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1. Introduction

Fractional calculus has a remarkable 325 years history, but there are still many unan-
swered theoretical and practical questions. Fractional calculus is used by Abel [1] to solve
the tautrocrone problem. The use of fractional calculus in differential and integral equa-
tions is highlighted in this work [9]. Numerous more articles written by other scholars in
[13, 16, 21, 24] provide a variety of concepts and applications related to fractional opera-
tors. Many researchers argue that a single Fractional operator cannot correctly represent
the complexity of various complex scientific and engineering processes, such as the Caputo
ones. Considering that additional experimental proof is needed to verify the fractional
models’ accuracy [3, 12].

An increasing number of mathematicians and experts have focused on fractional dif-
ferential and integral equations in recent years [2, 22]. Many phenomena in a variety of
disciplines, such as dynamics, physics, biology, and mechanics, have scientific interpreta-
tions that align with the fractional order derivatives. The existence theory of solutions
is one of the primary study topics for fractional order differential equations, and ana-
lysts are closely monitoring. An exact solution to a fractional order differential equation
may be difficult to find. It can be difficult to work with fractional calculus’s non-singular
kernel. By expanding their kernels, the authors [8, 15, 27] has recently defined the gen-
eralization of fractional operators. Samraiz et al. described the (k,s) form of fractional
operators with a non-singular kernel and their physics applications in [27]. They used the
(k, s) form of fractional operators to solve the Cauchy problems after proving them. The
Hilfer-Prabhakar fractional derivative (k,s) was introduced by Samraiz et al. [28]. The
weighted generalized form of fractional operators with a non-singular kernel associated
with Mittag-Leffler (M-L) function are presented by [25, 29]. These operators are used to
identify Cauchy problems in continuous time random walk theory.By using the multivari-
ate M-L function as a non-singular kernel, the authors in [26] developed the generalized
(k, s) fractional operators. To learn more about the applications of fractional operators
with non-singular kernels, we refer the interested reader to [4, 5, 10, 14, 23, 30, 31].

2. Preliminaries

Let’s recall the following essential definitions.
The following are the definitions of beta and gamma functions found in [32].

Definition 1. We begin with the well-known gamma function which is defined by

[e.e]

(k1) = /u“l_le_"du, Re(k1) > 0.
0
Definition 2. The well-known beta function B(k1,(1) can be defined by

1
Blk1,G1) = / 1 = ) ONdr R(ky) > 0, R(G) >
0
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and its relation with ' function is given by

B(k1,(1) = m

Definition 3. The power M-L function is recently introduced by Lotfi et al. [11] as follows:
Z@o (olnp)"
PR K = ) 1
01, 1(@) ot F(Ql’l’l,—F Kl) ( )
where p € C, p> 1, R(k) > 0 and R(p) > 0.

Remark 1. The following are the special cases of Power M-L function:
1. If we take o =Kk =1 and p = e, we get

e
TP R )
’ |
= F(n+1) = n!
1. If we take Kk =1 and p = e, we get
> ot
e
EQl,l(Q) = :
ne0 F(an + 1)
1. If we take p = e, we get
(0] Qn
e
E = -
Qlﬁl(@) ngo F(an + Kl)

Holder’s inequality was first derived by Leonard James Rogers in 1888, then Ludwig
Otto Holder presented it in a different way in 1889. The following definition provides an
explanation of Hoélder inequality.

Definition 4. [6] For a given two real numbers, r1 and si, such that ri,s1 > 1 and

L4 i =1, the Holder integral inequality is stated by

T1

S1

/M@MMWSEﬂMMW@ tﬂmmwg ,

where f1,91 € C*u,v].

The Lebesgue measurable functions with norm are defined as follows by Kilbas et al.
in [9].

Definition 5. Consider a function g that is defined on [c,d]. The Lebesgue measurable
functions space x(c,d), 1 < g < oo, for which || ¥ ||ya< o0, i.e.,

I o= [ 101 d]", 1<q<,

| ¥ ||yoo= €ss supe<i<d | ¥(C) |< oo
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Fractional calculus theory still has many remaining challenges since the Riemann and
Caputo fractional operators are not enough to solve theoretical and physical problems.
The theory still has a lot of challenges, even though researchers have defined their own
operators to fill in these gaps. Atangana-Baleanu developed the fractional operators to fill
in these gaps. These operators are useful in many theoretical and physical applications,
both in the Riemann and Caputo senses. For example, Panda et al. [20] investigated
the Willis aneurysm system and solved a nonlinear singularity perturbed boundary value
problem using the Atangana-Baleanu operator. The investigation of COVID-19 prevalence
in France, Italy, and the US by Panda et al. in [17] is one of the other uses of the Atangana-
Baleanu operators. He introduced new results on the existence and uniqueness of the 2019-
nCOV models with respect to fractional and fractal-fractional operator-based solutions.
Moreover, the solutions to the Atangana-Baleanu fractional equations, the complex valued
Atangana-Baleanu operator, and the LP-Fredholm integral equations are examined in [18§]
and [19]. Using this method, fractional operators in the Caputo sense take on a new shape.

Definition 6. /2] If ¢ € H'(0,T), then the Atangana-Baleanu fractional operator in
Caputo sense of order 0 < § < 1 is defined as follows:

3
ame®io(©) = 1% [ Ea( -~ ws(e - 0)g O, <=0

and its associated integral operator is provided by

_ 3
smedtal©) = o+ 10 [ (€= 0latrac, ¢z o )

R(5)

Numerous theoretical results can be solved using the aforementioned operators. Al-
Refai et al. in [23] explains how spaces are utilised extensively in operator applications.
Consider the differential equation 4pcD3g(£) = Ag(€), where g(¢) € C1(0,T). The trivial
solution, 4pcDJg(0) = 0, is given by the solution Ag(0) + 2(0) = 0 to the fractional
equation 4pcDJg(&) = —Ag(€) + h(€). However, the Caputo derivative is constrained by
this area. We will consider x(g) = {g: ¢’ € L'[0,1]} is the space for the following initial
value problem

—Ag(§) + (&),

ABcDYg(€) = { .

we obtain the following solution for 0 < § < 1,

0
9(6) = goEs1 (—A6%) + / (0 — O Egs(~M0 — OP)h(C)dC.

0

The related homogeneous equation g(&§) = goEg,l(—)\H‘s ) likewise yields a nontrivial solu-
tion. The definition and discussion of the weighted form of Atangana-Baeanu operators
in differential equations is found in [22].
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Definition 7. [22] The weighted Atangana-Baleanu fractional operator of order 0 < 6 < 1
for a given ¢’ € LY(0,T), is defined by

w! £
anele(©) = T [y ws(e- ) wiorw@ae, ¢z o

and its associated integral operator is given by

16 R(5)

0 -1 ¢ 4
ac39(6) = T39O + 150 (@) [ (€= w©a(0dc. =0,

where the normalised function R(J), has the property R(0) = R(1) = 1.

Our main objective is to define the modified power fractional operators and power
fractional differential equations and to determine their exact solutions using a variety of
methods. we offer the modified power fractional operators as a tool to characterise numer-
ous power differential equations. The work presented in this paper are the generalization
of the work done by [2, 7, 11].

3. The Modified Power Fractional Derivative in Caputo Sense

We introduce the modified power fractional derivative operators in this section. We in-
troduce its Laplace transformation and boundedeness. Moreover, a few relevant examples
are shown.

Definition 8. The generalised form of the modified fractional (MPC) derivative operator
of order 0 < 6 <1 and p > 1 with regard to another function h, given g as a continuous
function and ¢’ € L*(0,T), is defined as follows:

e R(6) (¢ K\
eyl = 1% [ (i) - @) )g Ode, ¢zo ()
Integrating by parts leads to

R(9)

0ik;
%chcﬁ pg(f) = 1-s¢

9(6) = "B (= ws (h(€) — h(@))" ) g(a)

g K
—wsltnp) [ (h(E) ~ BOY P = s (8(6) - BLC)) )h'(@)g(@dc] .

The functions ws = 6 h, a strictly increasing function, and R(9), a normalized function
with the condition R( ) = R(1) =1 are among them.

Remark 2. i. Letting h(§) =&, k =06 and p = e in (3) then we get Definition 7.
ii. Letting we substitute k = § and p = e in (3) then we get the operator defined by [7].
iii. Letting h(§) = & in (3) then we get Definition of power fractional derivative defined

by [11].



Gauhar Rahman et al. / Eur. J. Pure Appl. Math, 18 (1) (2025), 5697 6 of 26

We demonstrate the boundedness of the operator given by Definition 8 in the first
result of this section.

Theorem 1. Considering g € X?P(0,T), and h, = 6 = ws and R(J), permit the same
characteristics as stated in 8; hence, the inequality

[remizrg@)| < O g + T B s ( — ws(h(E) ~ hia))" )o@
R(9) > |ws (In p)|™ |(ﬁ(9) — h(a)) |(”m+“’1)
+1—5nz:;]’]_—‘(l{n—|—li)| (km+ Kk —1) [1Fllxr, ()
holds for 1 <r; < oo.
Proof. Through application of Definition 8, we have
[rreoierg]| < T lg(e) ~ B~ ws(hie) — @) )ata)|
§
# 1 astnn) [0 = Q) (= s (h9) - O) Y1
O gelo + T e~ wi(ie) — pla))" )o@,
5
+ T astinp) [ — MOV B (s () — HQ) ) (9 ) (5)
Consider

£
/0 (HE) = HO) B~ (A ~ O W Qg e
|ws (In p)|™ ¢
Z ]F KN+ K)
|ws (In p)|™ 0
Z ]F (kn+ k) (/
Substituting A = A(¢) and p = h(§), we obtain

1

m

h’({)du) .
Z |ws(lnp)[" /h’(a)
|F KN + K) h(a)

1 =
dp) .
The generalised Minkowski’s inequality gives us the following

|ws(Inp)|™ /h(b?) . N /h(e) ot -
_le“ kn+ K)| lg(h="(A))] A [(p =) dp| dx

h(a)

Xp

- (n©) - h(o)“”“h’(og(odc'

XpP

T1

¢ kn+kr—1
/ (R(&) = Q)™ (Og(C)dS

h(e) et
/ [(p— N[ Lg (A (A))dA
h(a)
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Ehw“mj (/MMWAMM”QWPAWMMAMH>HM.

h(a) (kn+r—1)r +1
With the help of Hélder inequality, we have

o s 1
Z |w(5 lnp /h(@) ’ (hfl()\))’rl d\ " /h(&) |(h(9) - )\) |(Hn+/i—1)1”1+1 ﬁd)\ 51
- |F kn + k) h(a) ! h(a) (bn—1)r; +1

0 M 7i(6) . - % ‘(FL(Q) _ h(a)) ’(Nn+l€71)
: nZ:: IT'(kn + k)| (/h(a) g )] dA) (kn+ Kk —1) ’

1 1 _ . . —1 _ .
where - + & = 1. By substituting & (\) = t, we obtain

h(a))\ (kn+r—1) /h(e)
h(a)

l9(O™ W (C)dS

o) —

(
ws(Inp)|™ a rn+k—1)
mpr \( O il

kn+k —1)

By using this equation in (5), we have the result (4).

Now, we present some illustrative examples of new fractional derivative operator.

Example 1. Assume 0 < 6 < 1 and a constant function g(¢) = C. The Definition 8
allows us to write
R(0)

(PCDETONC) = 15

c—pmﬂ(—wdm@—hmnﬂc

(e %)

§
) [ () ~ Q)™ P = ws(h() ~ B(O)" )W (O)CC

- ws(np) (s (7E.
(M4ECD3C) () 0.

This shows that the differentiation of a constant is zero.

Example 2. If we choose g(€) = (R(&) — h(())”, then we have

L (n(e) - n())*dc

3
hMPC@i;f;pg(g) _ f(—d;/ pgm( — ws (M) — h(())”) i
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H«=0.2
B «=0.5
H«=038

Figure 1: The graphical representation of absolute value of (6) corresponding to choice 0 < ¢ < 1.

L (Inp)™(—ws)™ [ kntp—1.,,
_/1]%_(?7;](1P1(9/1n(+16)) /a (1() — K(O)™ "W ()¢

_ PR() i (=)™ (Inp)™ (ws)" (R(€) — P(a)™""”
1-0 ~ I'(kn+1) kn+p

Example 3. If we choose h(§) =&, p=2, R(§) =1, = %, a=0,h0)=0andp=21in

Ezxample 2, then we have

. n+1 1112 Kn+2

}QJPC@Zf,pf — 42 )" (£)

. 6
I'(kn+1 Kkn 4+ 2 (6)

The graphical representation of (6) for the choice of order k = 0.2,0.5,0.8, is given by the
following graph.
Example 4. If we choose () =In(§+ 1), p=2, R(0) =1, 0 = %, a=0, h(0)=0 and
p = 2 in FExample 2, then we have
- )" (In 2)" (In(€ + 1))"n+2
S Il

7
fm—{—l Kn 4+ 2 ()

The graphical representation of (7) for the choice of order k = 0.2,0.5,0.8, is given by the
following graph
Example 5. If we choose h(§) = VE+1, (=2, R(6) =1, 6 =

p =2 in Example 2, then we have

. n+1 1 2) ( §+1)nn+2
MPC y6imip —4 (In
MPeDIIP (¢ § D)z (8)

,a =0, h(0) =0 and

N[
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Fractional Operator Plot (0< ¢ < 1)
_hbar*MPC D f(¢)

L L L L L L L L L L L L L L f
04 06 08 10
—02f
~04f
-06[
-08f

-10}

—12fF

k=05 — k=02 k=0.8

Figure 2: The 2-dimensional graphical representation of (6) corresponding to choice 0 < ¢ < 1.

The graphical representation of (8) for the choice of order kK = 0.2,0.5,0.8, is given by the
following graph.

Example 6. Suppose that function g be piecewise continuous

(0 —{ P )

Putting A € R\ {0}, now k = 5 =8, h(0) =0, us = 1, a = 0 and R(8) = 1 according to
Definition 8, we get

MPODEE () = 2[g(6) - AP, (- (1()?)
~tnp [ “(h() — Q) "} 7E,
0 1
=2[g(€) — 4By , (= (1(©)*) — mpva”Es , (- (h(9))*)
=2[g(¢) — (A+Inpym)"Ey, ( - (1(6)?)]- (10)
By using series expansion of )
pE%J( - (h(g))%) =1+ (fz(i)()% + -+, we have
pE%J <0) = 1. Hence, we get

= NI=
[NIES

1.1,
MABCDE2T(0) = —2Inpy/T £ 0.

Remark 3. i. If we put p = e, then we get the result proved by Huang et al. [7].

ii. If we put p = e and h(§) = &, then it reduce to the example solved by Al-Refai et al.
iit.  If we put h(§) = &, then we get the solution of the problem for power fractional
derivative defined by Lotfi et al. [11].
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16 18 20

H«=0.2
B «=0.5
H«=0.38

Figure 3: The graphical representation of absolute value of (7) corresponding to choice 0 < ¢ < 1.

Definition 9. The modified power fractional derivative operator in the R-L sense of order
0<d<1, k>0, and p > 1 with respect to another function h, is defined as follows,
assuming g is a continuous function and g’ € L'(0,T) by

R(9) d

MPRL6;k;5p — -
h :Da+ (5)_1_5d<— ;

3
PE o (= ws () = h(O)")9(O)d, <=0, (11)

where R(6) is a normalised function with the property R(0) = R(1) =1, ws = %, and h
is a strictly rising function.

Remark 4. i. If we substitute h(§) = &, k = § and p = e in (11), then we get the
well-known definition Atangana-Baleanu fractional derivative operator in the R-L sense.
ii. If we substitute h(§) =&, in (11), then we get definition of power fractional derivative
in R-L sense defined by Lotfi et al. [11].

Remark 5. The modified power fractional derivative in R-L sense satisfies the following
property

MPRLYER g(g) = g(€).

Theorem 2. The modified fractional derivative in both Caputo and R-L senses satisfy the
property of linearity for all a, A and f,g € L'(a,b).

Proof. One can easily prove that
MPODET (ag(§) + Ag(9)) = i TODLET () + AYPODETg(©),
and

BRI (ag(€) + Ag(€)) = o TIEDIETg() + ATIED g 6).
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Fractional Operator Plot with h(¢) = Log(£é+1)
_hbar*MPC D f(&)

| . . . | . . . | . . . | . . . | £
0.2 0.4 0.6 0.8 1.0

oaf
ozf
—0.3}
oaf
—0.5}

-061

—_— k=02 — k=05 — k=08

Figure 4: The 2-dimensional graphical representation of (7) corresponding to choice 0 < ¢ < 1.

Definition 10. The Laplace transform of v is produced by letting h (where h is a mono-
tonically increasing) and 1) be defined on [a,o0) by

[e. 9]

Lu()(s) = / eSO (€)h(€)dC

such that the equation (10) holds for all values of s.

Definition 11. The convolution of the function ® and w associated with ¢ is provided by

’

%
(@ x)€) = [ (671 (6(6) + 6la) ~ 6(0))) w(O9 (OL.
For FO (fractional operator) in Definition 8, the convolution form is provided by
)

HPeD3y(e) = 1% g(6) - B —ws (1(6) — h(a)))g(a)

& K
~wsing) [ (H€) = MOV B = s (1(6) ~ 1(O)) )h'<<>g<c>d<]

R(5)

% 9(8) = PEsi (= ws ((€) — ()" ) g(a)

— w(Inp) (A(E) — ()" "B (= ws (A(E) — A(a))") + g<<>] . (12)
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Figure 5: The graphical representation of absolute value of (8) corresponding to choice 0 < ¢ < 1.

The power M-L function involved in the newly established operator specified by Definition
8 is then evaluated using the Laplace transform in the subsequent lemma.

Lemma 1. Given an increasing function h and a range 0 < § < 1, we have

Kk—1 ws n
Lh(pm,l(—m(h(@—h(a))“))@)= LR (13)

s 4+ wslnp st
Proof. By employing Definition 10, we have

Ly <E (- wstoi) - h(a))”)) (5) = [ e Ot )

a

< B ( —ws() - b)) ) e

_ N (cwslnp)” ‘X’e_s(ﬁ(g)—h(a)) / ey
;::) F(m+1)/ (&) (h(€) — h(a))™"dC.

a

Substituting (7(§) — h(a)) = ¢, we obtain

m(ﬁEm(w(mf)h(a))“)><s>=zm / e~ tnd( = Z “’jjjpl [t}
n=0

a

sintl gk 4 ysinp’

which gives the desired result.



Gauhar Rahman et al. / Eur. J. Pure Appl. Math, 18 (1) (2025), 5697 13 of 26

Fractional Operator Plot with h(¢) = Sgrt(é+1)
_hbar*MPC D f(&)

0.2 0.4 0.6 0.8 1.0

— k=02 — k=05 — k=08
Figure 6: The 2-dimensional graphical representation of (8) corresponding to choice 0 < ¢ < 1.

Theorem 3. For a given continuous function g and g’ € L*(0,T), the GLT of the modified
derivative operator (3) of order 0 < § < 1 can be defined as follows:

s" _slﬁfl a
) B

where ]“”‘571,?7’| <1
Proof. By using the equation (12), we have

L PO g()) () = T (Lh{g@} sl "B (~ s(8(6) - (@)"))

— ws man((h@) ~ 1(0))" " PRy (— ws((E) — (a))") » 9<f)> )

R(5)

=5 (Lﬁ{g@)} ~9l0) G —wslnp Z )

s“+wlnp ['(kn + k)

« Ln ((h(f) ~ h(a)" (h(¢) - h<a>)““) La{o©)}

1
5lnpz —wsInp)”

mL+/<

Kk—1

- ) (Lh{g@)} ~ @)

S
st +w51np

< o (h(e) - n(@)“"”“)Lﬁ{g@)})
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5! —ws In
:ﬂ(mg@}—g( ey ey o) Lh{g(@})

shl wslnp

R(5)
= m (Lh{g(g)} - g(a) s 4+ wslnp B s 4+ wslnp

_ R() s"Lalg©)} — " g(a)
1—-946 55 4+ wsInp ’

Lﬁ{g(f)}>

Hence the result is proved.

Example 7. When 0 < § <1 and k > 0 are chosen as the parameters, and |°’5571§1p\ <1,
the equation’s solution

W CDhg() = ¢
1s provided by

C(1-6) (h(C))H .
9(¢) = R0 (1 +wslnp 1"(/@+1)> » CF#0;

07 CZO

Proof. By given hypothesis ¢g(0) = 0, and for ¢ > 0, we have

;K R(5) s"
Lh{éWPC@O pg(s)} :: 1—6s"+wslnp

_ 8" (h()"
= CmLh(l + ws lnpm)(s)

(2nts(030)

s" (1 w(;lnp)
sf +wslnp's  sitl

n|lay O

This implies that
{7y g(s)} = Ln(C)-

The action of inverse Laplace will give the desired result.

Theorem 4. Suppose that g be a continuous function and g’ € L*(0,T), then the GLT of
the modified fractional derivative (11) of order 0 < 6 <1, p > 1, and k > 0 is given by

R(9) s"Lp{g(€)}
1—08s"+wslnp’

MPRL
Lh<
h

D7Pg(¢)) (5) =

where |#202| < 1,
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Proof. Applying Laplace transformation on both sides of (11), we have

(T Sg(e)) (5) = f(f?;Lh[jZ”Eﬁ,l( —ws (A(€) = h(@))") * ()] (5)
_ iR(? Li[ "Bt (— ws (A(€) — h(a))") * g(£)] (s)
— SlR_((? Ly [PEy1 (= ws (7€) — Ni(a))")] (5)La[9(O)] (5)

R(8) s"Ly[g(C)](s)
1—06 s 4+wslnp

which proves the required result.

Theorem 5. For the following FDE (fractional differential equation)
W PRI () = g(6), (14)

there exist a unique solution as follows:

R(9) dlnp pp
_ A 15
where RL’J’S is the generalized R-L fractional integral.

Proof. By applying Laplace on (14), we have

Ly { MPRLDY 5P (6)}(s) = L{g(€) }(s).

By using Theorem 4, we obtain

dlnp
)} (s)

L {MPRL@gf;pﬁf(f)}( W h{g } s)

Ln{g(¢
L{9(O}6) + gy el (10 0(€) )
)

5
Lﬁ{ fﬂ F0(6) + g (M) + (O} 0)

By taking inverse Laplace transformation, we get

o6) = 80(€) + G BE350(6)

which gives the desired result.
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Example 8. Let us take the following power fractional differential equation on [0,100]
(& € 10,100]) into consideration:

MPRLO P (€) = R2(€). (16)

By employing Theorem 5, we get

_ R(5) 2 Olnp pr o0
(€) = [ g€ + ot HANE)
( ) 12 dInp (h(g))
= " p2 2 . 17
5" O IR G) T+ 3) an
Example 9. Letting h(§) = &, we get
MPRED () = €2, (18)
By employing Theorem 5, we get
_ R() 24 (anRLM@Q
5111 K42
1 — 5 R(é) I'(k+3)
Example 10. If we fivzed R(6) =1, p=2,3,4,5,0< Kk <3 and 6 = % in Example 9, then
we have
5 £m+2

Corresponding to the fized values of k = 0.2,0.5,0.8, we have the following 2-dimensional

Figure 7: The graphical representation of (20) corresponding to choice 0 < & < 100.

graphical representation.
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x(¢) for Different x and p

Color Legend: x = 0.2 (Blue), k = 0.5 (Green), x = 0.8 (Red)

X&)

150000

100000

50000

20 4 60 80 100

Figure 8: The 2-dimensional graphical representation of (20) corresponding to choice 0 < & < 100.

Example 11. If we fivzed R(6) =1, p=2,3,4,5,0< k <4 and 6 = % in Example 9, then
we have

§n+2
I'(k+3)

Corresponding to the fized values of k = 3.2, 3.5, 3.8, we have the following 2-dimensional

z(€) =262 + 1Inp (21)

Wp=2
Hp=3
Mp=4
HWp=5

Figure 9: The graphical representation of (21) corresponding to choice 0 < & < 100.

graphical representation
Example 12. If we fired R(6) =1, p=2,3,4,5,0< kK <7 and 6 = % in Example 9, then
we have

§n+2

z(€) = 262 + lnpm.

Corresponding to the fixed values of k = 6.2,6.5,6.8 , we have the following 2-dimensional
graphical representation.

(22)
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x(£) for Different « and p
Color Legend: x = 3.2 (Blue), k = 3.5 (Green), x = 3.8 (Red)
X(€)
12x10°
10x10°
8.0x10% [
60x108 |
40x10% [
20x10% [
20 40 60 80 100

Figure 10: The 2-dimensional graphical representation of (21) corresponding to choice 0 < & < 100.

Hp=2
Ep=3
HMp=4
Hp=5

Figure 11: The graphical representation of (22) corresponding to choice 0 < & < 100.

X(¢) for Different x and p

Color Legend: x = 6.2 (Blue), k = 6.5 (Green), x = 6.8 (Red)
X(£)

25x1012
20x102 |
15x1012 |
10x1012

50x101

20 40

Figure 12: The 2-dimensional graphical representation of (22) corresponding to choice 0 < & < 100.
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Example 13. If we fired R(0) =1, p=2,3,4,5,0< k <8 and § = % in Example 9, then
we have

65—4—2

2(€) =26 + Inpy;

Rt (23)

Wp=2
Ep=3
Hp=4
HMp=5

Figure 13: The graphical representation of (23) corresponding to choice 0 < & < 100.

x(€) for Different x and p

Color Legend: x = 7.2 (Blue), k = 7.5 (Green), k = 7.8 (Red)
X(€)

25x1013
20x1083
15x1013 1
10x1013 |

50x1012 |

20 40

Figure 14: The 2-dimensional graphical representation of (23) corresponding to choice 0 < & < 100.

Corresponding to the fixed values of k = 7.2, 7.5, 7.8, we have the following 2-dimensional
and 3-dimensional graphical representation.

The three-dimensional and two-dimensional graphical representations illustrate the
convergence of the solution to the differential equation. This behavior demonstrates the
boundedness and convergence of the solution.
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4. The Modified Power Fractional Integral

In this section, we present an modified version of the power fractional integral operator.
Also, we discuss its boundedness, the Laplace transform, and a few other related features.

Definition 12. For any g € L'(0,T), the modified power fractional operator with 0 < § <
1 associated h is stated by as

ip B 1-96 dlnp 3 el
MPIET0(€) = (€ + s [ (O~ QYT (Qa(Oc. @4

Remark 6. i. If we consider p = e in (24), we get the fractional integral defined by [7].
ii. If we consider p=e and h(&) = £ in (24), we get the fractional integral defined by [2].
iii. If we consider h(§) = £ in (24), we get the fractional integral defined by [11].

First, we establish the boundedness of this operator.

Theorem 6. Given a strictly increasing function g € XP(0,T), h, we get ws = 16?6]/0
1 <1 < oo and R(0), is a normalised function with the property R(0) = R(1) = 1, then
the following inequality is true.

MPI~6 K;p
h

96, < iz 19O e + i Il T (25)

Proof. By employing the Definition 24, we have

dlnp

~O3k5p R
%PIJ(ﬁ 9(8” - R( ) Hg( )||XP+W
é‘ ’
’ / (h(&) — h(())“_lh (©g(<)
0, r¢ 1

-4 dlnp
(5) 19 x» + W(

0 a

Substituting o = A(§) and A = A((), we have

[rraderge)| _M)Mmm+mﬁg
x /G‘A@Q A g ()| do)
- 75 190 + s

h(o) h(0) SN
<l o] [ o= [ dg)
h(a) A
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-4 dlnp
(5) ”g( )HXP + R(é)I’(ﬁ)

n(0) n(o) 1
x/“ g O [ o= A Ydg) T an
h(a) A

-0
(5) ||g( )HXP + R((S)F(K,)

h(6) B (h(e) _ )\)r(m—l)-i-l ﬁ
Xé(lﬂh%Mﬂ(?ﬂﬂ_D+l )" n

With the help of Holder, inequality, we have

A ~OGKS
vy e

1-6 dlnp h(®) _ - %
o < 190 + g [ (st onras)

(a)
1

(/h(G) (h(0) — )\)rl(n—1)+1>iid)\ 51
X )
h(a) p(k—1)+1

where L + L =1, Now substituting 27! (\) = ¢, we have
1 S1

[prratzrgce)|| _m)mmm+£§%£%mwwm@*

1

MO (m(9) — R(¢))r (=D 2L +
" <(/h(a) r(k—1)+1 ) h(CWC)

11— dlnp h(®) _ =
- )Hm>m¢ ROy (9OTHQ)aC)

h(0) h(())m (k—1)+1 % , 511
( /h m(k—1) +1 ) LOLN
1

n — h(a))F !
(£|<nup o O g,

Next, we determine our generalised fractional integral operator’s Laplace transform.

Theorem 7. The modified fractional integral of order 0 < § < 1, kK > 0 associated with h
is defined for g € L*(0,T)] as follows:

1-05"+wsl
Li(i™'32579(9) = 5 : +:,i5 ~Lalol€)

Proof. Through application of Definition 24, we have

s 1—-9 61
Lﬁ(é\/[PIjénp np

awggnzIm”m@@»+wamngma—mwf**mo)
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1-9 Olnp .
1-9¢ Olnp

0 Li(g(€)) + R(d)s"Lh(g(g))

_1-0s"+wslnp
- R(5) P Lh(g(g))a

which gives the desired result.

Theorem 8. Assuming ¢ € L'(0,T), and 0 < § < 1, the following outcome can be
obtained.

MPCDIEP () g(€) = 9(8) — 9(0) "B ( — ws (h(€) — h(@)").  (26)

Proof. Using the Laplace transform definition, we have

Sk MPC A §- -
(1o (75000

_ R(9) 5" I L<MP136;H;pg(§)> R() s (MPITS "’pg(O))

C1—-40sf4wslnp "\n e 1—0s"4+wslnp
s* s+ ws lnp) sh—l
= L ——g(0
st 4+ ws lnp< sk n(9(8) st + ws lnpg( )
Sn—l
=L - .
1(9(€)) P 1npg(O)

Utilising the inverse Laplace transform, we arrive at

ke (MPI ~§: k- K
(é‘fp%:i’ (e ’p)g@)) = 9(6) = 9(0) "B ( = ws (n(€) = h(a))"),
which completes the required result.

Theorem 9. Assuming that ¢ € L*(0,T), a =0, and 0 < § < 1, the following outcome
can be obtained.

MPLyme (MPCEmPY () = g(¢) — g(0).

Proof. By using the Definition 8 and 24, we have

HPII GORE ) g(€) = Fi (2 UR6)a(€) + ity Jy (L) — b))
xB (O D) g(¢)dc
= Ji B (= ws(R(€) = 1)) g (¢ + R HERES [5((E) — ()™
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= Ji 7B (= ws(n(€) = B(Q)") 9 ()¢ +
X [ 9'0) JE(R(E) = RO R () PR = wa(A(Q) = B(®))" ) dCa
:fépEm< €)= H(Q))")g/(C)dC + it oo, ety
ff(h — B(Q)* T (C) (A(C) — h(9)) ™" d¢d)
Sy HENJ( ws (M€) = h(Q)" )/ ()G + 2t S0 Gesinnlt

< Js o/ @) (h(€) - h()) HOHO N (DN (¢)dca
(

A\_/
>t
—~

—=h(V) R(&)—=h(D))

Q)G + g 3o ol
rk(n+1

0) (n+1)

dvy

= Oé p}Em(— ws (R(€) — h(C))H>9/(C)dC + L lnp > o ;w,f;ﬁ))

KT K n(n+1)
X Tzt Jo 9/ (0) (h(é) —h ﬁ)) 49

)n+1

= I3 "B (= ws(h(©) = h(©)") g (¢ = Xio oy
% J$ ') (n(e) - h(ﬁ))“(nﬂ)dﬁ
= o e s () (me) - h(Q)) " dc
i % (h )K(nﬂ)d
= ot ST Js /(O (e (@) "
-y, G € (o) () - 1) e
=[5 90+ 3252, Bt [ g/ ( h(c‘))mdc
—Z;’:’m“‘““” Js 9 (he) - 1)) " d¢
s 9'(C)d¢ = g(¢) — 9(0).

Hence the result is completed.

5. Conclusion

In this paper, the generalization of power fractional integral and derivative operators
in both the Caputo and R-L sense are presented. These new operators allowed us to solve
differential equations, and we investigated their solutions using the generalized Laplace
transform. It is shown that the defined operators in X? have norm and are bounded.
We evaluate the Laplace transform of both FOs. The inverse property of the operators
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is presented under certain condition g(0) = 0. Additionally, we presented some examples
both analytically and graphically. This behavior demonstrates the boundedness and con-
vergence of the solution. The graphical representations are given in both two and three
dimensions. The operators presented in this paper are more general than the existing
operators cited in literature.
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