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Abstract. In this article, we introduce some refinements of the reverse Young inequality for
scalars. As applications of our results, we establish corresponding inequalities for matrices. The
obtained inequalities in this article can be viewed as refinements of the derived inequalities by
Burqan and Khandagji [4].
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1. Introduction

Let M, be the space of n x n complex matrices. For T" = [t;;] € M,, the Hilbert-
Schmidt norm, the trace norm, and the spectral norm of T are defined by ||T|2 =

(= 1 53(T ))2 TNl = >>5_; s5(T) and || T'|| = s1(T), respectively, where s1(T) > ... >

sp(T') are the singular values of T, that is, the eigenvalues of the positive semidefinite
matrix |T'| = (T*T)%, arranged in decreasing order and repeated according to multiplicity.
The classical Young inequality says that, if a,b > 0 and 0 < g < 1, then

a"b < pa + (1 — p)b, (1.1)

with equality if and only if a = b.
Kittaneh and Manasrah [5] obtained a refinement of inequality (1.1) as follows

a*b" ™ + ro(va — Vb)® < pa+ (1 - p)b, (1.2)

where g = min{u, 1 — pu}.
Kittaneh and Manasrah [6] gave a reverse of inequality (1.2) as follows

pa+ (1 — p)b < a"b' " + Ro(va — Vb)?, (1.3)
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where Ry = max{p, 1 — u}.
Also, Kai [9] gave a refinement of inequality (1.1) as follows
If(]g,ug%,then

12
()b ] = 0)? < e + (1 )22, (1.4)
If%gugl,then

[ (1= ) ]+ (L= (=) < 20 + (1 ) (1.5)

Reverses of inequalities (1.4), (1.5) were established by Burqan and Khandagji [4] as follows
Ifogugé,then

P20 4 (L ) < (L (= b+ [a(L— )] (1.6)

If%gugl,then

p20? 4 (L P < 20— b+ [(pa) b+ (1.7)

Moreover, Nasiri, Shokoori, and Liao [8] obtaind refinements of Kai results as follows
IfOSuS%,then

2
(1a) B2 4 12 (a — b)? + rob(\/m _ \/E) < pPa® + (1 — )%, (1.8)

where ro = min{2u, 1 —2u}.
If%g,ugl,then

@H[(1 = P+ (1= (a0 + roa(Va — /T mb)

S M2a2 + (1 - /’L)2b27

(1.9)

where g = min{2u — 1, 2 — 2u}.
A matrix version of (1.1) proved in [1] says that if A, B € M, are positive semidefinit,
then

|ARBI) < luA + (1 — B, for 0< p < 1. (1.10)

Kosaki [7], Bhatia and Parthasarathy [3] proved that if A, B, X € M, such that A and B

are positive semidefinite, then
|APX BY™F||2 < ||uAX + (1 — )X B3, for 0 < < 1. (1.11)

Based on the refined Young inequalities (1.4) and (1.5), Kai [9] have showed that if
A, B, X € M, such that A and B are positive semidefinite, then
, 1,51
PAIAX — X B3 + p*[|A"X B3 + 2p(1 — p) [ A2 X B2 3

) (1.12)
< ||pAX + (1 — p) X B3,
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1
for 0 <p <3,

_ — 1 1
(1= w?[AX = X B3 + (1 — p)* 2| AMX B3 + 2u(1 — )| AZX B2 |3

\ (1.13)
< [[AX + (1= p) X B3,

for % <wpu<l

Burqan and Khandaqji [4] gave matrix versions of the inequalities (1.6) and (1.7) as follows

Let A, B, X € M, such that A and B are positive semidefinite. If 0 < p < %, then
IAX + (1= WX B3 < (1 = | AX = X B3+ 2(1 — )| A2 X B2}

s S (1.14)
+ (1 —p)" A X B3

If%gugl,then

1 1
IHAX + (1= ) XBI§ <y AX ~ XBI +2u(1 = | AXBHE
2| AP X B

In this paper, we introduce reverses of the inequalities (1.8) and (1.9) which are refinements
of the inequalities (1.6) and (1.7). As applications of our results, we obtain corresponding
inequalities for matrices.

2. Main Results

We will divide our main results into two categories, the first is about scalars and the
other is about matrices.
2.1. Inequalities for Scalars

We will start this section with the following results for scalars

Theorem 1. Let a,b > 0. If0 < pu < %, then

2
p2a® 4+ (1 — p)?0% < (ua)®b*72* 4 (0 — b)? + Rob<\/,u,a — \/E> , (2.1)
where Ry = max{2p, 1 —2u}.
If £ < <1, then
pia® + (1= p)*b* < a®[(1 = b~ + (1 - p)*(a — b)?
(2.2)

+ Roa(va— T~ ) |

where Ry = maxz{2p — 1, 2 —2u}.



O. Ramadan, A. Burgan / Eur. J. Pure Appl. Math, 18 (1) (2025), 5693 40f8
Proof. If 0 < p < %, then by inequality (1.3), we have
pa® + (1 — )0 — p2(a — b)? = b? — 2ub® + 2abp?
=b[(1 = 2u)b + 2p(pa)]
< BB 2 (ua) + Ro (/g —B)|

2
= (pa)? b* =2 4 Rob(«/,ua — \/l;> ,
and so
2
p2a® + (1 — p)?b? < (pa)?"b* =2 + 12(a — b)? + Rob(«/,ua - \fb) .
On the other hand, if % < u < 1, then by inequality (1.3), we have
pra® 4+ (1 — p)?b* — (1 — p)*(a — b)* = —a® + 2ab + 2u2ab + 2ua® — 4uab
= al(2p —1a+2(1 — p)(1 — p)b]
2
< ala® (1= p)* ¥ + Ro(Va — /(= b)) |

= (1~ B> + Roa(va — T~ o) |

and so

1202+ (1 — 1)2b% < a*[(1 — b2 + (1 — p)2(a — b)% + Roa(\/& ~Ja- u)b)

This completes the proof.

2

2.2. Inequalities for Matrices

In the following theorem we introduce matrix versions of the inequalities (2.1) and
(2.2), using the spectral theorem for positive semidefinite matrices.

Theorem 2. Let A, B, X € M, such that A and B are positive semidefinite.
Ifo<u< %, then

IHAX + (1= @) X B3 < 2| 4* X B3 + | AX — X B3
1 1 1 3
+ Rolu| ASX B3 + | XBI3 - 2yl AT X BEIE]  (23)
+2u(1 — p)]| A2 X B2},

where Ry = max{2p, 1 —2u}.
If%g,ugl, then

InAX + (1= WX BJ3 < (1 - w2 A“X B' ¥ |3+ (1 - w)?| AX — X B3
1 1
+ Ro[(1— )| A3 X B3 3 + | AX (2.4)

—2/(T= Wl ATX B3] + 2001 - )| A5 X BE|3,
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where Ry = max{2p —1, 2 —2u}.

Proof. Since every positive semidefinite matrix is unitarily diagonalizable, hence it
follows that there are unitary matrices U,V € M, such that A = UCU*and B = VDV*,
where C' = diag(a, ..., ), D = diag(fh, ..., Bn), and a;,3; >0, i =1,...,n
Let Y = U*XV = [y;;] . Then we have

pAX + (1 — )X B =U [(uo; + @)yw] ,
AX —XB=U [(a; — Bj) yw] ,
3 33
AIXBE = [ A7) ym}

and
wXB 0 (0] v

It is known that the Hilbert-Schmidt norm is unitarily invariant, so
fo<pu< %, inequality (2.1) yields that

n 2
IWAX + (1 - w)XBl3 =Y (uai +(1— u)ﬁj) i |
ij=1

n 2 n 2
1—
<)y (O‘i - 53') lyis|* + <afﬁj “) lyii |

i,j=1 i,j=1

n 1 1\2
+2p(l—p) > (afﬁf) i)

ij=1

+ Ro {M i ( ) ’yw’ + Z ﬂ2|yw‘2

,j=1 ,j=1

n 1osv2
—2vii Y (87 ) Twiil?]
i,j=1
_ 1 1
= 1?|AX — X B3 + p®*| A" X B3 4 2u(1 — 1) | A2 X B33

+ Rolul| AR X BE |3 + | X BIS - 2] AT X B |3]
and so
IHAX + (1 = W)X BI3 < u®| A X B3 + n2| AX — X B}
+ Ro|ul| AR X BE |3 + | X BI} - 2/ AT X B3]
+2p(1 - )| A7 X B2},

Thus, we get (2.3).
If % < u < 1, then by the inequality (2.2) and the same method above, we have the
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inequality (2.4).
This completes the proof.

Finally, we obtain refinements of the trace versions of Young type inequalities. To
achieve this, we need the following lemmas that can be found in [2].

Lemma 1. Let A,B € M,,. Then

n n

> si(AB) <Y 5i(A)s;(B).

j=1 j=1
Lemma 2. (Cauchy-Schwarz Inequality). Let a; >0, b; >0 for i =1,...,n. Then

n n 1 n 1
Z 7 Z 2) 2 Z 2\ 2
i=1 azblg( 1%) <i=1 bl)

1=
Theorem 3. Let A, B, X € M, such that A and B are positive semidefinite.
Ifo<u< %,then

(A% + (1= 1)2B) < 1AMl | B + 2 | Al + |1 BI3 — 2| AB])]
1.3
+ Ro|ul|Alzl| Bll2 + | BI3 — 2v/7ll A3 B3 |1 .

where Ry = max{2u, 1 —2u}.
If%g,ugl, then

(A2 4 (1= p)B2) < (1— )| A%)}o| B* |2
+ (1= w2 415 + IBI3 - 2/ AB]; (2.6)

+ Ro (1= ) All2||Bll2 + | AII3 = 2¢/T = ull A3 B2l .
where Ry = max{2pn — 1, 2 —2u}.
Proof. f 0 < pu < %, then
tr(u? A% + (1 — p)?B?) = p’trA? + (1 — p)*trB?

(k253(4) + (1 = p)2s4(B) ).

I
M=

1

<.
Il

Inequality (2.1) yields that

tr(pP A2 4 (L= p)?B2) < P )7 sy (A%) (B2

j=1
2|3 A) + 302 B) 2 Y 55(A)s(B))
7j=1 j=1 7j=1
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Thus, using Lemma 1 and Lemma 2, we have

j=1 j=1
+ ,uz[ Y s2(A) + Zn: S?(B) -2 Zn: SJ(AB)}
j=1 j=1 j=1
+ Ry [u( . s?(A))é(Zn:s?(B)); +Zn:s§(3)
j=1 j=1 j=1
~ 2y 5;(ABY)]
j=1

and so,
(A2 4 (1= p)?B2) < || A%o| B2 + w2 A3 + | BI3 - 20| 4B
1.3
+ Ro|ul|Alzl| Bll2 + | BI3 — 2v/7ll A3 B3 |1 .

Thus, we get (2.5).
If % < p < 1, then by the inequality (2.2) and the same method above, we get the
inequality (2.6).
This completes the proof.
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