involve selecting appropriate part-
ners or alternatives based on multiple criteria (e.g., cost, efficiency, environmental impact),
existing methods fail to account for the complex uncertainty of the decision-making envi-
ronment. The inability to fully model positive and negative contributions, as well as the
hesitation or indecision in choosing the best alternative, leads to suboptimal results.

Novelty and contribution
The proposed work offers several unique contributions and essential advancements:
A novel scoring function is introduced to facilitate the comparison of any number of

bipolar fermatean fuzzy sets.
New aggregation operators, including the Hamacher averaging operator is developed

for effective Bipolar Fermatean Fuzzy Sets.
The beneficial characteristics of these proposed operators are discussed to highlight

their utility and effectiveness.
To address MADM challenges involving unknown decision makers and criteria weights,

a composite Bipolar Fermatean Fuzzy based framework is proposed. This framework com-
bines the scoring function with Hamacher aggregation operators for enhanced decision-
making. A case study on choosing an e-waste salvage partner in Porcelain highlights the
approach’s stability and reliability within the Bipolar Fermatean Fuzzy framework Com-
parative study with existing approaches validates the robustness and effectiveness of our
approach, underscoring its improved performance and reliability.

Structure of the study
The remainder of this study is structured as follows: Section 2 offerings a comprehensive

evaluation of the proposed study. Section 3 explores the fundamental concepts of bipolar
fermatean fuzzy sets. In Section 4, we introduce six aggregation operators within the con-
text of bipolar fuzzy sets. Section 5 applies the multi-attribute decision-making technique
consuming the proposed Bipolar Fermatean Fuzzy aggregation operators. Section 6 exam-
ines a case study fixated on selecting an e-waste recycling cohort in Porcelain, provides
a comparison of our suggested approach with existing approaches. Section 7 defined the
conclusion.

2. Preliminaries

In this section, basic definitions are defined.
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Definition 1. [47] Let us consider that Φ ̸= X and by a fuzzy set γ =

{ 〈
x, µγ(x)

〉
: x ∈ X

}
,

µγ(x) is a mapping from X to [0, 1] represent membership function of an element x in X .

Definition 2. [34] The fixed set C and the FFN A is defined in A =


⟨DHA(p),
χA(p)⟩
: p ∈ C

 ,

where DHA(p) and χA(p) exhibit the MED and NOMED, and DHA(p) ∈ [0, 1],χA(p) ∈
[0, 1] and 0 ≤ DHA(p)

3 + χA(p)
3 ≤ 1. The degree of indeterminacy is defined as

πA(p) =
3
√
(DHA(p)3 + χA(p)3 −DHA(p)3χA(p)3).

The FFN is denoted as A = ⟨DHA, χA⟩.

Definition 3. [23] Let ϕ1 = {Ψ1, χ1} and ϕ2 = {Ψ2, χ2} be two FFNs, λ > 0, then

ϕ1 ⊕ ϕ2 =

 3

√
(Ψ1)3+(Ψ2)3−(Ψ1)3(Ψ2)3−(1−λ)(Ψ1)3(Ψ2)3

1−(1−λ)(Ψ1)3(Ψ2)3
,

χ1χ2
3
√

λ+(1−λ)(χ1)3+(χ2)3−(χ1)3(χ2)3

 ;

ϕ1 ⊗ ϕ2 =

 Ψ1Ψ2
3
√

λ+(1−λ)(Ψ1)3+(Ψ2)3−(Ψ1)3(Ψ2)3
,

3

√
(χ1)3+(χ2)3−(χ1)3(χ2)3−(1−λ)(χ1)3(χ2)3

1−(1−λ)(χ1)3(Ψχ)3

 ;

λϕ1 =

 3

√
(1+(λ−1)(Ψ1)3)λ−(1−Ψ1)3)λ

(1+(λ−1)(1−Ψ3
1)

λ+(λ−1)((Ψ1)3)λ
,

3√
λ(χ1)λ

3
√

(1+(λ−1)(χ1)3)λ+(λ−1)(1−(χ1)3)λ

 ;

ϕλ
1 =


3√
λ(Ψ+

1 )λ

3
√

(1+(λ−1)(Ψ+
1 )3)λ+(λ−1)(1−(Ψ+

1 )3)λ
,

3

√
(1+(λ−1)(χ3

1)
λ−(1−(χ3

1)
λ

(1+(λ−1)(1−χ3
1)

λ+(λ−1)((χ3
1)

λ

 .

Definition 4. [23] Let a = {ς, χ} be the FFNs, the score function is given as a = ς3α−χ3
α.

Definition 5. [23] Let a = {ς, χ} be the FFNs, the accuracy function is given as a =
ς3α + χ3

α.

Definition 6. [49, 50] Let X be a fix set. A BFS is an object having the form A ={
⟨E+

A (x), χ
−
A(x)⟩, : x ∈ C

}
. The fixed set C and the BN A is defined in , where the positive

membership degree function E+
A (x) : X 7−→ [0, 1] denotes the satisfaction degree of an

element x to the property corresponding to a BFS A and the negative membership degree
function χ−

A(x) : X 7−→ [0, 1], denotes satisfaction degree of an element x to some implicit
counter-property corresponding to a BFS A, respectively, and, for every x ∈ X. The BN
is denoted as A =

{
⟨E+

A (x), χ
−
A(x)⟩, : x ∈ C

}
.

Definition 7. [39] Let a1 = [κ+1 , ς
−
1 ] and a2 = [κ+2 , ς

−
2 ] be two BFHFNs and λ > 0, then

a1 ⊕ a2 =
[
(κ+

1 +(κ+
2 −κ+

1 κ+
2 −(1−λ)κ+

1 κ+
2

1−(1−λ)κ+
1 κ+

2

,
−ς−1 ς−2

λ+(1−λ)(ς−1 +ς−2 −ς−1 ς−2

]
;

a1 ⊗ a2 =
[

κ+
1 κ+

2

λ+(1−λ)(κ+
1 +κ+

1 −κ+
1 κ+

1

,
−(ς−1 +(ς−2 −ς−1 ς−2 −(1−λ)ς−1 ς−2

1−(1−λ)ς−1 ς−2

]
;
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λa1 =
[

(1+(λ−1)(κ+
1 )λ−(1−(κ+

1 )λ

(1+(λ−1)(1−κ+
1 )λ+(λ−1)(κ+

1 )λ
,

−λ(ς−1 )λ

(1+(λ−1)(ς−1 )λ+(λ−1)(1−ς−1 )λ

]
;

aλ1 =
[

λ(κ+
1 )λ

(1+(λ−1)(κ+
1 )λ+(λ−1)(1−κ+

1 )λ
,

(1+(λ−1)(ς−1 )λ−(1−(ς−1 )λ

(1+(λ−1)(ς−1 )λ+(λ−1)(1−ς−1 )λ

]
.

Definition 8. [39] The BFNs are a = [κ+, ς−], then the score function H̆ is define as:H̆ =
1+κ+−ς−

2 .

Definition 9. [39] The BFNs are a = [κ+, ς−], then the accuracy function H̆ is define
as:H̆ = 1+κ++ς−

2 .

3. Bipolar Fermatean fuzzy Number and operational laws on hamacher

In this section, we define the definition and operational laws of BFFNs.

Definition 10. The fixed set C and the BFFN A is defined in A =


⟨E+

A (x), χ
+
A(x)⟩,

⟨ς−A (x), χ−
A(x)⟩

: x ∈ C

 ,

where E+
A (x), χ

+
A(x) and ς−A (x), χ−

A(x)represent the MED and NOMED, and E+
A (x) ∈

[0, 1], χ+
A(x) ∈ [0, 1], ς−A (x) ∈ [0, 1], χ−

A(x) ∈ [0, 1] and 0 ≤ E+
A (x)

3χ+
A(x)

3+ ς−A (x)3χ−
A(x)

3 ≤
1.The degree of indeterminacy is defined as

πA(x) =
3

√
(E+

A (x)
3χ+

A(x)
3 + ς−A (x)3χ−

A(x)
3−

(E+
A (x)

3χ+
A(x)

3)(ς−A (x)3χ−
A(x)

3))
.

The BFFN is denoted as A =
{
⟨E+

A (x), χ
+
A(x)⟩, ⟨ς

−
A (x), χ−

A(x)⟩ : x ∈ C
}
.

Definition 11. Let a1 =

{
[κ+1 , ς

+
1 ],

[Υ−
1 , ϑ

−
1 ]

}
and a2 =

{
[κ+2 , ς

+
2 ],

[Υ−
2 , ϑ

−
2 ]

}
be two BFHFNs and

λ > 0, then

a1 ⊕ a2 =




3

√
(κ+

1 )3+(κ+
2 )3−(κ+

1 )3(κ+
2 )3−(1−λ)(κ+

1 )3(κ+
2 )3

1−(1−λ)(κ+
1 )3(κ+

2 )3
,

3

√
(ς+1 )3+(ς+2 )3−(ς+1 )3(ς+2 )3−(1−λ)(ς+1 )3(ς+2 )3

1−(1−λ)(ς+1 )3(ς+2 )3

 ,

 Υ−
1 Υ−

2
3
√

λ+(1−λ)(Υ−
1 )3+(Υ−

2 )3−(Υ−
1 )3(Υ−

2 )3
,

ϑ−
1 ϑ−

2
3
√

λ+(1−λ)(ϑ−
1 )3+(ϑ−

2 )3−(ϑ−
1 )3(ϑ−

2 )3




;

a1 ⊗ a2 =



 κ+
1 κ+

2
3
√

λ+(1−λ)(κ+
1 )3+(κ+

2 )3−(κ+
1 )3(κ+

2 )3
,

ς+1 ς+2
3
√

λ+(1−λ)(ς+1 )3+(ς+2 )3−(ς+1 )3(ς+2 )3


3

√
(Υ−

1 )3+(Υ−
2 )3−(Υ−

1 )3(Υ−
2 )3−(1−λ)(Υ−

1 )3(Υ−
2 )3

1−(1−λ)(Υ−
1 )3(Υ−

2 )3
,

3

√
(ϑ−

1 )3+(ϑ−
2 )3−(ϑ−

1 )3(ϑ−
2 )3−(1−λ)(ϑ−

1 )3(ϑ−
2 )3

1−(1−λ)(ϑ−
1 )3(ϑ−

2 )3

 ,


;
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λa1 =




3

√
(1+(λ−1)(κ+

1 )3)λ−(1−(κ+
1 )3)λ

(1+(λ−1)(1−κ+
1 )3)λ+(λ−1)((κ+

1 )3)λ
,

3

√
(1+(λ−1)(ς+1 )3)λ−(1−(ς+1 )3)λ

(1+(λ−1)(ς+1 )3)λ+(λ−1)(1−(ς+1 )3)λ

 ,


3√
λ(Υ−

1 )λ

3
√

(1+(λ−1)(Υ−
1 )3)λ+(λ−1)(1−(Υ−

1 )3)λ
,

3√
λ(ϑ−

1 )λ

3
√

(1+(λ−1)(ϑ−
1 )3)λ+(λ−1)(1−(ϑ−

1 )3)λ




;

aλ1 =




3√
λ(κ+

1 )λ

3
√

(1+(λ−1)(κ+
1 )3)λ+(λ−1)(1−(κ+

1 )3)λ
,

3√
λ(ς+1 )λ

3
√

(1+(λ−1)(ς+1 )3)λ+(λ−1)(1−(ς+1 )3)λ

 ,


3

√
(1+(λ−1)(Υ−

1 )3)λ−(1−(Υ−
1 )3)λ

(1+(λ−1)(1−Υ−
1 )3)λ+(λ−1)((Υ−

1 )3)λ
,

3

√
(1+(λ−1)(ϑ−

1 )3)λ−(1−(ϑ−
1 )3)λ

(1+(λ−1)(ϑ−
1 )3)λ+(λ−1)(1−(ϑ−

1 )3)λ




.

Definition 12. The BFFNs are a =

{
[κ+, ς+],
[Υ−, ϑ−]

}
, then the score function H̆ is define

as:H̆ =
{[(κ+)3+(ς+)3]−[(Υ−)3+(ϑ−)3]}

4 .

Definition 13. The BFFNs are a =

{
[κ+, ς+],
[Υ−, ϑ−]

}
, then the accuracy function H̆ is define

as:H̆ =
{[(κ+)3+(ς+)3]+[(Υ−)3+(ϑ−)3]}

4 .

4. Bipolar Fermatean Fuzzy aggregation operator based on Hamacher

This section defines the BFHFWA, BFHFOWA and BFHFHWA operators.

4.1. Bipolar Fermatean Fuzzy Hamacher weighted average operator

Definition 14. The set of BFFNs can be represented as hj =

{
[p+, r+],
[q−, r−]

}
and

the weight vector is g = (g1, g2, ..., gn)
T with gj ∈ [0, 1] and

n∑
j=1

gj = 1. Then

BFHFWA(h1, h2, ..., hn) =
n⊕

j=1
gjhj is said BFHFWA operator.

Theorem 1. The gathering of BFFNs are aj =

{
[κ+, ς+],
[Υ−, ϑ−]

}
and the weight vector is

g = (g1, g2, ..., gL)
T with gj ∈ [0, 1] and

L∑
j=1

gj = 1. Then it is said BFHFWA operator and

BFHFWA(a1, a2, ..., aL) =
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

3

√√√√√√√√
L∏

j=1
(1+(g−1)(κ+

j )3)g−
L∏

j=1
(1−(κ+

j )3)g

L∏
j=1

(1+(g−1)(1−κ+
j )3)g+(g−1)

L∏
j=1

((1−κ+
j )3)g

,

3

√√√√√√√√
L∏

j=1
(1+(g−1)(ς+j )3)g−

L∏
j=1

(1−(ς+j )3)g

L∏
j=1

(1+(g−1)(ς+j )3)g+(g−1)

L∏
j=1

(1−(ς+j )3)g


,



3
√
g

L∏
j=1

(Υ−
j )g

3

√√√√√ L∏
j=1

(1+(g−1)(Υ−
j )3)g+(g−1)

L∏
j=1

(1−(Υ−
j )3)g

,

3
√
g

L∏
j=1

(ϑ−
j )g

3

√√√√√ L∏
j=1

(1+(g−1)(ϑ−
j )3)g+(g−1)

L∏
j=1

(1−(ϑ−
j )3)g





.

Proof. Since L is true and L = 1

g1a1 =





3

√√√√√√√√
L∏

j=1
(1+(g−1)(κ+

1 )3)g1−
L∏

j=1
(1−(κ+

1 )3)g1

L∏
j=1

(1+(g−1)(1−κ+
1 )3)g1+(g−1)

L∏
j=1

((1−κ+
1 )3)g1

,

3

√√√√√√√√
L∏

j=1
(1+(g−1)(ς+1 )3)g1−

L∏
j=1

(1−(ς+1 )3)g1

L∏
j=1

(1+(g−1)(ς+1 )3)g1+(g−1)

L∏
j=1

(1−(ς+1 )3)g1


,



3
√
g

L∏
j=1

(Υ−
1 )g1

3

√√√√√ L∏
j=1

(1+(g−1)(Υ−
1 )3)g1+(g−1)

L∏
j=1

(1−(Υ−
1 )3)g1

,

3
√
g

L∏
j=1

(ϑ−
1 )g1

3

√√√√√ L∏
j=1

(1+(g−1)(ϑ−
1 )3)g1+(g−1)

L∏
j=1

(1−(ϑ−
1 )3)g1




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g1a1 =




3

√
(1+(g−1)(κ+

1 )3)g1−(1−(κ+
1 )3)g1

(1+(g−1)(1−κ+
1 )3)g1+(g−1)((1−κ+

1 )3)g1
,

3

√
(1+(g−1)(ς+1 )3)g1−(1−(ς+1 )3)g1

(1+(g−1)(ς+1 )3)g1+(g−1)(1−(ς+1 )3)g1

 ,


3
√
g(Υ−

1 )g1

3
√

(1+(g−1)(Υ−
1 )3)g1+(g−1)(1−(Υ−

1 )3)g1
,

3
√
g(ϑ−

1 )g1

3
√

(1+(g−1)(ϑ−
1 )3)g1+(g−1)(1−(ϑ−

1 )3)g1





g2a2 =




3

√
(1+(g−1)(κ+

2 )3)g2−(1−(κ+
2 )3)g2

(1+(g−1)(1−κ+
2 )3)g2+(g−1)((1−κ+

2 )3)g2
,

3

√
(1+(g−1)(ς+2 )3)g2−(1−(ς+2 )3)g2

(1+(g−1)(ς+2 )3)g2+(g−1)(1−(ς+2 )3)g2

 ,


3
√
g(Υ−

2 )g2

3
√

(1+(g−1)(Υ−
2 )3)g2+(g−1)(1−(Υ−

2 )3)g2
,

3
√
g(ϑ−

1 )g2

3
√

(1+(g−1)(ϑ−
2 )3)g2+(g−1)(1−(ϑ−

2 )3)g2





g1a1 ⊕ g2a2 =




3

√
(1+(g−1)(κ+

1 )3)g1−(1−(κ+
1 )3)g1

(1+(g−1)(1−κ+
1 )3)g1+(g−1)((1−κ+

1 )3)g1
,

3

√
(1+(g−1)(ς+1 )3)g1−(1−(ς+1 )3)g1

(1+(g−1)(ς+1 )3)g1+(g−1)(1−(ς+1 )3)g1

 ,


3
√
g(Υ−

1 )g1

3
√

(1+(g−1)(Υ−
1 )3)g1+(g−1)(1−(Υ−

1 )3)g1
,

3
√
g(ϑ−

1 )g1

3
√

(1+(g−1)(ϑ−
1 )3)g1+(g−1)(1−(ϑ−

1 )3)g1




⊕




3

√
(1+(g−1)(κ+

2 )3)g2−(1−(κ+
2 )3)g2

(1+(g−1)(1−κ+
2 )3)g2+(g−1)((1−κ+

2 )3)g2
,

3

√
(1+(g−1)(ς+2 )3)g2−(1−(ς+2 )3)g2

(1+(g−1)(ς+2 )3)g2+(g−1)(1−(ς+2 )3)g2

 ,


3
√
g(Υ−

2 )g2

3
√

(1+(g−1)(Υ−
2 )3)g2+(g−1)(1−(Υ−

2 )3)g2
,

3
√
g(ϑ−

1 )g2

3
√

(1+(g−1)(ϑ−
2 )3)g2+(g−1)(1−(ϑ−

2 )3)g2




Since L = k
BFHFWA(a1, a2, ..., aL) =
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

3

√√√√√√√√
k∏

j=1
(1+(g−1)(κ+

j )3)g−
k∏

j=1
(1−(κ+

j )3)g

k∏
j=1

(1+(g−1)(1−κ+
j )3)g+(g−1)

k∏
j=1

((1−κ+
j )3)g

,

3

√√√√√√√√
k∏

j=1
(1+(g−1)(ς+j )3)g−

k∏
j=1

(1−(ς+j )3)g

k∏
j=1

(1+(g−1)(ς+j )3)g+(g−1)

k∏
j=1

(1−(ς+j )3)g


,



3
√
g

k∏
j=1

(Υ−
j )g

3

√√√√√ k∏
j=1

(1+(g−1)(Υ−
j )3)g+(g−1)

k∏
j=1

(1−(Υ−
j )3)g

,

3
√
g

k∏
j=1

(ϑ−
j )g

3

√√√√√ k∏
j=1

(1+(g−1)(ϑ−
j )3)g+(g−1)

k∏
j=1

(1−(ϑ−
j )3)g




Since L = k + 1
BFHFWA(a1, a2, ..., aL) =



3

√√√√√√√√
k+1∏
j=1

(1+(g−1)(κ+
j )3)g−

k+1∏
j=1

(1−(κ+
j )3)g

k+1∏
j=1

(1+(g−1)(1−κ+
j )3)g+(g−1)

k+1∏
j=1

((1−κ+
j )3)g

,

3

√√√√√√√√
k+1∏
j=1

(1+(g−1)(ς+j )3)g−
k+1∏
j=1

(1−(ς+j )3)g

k+1∏
j=1

(1+(g−1)(ς+j )3)g+(g−1)

k+1∏
j=1

(1−(ς+j )3)g


,



3
√
g

k+1∏
j=1

(Υ−
j )g

3

√√√√√k+1∏
j=1

(1+(g−1)(Υ−
j )3)g+(g−1)

k+1∏
j=1

(1−(Υ−
j )3)g

,

3
√
g

k+1∏
j=1

(ϑ−
j )g

3

√√√√√k+1∏
j=1

(1+(g−1)(ϑ−
j )3)g+(g−1)

k+1∏
j=1

(1−(ϑ−
j )3)g




Theorem 2. (Idempotency):If Ṽ =

{
[q+, ς+],
[q−, ϑ−]

}
for all P = 1, 2, 3, ...,m, then
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BFHFWA(V, V, V, ..., V ) = V.

Proof. Since ṼP = Ṽ are equal to
{

[q+, ς+],
[q−, ϑ−]

}
for P = 1, 2, 3, ...,m, then

BFHFWA(V, V, V, ..., V ) =





3

√√√√√√√
m∏
j=1

(1+(g−1)(q+j )3)g−
m∏
j=1

(1−(q+j )3)g

m∏
j=1

(1+(g−1)(1−q+j )3)g+(g−1)

m∏
j=1

((1−q+j )3)g

,

3

√√√√√√√
m∏
j=1

(1+(g−1)(ς+j )3)g−
m∏
j=1

(1−(ς+j )3)g

m∏
j=1

(1+(g−1)(ς+j )3)g+(g−1)

m∏
j=1

(1−(ς+j )3)g


,



3
√
g

m∏
j=1

(q−j )g

3

√√√√ m∏
j=1

(1+(g−1)(q−j )3)g+(g−1)

m∏
j=1

(1−(q−j )3)g

,

3
√
g

m∏
j=1

(ϑ−
j )g

3

√√√√ m∏
j=1

(1+(g−1)(ϑ−
j )3)g+(g−1)

m∏
j=1

(1−(ϑ−
j )3)g





=




3

√
(1+(g−1)(q+j )3)g−(1−(q+j )3)g

(1+(g−1)(1−q+j )3)g+(g−1)((1−q+j )3)g
,

3

√
(1+(g−1)(ς+j )3)g−(1−(ς+j )3)g

(1+(g−1)(ς+j )3)g+(g−1)(1−(ς+j )3)g

 ,


3
√
g(q−j )g

3
√

(1+(g−1)(q−j )3)g+(g−1)(1−(q−j )3)g
,

3
√
g(ϑ−

j )g

3
√

(1+(g−1)(ϑ−
j )3)g+(g−1)(1−(ϑ−

j )3)g




=

{
[q+, ς+],
[q−, ϑ−]

}
= Ṽ

BFHFWA(V, V, V, ..., V ) = Ṽ

Theorem 3. (Boundedness):If Y − = min(y1, y2, ..., yn), Y
+ = max(y1, y2, ..., yn), then

Y − ≤BFHFWA(y1, y2, ..., yn) ≤ Y +.

Proof. Let Y =

{
[q+, ς+],
[q−, ϑ−]

}
be the accumulation of BFFNs

Y − = min(y1, y2, ..., yn) =

{
[q+, ς+],
[q−, ϑ−]

}
,

Y + = max(y1, y2, ..., yn) =

{
[q+, ς+],
[q−, ϑ−]

}
Since minj(q

+) ≤ maxj(q
+),minj(ς

+) ≤ maxj(ς
+),
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minj(q
−) ≤ maxj(q

−),minj(ϑ
−) ≤ maxj(ϑ

−)
Which implies
3

√
(1+(g−1)(q+j )3)g−(1−(q+j )3)g

(1+(g−1)(1−q+j )3)g+(g−1)((1−q+j )3)g

≥ 3

√
(1+(g−1)(minj(q

+
j )3)g−(1−(minj(q

+
j )3)g

(1+(g−1)(1−(minj(q
+
j )3)g+(g−1)((1−(minj(q

+
j )3)g

=minj(q
+);

3

√
(1+(g−1)(ς+j )3)g−(1−(ς+j )3)g

(1+(g−1)(1−ς+j )3)g+(g−1)((1−ς+j )3)g

≥ 3

√
(1+(g−1)(minj(ς

+
j )3)g−(1−(minj(ς

+
j )3)g

(1+(g−1)(1−(minj(ς
+
j )3)g+(g−1)((1−(minj(ς

+
j )3)g

=minj(ς
+);

3
√
g(q−j )g

3
√

(1+(g−1)(q−j )3)g+(g−1)(1−(q−j )3)g

≥
3
√
g(minj(q

−
j )g)

3
√

(1+(g−1)(minj(q
−
j )3)g)+(g−1)(1−(minj(q

−
j )3)g)

= minj(q
−
j )

3
√
g(ϑ−

j )g

3
√

(1+(g−1)(ϑ−
j )3)g+(g−1)(1−(ϑ−

j )3)g

≥
3
√
g(maxj(ϑ

−
j )g)

3
√

(1+(g−1)(maxj(ϑ
−
j )3)g)+(g−1)(1−(maxj(ϑ

−
j )3)g)

= maxj(ϑ
−
j )

BFHFWA(y1, y2, ..., yn) = {[q+, ς+], [q−, ϑ−]}
S(Y ) =

{[(q+)3+(ς+)3]−[(q−)3+(ϑ−)3]}
4

≤ {[maxj(q
+)3+maxj(ς

+)3]−[minj(q
−)3+minj(ϑ

−)3]}
4

= S(Y −)

S(Y ) =
{[(q+)3+(ς+)3]−[(q−)3+(ϑ−)3]}

4

≥ {[maxj(q
+)3+maxj(ς

+)3]−[minj(q
−)3+minj(ϑ

−)3]}
4

= S(Y +)
S(Y −) ≥ S(Y +)
BFHFWA(y1, y2, ..., yn) = Y − and
BFHFWA(y1, y2, ..., yn) = Y +

4.2. Bipolar Fermatean Fuzzy Hamacher Ordered Weighted Average op-
erator

Definition 15. The gathering of BFFNs are fj =

{
[p+, r+],
[q−, r−]

}
and the weight vector is

g = (g1, g2, ..., gn)
T with gj ∈ [0, 1] and

n∑
j=1

gj = 1. Then BFHFOWA (f1, f2, ..., fn) =
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n⊕
j=1

gjfj is expressed BFHFOWA operator.

Theorem 4. The gathering of BFFNs are aj =

{
[κ+, ς+],
[Υ−, ϑ−]

}
and the weight vector is

g = (g1, g2, ..., gn)
T with gj ∈ [0, 1] and

n∑
j=1

gj = 1. Then it is said BFHFOWA operator

and BFHFOWA(a1, a2, ..., an) =



3

√√√√√√√
n∏

j=1
(1+(g−1)(κ+

j )3)g−
n∏

j=1
(1−(κ+

j )3)g

n∏
j=1

(1+(g−1)(1−κ+
j )3)g+(g−1)

n∏
j=1

((1−κ+
j )3)g

,

3

√√√√√√√
n∏

j=1
(1+(g−1)(ς+j )3)g−

n∏
j=1

(1−(ς+j )3)g

n∏
j=1

(1+(g−1)(ς+j )3)g+(g−1)

n∏
j=1

(1−(ς+j )3)g


,



3
√
g

n∏
j=1

(Υ−
j )g

3

√√√√ n∏
j=1

(1+(g−1)(Υ−
j )3)g+(g−1)

n∏
j=1

(1−(Υ−
j )3)g

,

3
√
g

n∏
j=1

(ϑ−
j )g

3

√√√√ n∏
j=1

(1+(g−1)(ϑ−
j )3)g+(g−1)

n∏
j=1

(1−(ϑ−
j )3)g





.

Proof:This proof is straightforward

Theorem 5. (Idempotency):If X̃D =

{
[r+, s+],
[r−, s−]

}
for all k = 1, 2, 3, ..., n, then

BFHFOWA(XD,XD,XD, ...,XD) = XD.

Proof:This proof is straightforward

4.3. Bipolar Fermatean Fuzzy-Hamacher hybrid Weighted Average oper-
ator

Definition 16. The gathering of BFFNs are fk =

{
[p+, r+],
[q−, r−]

}
and the weight vector is

e = (e1, e2, ..., en)
T with ek ∈ [0, 1] and

n∑
k=1

ek = 1. Then BFHFHWA (f1, f2, ..., fn) =

n⊕
k=1

ekfk is expressed BFHFHWA operator.
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Theorem 6. The gathering of BFFNs are hj =

{
[κ+, ς+],
[Υ−, ϑ−]

}
and the weight vector is

f = (f1, f2, ..., fn)
T with fj ∈ [0, 1] and

n∑
j=1

fj = 1. Then it is said BFHFHWA operator

and BFHFHWA(h1, h2, ..., hn) =



3

√√√√√√√
n∏

j=1
(1+(f−1)(κ+

j )3)f−
n∏

j=1
(1−(κ+

j )3)f

n∏
j=1

(1+(f−1)(1−κ+
j )3)f+(f−1)

n∏
j=1

((1−κ+
j )3)f

,

3

√√√√√√√
n∏

j=1
(1+(f−1)(ς+j )3)f−

n∏
j=1

(1−(ς+j )3)f

n∏
j=1

(1+(f−1)(ς+j )3)f+(f−1)

n∏
j=1

(1−(ς+j )3)f


,



3√f

n∏
j=1

(Υ−
j )f

3

√√√√ n∏
j=1

(1+(f−1)(Υ−
j )3)f+(f−1)

n∏
j=1

(1−(Υ−
j )3)f

,

3√f

n∏
j=1

(ϑ−
j )f

3

√√√√ n∏
j=1

(1+(f−1)(ϑ−
j )3)f+(f−1)

n∏
j=1

(1−(ϑ−
j )3)f





.

Proof:This proof is straightforward

Theorem 7. (Idempotency):If R̃Y =

{
[κ+, ς+],
[Υ−, ϑ−]

}
for all L = 1, 2, 3, ...,m, then

BFHFHWA(RY,RY,RY, ..., RY ) = RY.

Proof:This proof is straightforward

Theorem 8. (Boundedness):If Y − = min(b1, b2, ..., bn), Y
+ = max(b1, b2, ..., bn), then

Y − ≤BFHFHWA(b1, b2, ..., bn) ≤ Y +.

Proof:This proof is straightforward

5. Multiple Criteria Decision Making technique on Bipolar fermatean
fuzzy idea

Step 1:Explain the BFF decision matrix
Step 2:Explain the BFHFWA operator and λ = (λ1, λ2, ..., λn) .
BFHFWA(a1, a2, ..., an) =
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

3

√√√√√√√
n∏

j=1
(1+(λ−1)(κ+

j )3)λ−
n∏

j=1
(1−(κ+

j )3)λ

n∏
j=1

(1+(λ−1)(1−κ+
j )3)λ+(λ−1)

n∏
j=1

((1−κ+
j )3)λ

,

3

√√√√√√√
n∏

j=1
(1+(λ−1)(ς+j )3)λ−

n∏
j=1

(1−(ς+j )3)λ

n∏
j=1

(1+(λ−1)(ς+j )3)λ+(λ−1)

n∏
j=1

(1−(ς+j )3)λ


,



3√
λ

n∏
j=1

(Υ−
j )λ

3

√√√√ n∏
j=1

(1+(λ−1)(Υ−
j )3)λ+(λ−1)

n∏
j=1

(1−(Υ−
j )3)λ

,

3√
λ

n∏
j=1

(ϑ−
j )λ

3

√√√√ n∏
j=1

(1+(λ−1)(ϑ−
j )3)λ+(λ−1)

n∏
j=1

(1−(ϑ−
j )3)λ




Step 3:Describe the BFHFWA operator and λ = (λ1, λ2, ..., λn) .

BFHFWA(a1, a2, ..., an) =



3

√√√√√√√
n∏

j=1
(1+(λ−1)(κ+

j )3)λ−
n∏

j=1
(1−(κ+

j )3)λ

n∏
j=1

(1+(λ−1)(1−κ+
j )3)λ+(λ−1)

n∏
j=1

((1−κ+
j )3)λ

,

3

√√√√√√√
n∏

j=1
(1+(λ−1)(ς+j )3)λ−

n∏
j=1

(1−(ς+j )3)λ

n∏
j=1

(1+(λ−1)(ς+j )3)λ+(λ−1)

n∏
j=1

(1−(ς+j )3)λ


,



3√
λ

n∏
j=1

(Υ−
j )λ

3

√√√√ n∏
j=1

(1+(λ−1)(Υ−
j )3)λ+(λ−1)

n∏
j=1

(1−(Υ−
j )3)λ

,

3√
λ

n∏
j=1

(ϑ−
j )λ

3

√√√√ n∏
j=1

(1+(λ−1)(ϑ−
j )3)λ+(λ−1)

n∏
j=1

(1−(ϑ−
j )3)λ




Step 4:Find the score function
Step 5:Find the ranking.
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6. Case study

This section examines the potential environmental of the health impacts of e-waste,
focusing on the complex challenges and issues related with e-waste organization in Porce-
lain. Additionally, it aims to provide valuable insights for improving the country’s e-waste
recycling framework. Presently, China stands as a significant consumer of electronic prod-
ucts and a major importer of e-waste, driven by the rapid advancement of electrical and
electronic systems alongside its economic growth.

Domestic e-waste flows in China
China currently has three main types of sites for e-waste disposal. First, used electronics

and appliances are commonly sold in second-hand markets. Instead of discarding old
household items, many consumers prefer to keep them in their homes or offices, and they
are willing to sell e-waste if offered a reasonable price. Outdated appliances are frequently
recycled by private companies that focus on extracting raw materials. These recyclers
typically acquire waste electrical and electronic equipment from households at low prices
but often lack the necessary facilities for safe disposal. As a result, this method of e-waste
disposal can lead to significant environmental pollution [46].

Casual recycling area of Porcelain
In Porcelain, most domestic e-waste is funneled into an informal recycling sector that

also handles imported waste electrical and electronic equipment. By 2007, this industry
employed more than 700,000 people, with 98% working in unregulated recycling operations
(Ongondo et al.[30]), acknowledged as the largest e-waste recycling site in both Porcelain
and globally, has a population of approximately 150,000, including nearly 100,000 migrant
workers engaged in e-waste recycling activities. These facilities usually consist of numerous
small workshops focused on recycling waste electrical and electronic equipment. However,
the recycling techniques used are often outdated and basic. These methods include: (1) dis-
mantling electronic devices; (2) heating and manually removing components from printed
circuit boards; (3) burning cables and wires to retrieve valuable metals; (4) melting and
shredding plastics; (5) collecting toner; and (6) performing open acid leaching on e-waste
to extract valuable metals.
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Figure 2 is given as below

Figure 2: The e-waste process

To establish a comprehensive excess electrical and electronic apparatus recycling
scheme, the National Growth and Improvement Commission designated Qingdao Haier,
Hangzhou Dadi, Beijing Huaxing, and Tianjin Datong as national pilot projects in 2004.
However, progress has been limited since then. For example, Haier, the fourth-largest
white goods manufacturer in China, was selected to develop a producer-responsibility
recycling model to improve the collection of used household appliances. In collaboration
with Tsinghua University, Haier sought to enhance recycling technology. Despite these
efforts, by May 2007, the company had disposed of only 8,000 domestic appliances,
equating to an annual collection rate of approximately 600,000 devices.

In parallel, isolated ecological organizations have also taken initiatives to increase e-
waste recovery rates. Shenzhen Green Eco-Manufacture Tech Co., Ltd. opened its first
e-waste recycling supermarket in Wuhan [22]. GEM established specific pricing for used
or obsolete electrical and electronic equipment based on their condition. In addition, the
company has formed strategic partnerships with retailers such as Wuhan Zhongbai, Gome,
and Suning, aiming to reduce electronic waste and promote low-carbon feasting through
market-driven plans. Figure 3 is material of the case study is given as
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Figure 3: Material of the case study

6.1. Numerical example

In this subsection, the ecological assessment standards and their meanings. Standards
meaning the proposed cohesive model is practical to this instance as follows:

LHR :Ecological contamination
This standard is connected to the projected equal of production of airborne contam-

inants, injurious materials, solid wildernesses, production of air impurities waste marine,
which statements by a provider in its making development.

KHI :Reserve feeding
This criterion is correlated to the appraised equal of rare factual eating, liveliness

feeding and river eating throughout the progression of construction.
FSD :Biological revolution This criterion is interrelated to the advance of progres-

sions and harvests that can help to maintainable growth using the profitable request of
information to spread straight or unintended environmental developments.

ISB :Organic organization
This criterion is connected to preparation of capitals for emerging, physical construc-

tion and applying rules for ecological defense. ISO 14000 and ISO14001 are the greatest
extensively secondhand values in an ecological organization method.

Step 1:Describe the BFF decision matrix provided in Tables 1 and 2.
BFF decision matrix table 1
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LHR1 KHI2 FSD3 ISB4

PS1


[0.11,
0.13],
[−0.12,
−0.16]




[0.12,
0.14],
[−0.13,
−0.15]




[0.21,
0.22],
[−0.23,
−0.26]




[0.3,
0.5],
[−0.4,
−0.6]


PS2


[0.3,
0.5],
[−0.4,
−0.6]




[0.11,
0.13],
[−0.12,
−0.16]




[0.12,
0.14],
[−0.13,
−0.15]




[0.21,
0.22],
[−0.23,
−0.26]


PS3


[0.12,
0.14],
[−0.13,
−0.15]




[0.3,
0.5],
[−0.4,
−0.6]




[0.21,
0.22],
[−0.23,
−0.26]




[0.11,
0.13],
[−0.12,
−0.16]


PS4


[0.21,
0.22],
[−0.23,
−0.26]




[0.11,
0.13],
[−0.12,
−0.16]




[0.3,
0.5],
[−0.4,
−0.6]




[0.12,
0.14],
[−0.13,
−0.15]


BFF decision matrix table 2

LHR1 KHI2 FSD3 ISB4

PS1


[0.11,
0.34],
[−0.40,
−0.54]




[0.102,
0.104],
[−0.103,
−0.105]




[0.09,
0.011],
[−0.01,
−0.012]




[0.01,
0.03],
[−0.02,
−0.04]


PS2


[0.102,
0.104],
[−0.103,
−0.105]




[0.11,
0.34],
[−0.40,
−0.54]




[0.01,
0.03],
[−0.02,
−0.04]




[0.09,
0.011],
[−0.01,
−0.012]


PS3


[0.09,
0.011],
[−0.01,
−0.012]




[0.01,
0.03],
[−0.02,
−0.04]




[0.11,
0.34],
[−0.40,
−0.54]




[0.102,
0.104],
[−0.103,
−0.105]


PS4


[0.01,
0.03],
[−0.02,
−0.04]




[0.102,
0.104],
[−0.103,
−0.105]




[0.09,
0.011],
[−0.01,
−0.012]




[0.11,
0.34],
[−0.40,
−0.54]


Step 2:Explain the BHFFWA operator presented in table 3 and ξ = (0.26, 0.21, 0.25, 0.28) .
BFHFWA operator table 3.
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LHR1 KHI2 FSD3 ISB4

PS1


[0.1341,
0.3081],
[−0.2051,
−0.6341]




[0.1022,
0.1012],
[−0.3323,
−0.3325]




[0.0329,
0.4211],
[−0.5021,
−0.7213]




[0.4513,
0.4315],
[−0.2314,
−0.1216]


PS2


[0.9101,
0.1112],
[−0.1132,
−0.1223]




[0.0911,
0.5612],
[−0.8721,
0.9812]




[0.1301,
0.3501],
[−0.2601,
−0.4801]




[0.3112,
0.4313],
[−0.4512,
−0.5411]


PS3


[0.3213,
0.5987],
[−0.2321,
−0.4101]




[0.1081,
0.3091],
[−0.2081,
−0.4051]




[0.1222,
0.3322],
[−0.2122,
−0.4222]




[0.1209,
0.3011],
[−0.5201,
0.6012]


PS4


[0.0111,
0.5121],
[−0.5011,
0.9121]




[0.3331,
0.3333],
[−0.3332,
0.3334]




[0.1239,
0.1411],
[−0.6511,
−0.6312]




[0.1871,
0.3561],
[−0.2741,
−0.4571]


Step 3:Explain the BHFFWA operator as presented in table 4 and ξ = (0.26, 0.21, 0.25, 0.28) .

BHFFWA operator table 4
PS1 [[0.1309, 0.3776], [−0.2961,−0.4521]]

PS2 [[0.0901, 0.4512], [−0.1522,−0.6423]]

PS3 [[0.6713, 0.9737], [−0.2321,−0.3001]]

PS4 [[0.3417, 0.6721], [−0.1012,−0.2098]]

Step 4: Determine score function
Ψ1 = 0.0011,Ψ2 = 0.5672,Ψ3 = 0.2998,Ψ4 = 0.3406.
Step 5: Establish the ranking
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Figure 4 is given as

Figure 4: Proposed Method

6.2. Comparsion technique with existing method

To validate the effectiveness of the proposed Bipolar Fermatean Fuzzy Hamacher Ag-
gregation Operators (BFHFWA, BFHFOWA, BFHFHWA), a comparative study was con-
ducted against established aggregation methods in fuzzy decision-making literature. The
evaluation criteria include decision accuracy, uncertainty management, computational ef-
ficiency, robustness and well-established methods such as those by Senapati et al. [34],
Akram et al. [51], Aliya et al. [18, 19], Zhang [50] and Wei et al. [39]. The practical
relevance is demonstrated through an e-waste management scenario, emphasizing the se-
lection of optimal recycling partners based on environmental, economic, and operational
criteria. Different existing techniques Tables 5 and 6 are given as.
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Different existing techniques Table 5
Methods Score function Ranking Final ranking

BFHFWA operators


Ψ1 = 0.0011,
Ψ2 = 0.5672,
Ψ3 = 0.2998,
Ψ4 = 0.3406




Ψ2 >
Ψ4 >
Ψ3 >
Ψ1




Ψ2 >
Ψ4 >
Ψ3 >
Ψ1


BFHFOWA operators


Ψ1 = 0.0125,
Ψ2 = 0.6263,
Ψ3 = 0.3981,
Ψ4 = 0.4212




Ψ2 >
Ψ4 >
Ψ3 >
Ψ1




Ψ2 >
Ψ4 >
Ψ3 >
Ψ1


BFHFHWA operators


Ψ1 = 0.0234,
Ψ2 = 0.8923,
Ψ3 = 0.4527,
Ψ4 = 0.5028




Ψ2 >
Ψ4 >
Ψ3 >
Ψ1




Ψ2 >
Ψ4 >
Ψ3 >
Ψ1


FFSs [34]


Ψ1 = 0.0107,
Ψ2 = 0.4413,
Ψ3 = 0.1998,
Ψ4 = 0.2451.




Ψ2 >
Ψ4 >
Ψ3 >
Ψ1




Ψ2 >
Ψ4 >
Ψ3 >
Ψ1


MCDM [5]


Ψ1 = 0.0317,
Ψ2 = 0.6001,
Ψ3 = 0.1276,
Ψ4 = 0.1654




Ψ2 >
Ψ4 >
Ψ3 >
Ψ1




Ψ2 >
Ψ4 >
Ψ3 >
Ψ1


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Figure 5 is given as

Figure 5: Different existing techniques

Different existing techniques Table 6
Methods Score function Ranking Final ranking

Cubic einstein [16]


Ψ1 = 0.2014,
Ψ2 = 0.8755,
Ψ3 = 0.5811,
Ψ4 = 0.6711




Ψ2 >
Ψ4 >
Ψ3 >
Ψ1




Ψ2 >
Ψ4 >
Ψ3 >
Ψ1


Natural gas [19]


Ψ1 = 0.2014,
Ψ2 = 0.8755,
Ψ3 = 0.5811,
Ψ4 = 0.6711




Ψ2 >
Ψ4 >
Ψ3 >
Ψ1




Ψ2 >
Ψ4 >
Ψ3 >
Ψ1


Bipolar fuzzy sets [50]


Ψ1 = 0.2176,
Ψ2 = 0.8021,
Ψ3 = 0.6017,
Ψ4 = 0.7081




Ψ2 >
Ψ4 >
Ψ3 >
Ψ1




Ψ2 >
Ψ4 >
Ψ3 >
Ψ1


Hamacher [39]


Ψ1 = 0.0213,
Ψ2 = 0.1745,
Ψ3 = 0.0545,
Ψ4 = 0.0893




Ψ2 >
Ψ4 >
Ψ3 >
Ψ1




Ψ2 >
Ψ4 >
Ψ3 >
Ψ1


The comparison has been made using the following criteria:
Decision Accuracy: Evaluating the ability of methods to rank alternatives consistently

and correctly.
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Uncertainty Management: Assess the ability to handle imprecise and conflicting data
effectively.

Computational Efficiency: Comparison of execution time and resource utilization of
the methods.

Robustness: Analyzing sensitivity to variations in input data.
Enhanced Demonstration:
We provide a step-by-step demonstration of the proposed methods, showing how they

perform better in real-world decision-making scenarios, particularly the e-waste manage-
ment case study. These examples illustrate the advantages of our approach in terms of
ranking accuracy, reduced computational effort, and better handling of conflicting criteria.

6.3. Experimental of the study

In this subsection, we define the experimental of the study as table 7.
Experimental study table 7

BFF Operators Uncertainty Efficiency Precision Decision Analysis
BFHFWA operator High High High Very Low

[48] Low Very Low Very Low Moderate
[44] Moderate High Moderate High
[43] Very Low Very Low Low Very Low
[42] Very high High High Moderate

6.4. Advantages of the proposed method

BFFS allow for the representation of both positive and negative membership degrees.
This flexibility allows for a more thorough representation of uncertainty and ambiguity in
real-world situations.

By considering both positive and negative factors, BFFS enhance decision-making pro-
cesses, particularly in complex environments where various conflicting criteria must be
evaluated. BFFS reflect the way humans naturally assess situations, recognizing both fa-
vorable and unfavorable attributes. This alignment can lead to more intuitive and relatable
decision models.

The bipolar nature of BFFS is particularly advantageous in multi-criteria decision-
making scenarios, where various attributes have both positive and negative impacts. This
allows for a more holistic view of options and outcomes.

BFFS can be seamlessly integrated with traditional fuzzy sets and other mathemat-
ical frameworks, facilitating hybrid approaches that leverage diverse methodologies for
improved problem-solving. The use of distinct bipolar membership functions allows for
clearer representation of the affirmative and negative aspects of elements. This clarity can
enhance data visualization and interpretation.

BFFS excel in environments characterized by contradictory or conflicting information,
making them valuable in artificial intelligence, decision support systems, and knowledge
representation.
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Built on solid mathematical foundations, BFFS provide a rigorous framework for analy-
sis and the development of algorithms, ensuring reliability in computations and conclusions.
BFFS can effectively model dynamic systems where relationships between variables may
change over time. This adaptability is crucial for applications in fields like economics,
environmental science, and engineering.

The versatility of BFFS allows for their application across various disciplines, including
social sciences, economics, engineering, and medical diagnostics. This broad applicability
highlights their potential to address diverse challenges.

6.5. Results and discussion

This subsection presents a comprehensive analysis of the results derived from applying
the proposed aggregation operators based on Hamacher operational laws for Bipolar Fer-
matean Fuzzy sets. The results are analyzed in terms of the score functions calculated for
each alternative and the corresponding rankings, followed by a discussion on the theoretical
implications of the findings.

The results and disscussion below in table 8.
Results and disscussion below table 8.
Methods Score function Ranking Final ranking

FFS [8]


Ψ1 = 0.1823,
Ψ2 = 0.7645,
Ψ3 = 0.6649,
Ψ4 = 0.7123




Ψ2 >
Ψ4 >
Ψ3 >
Ψ1




Ψ2 >
Ψ4 >
Ψ3 >
Ψ1


FFYA [19]


Ψ1 = 0.1756,
Ψ2 = 0.7312,
Ψ3 = 0.5511,
Ψ4 = 0.6087




Ψ2 >
Ψ4 >
Ψ3 >
Ψ1




Ψ2 >
Ψ4 >
Ψ3 >
Ψ1


PFIH [36]


Ψ1 = 0.0019,
Ψ2 = 0.1949,
Ψ3 = 0.0156,
Ψ4 = 0.0938




Ψ2 >
Ψ4 >
Ψ3 >
Ψ1




Ψ2 >
Ψ4 >
Ψ3 >
Ψ1


IFE [51]


Ψ1 = 0.0212,
Ψ2 = 0.2876,
Ψ3 = 0.1093,
Ψ4 = 0.2121




Ψ2 >
Ψ4 >
Ψ3 >
Ψ1




Ψ2 >
Ψ4 >
Ψ3 >
Ψ1


The score functions for each method are computed, and the rankings are established

by ordering the values in descending order. In all four methods, Ψ2 consistently ranks
the highest, followed by Ψ4,Ψ3 , and Ψ1. This pattern indicates the reliability of Ψ2

as the most favorable alternative across the different approaches. This analysis shows
that the suggested rankings and score functions work well for assessing and contrasting
the performance of options, offering a thorough framework for making decisions in the
face of uncertainty. The theoretical underpinnings of the methodology, which are based
on Hamacher operational principles and fuzzy set theory, enable it to integrate various
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sources of uncertainty in order to address complicated decision issues. This is particularly
beneficial in contexts where alternatives are characterized by inaccurate, partial, or con-
tradictory information, as typically found in domains such as waste management, resource
distribution, and risk assessment.

Moreover, the ranking procedure based on aggregated score functions streamlines the
decision-making process by offering precise, measurable performance metrics, which is es-
pecially helpful in multi-criteria decision analysis, where decision-makers must rank and
assess different options according to multiple competing characteristics.

7. Conclusion

This paper introduces advanced aggregation operators based on Hamacher opera-
tional laws for Bipolar Fermatean Fuzzy sets, providing an innovative solution for com-
plex decision-making problems that involve multiple uncertainties. A key strength of the
proposed methodology is the incorporation of a score function, which allows for the sys-
tematic ranking of alternatives based on the aggregated results. This score function en-
hances decision-making by offering a clear and quantifiable measure of the performance of
each alternative, simplifying the selection process, and improving overall decision accuracy.
The proposed operators Bipolar Fermatean Fuzzy Hamacher Weighted Average, Bipolar
Fermatean Fuzzy Hamacher Ordered Weighted Average, and Bipolar Fermatean Fuzzy
Hamacher Hybrid Weighted Average effectively integrate membership, non-membership,
and hesitation degrees, making them highly suitable for handling real-world decision chal-
lenges. The practical relevance of the methodology is demonstrated through a real-world
application in managing electronic waste, where the results show the superiority of the pro-
posed approach over existing methods. The BFHFWA, BFHFOWA, and BFHFHWA op-
erators outperform traditional aggregation techniques in terms of flexibility, efficiency, and
accuracy, making them highly effective for handling uncertainty and improving decision-
making precision in complex environments.

In comparison with the most recent studies, such as those by Akram et al. [5] and
Deng et al. [10], our approach advances the state-of-the-art by providing a more general-
ized, flexible, and comprehensive aggregation method that handles the dual uncertainty of
membership and non-membership, offering substantial improvements in decision-making
performance. Overall, this research contributes to the field of fuzzy decision-making by
offering a robust, adaptable, and efficient framework for multi-criteria decision analysis.
Future work could expand on these operators, exploring their application in other do-
mains and refining their ability to address emerging challenges in uncertain and dynamic
decision-making environments.
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