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Abstract. We perform an investigation using numerical simulations to examine the influence of
magnetohydrodynamics and thermal radiation on the mass transport and thermal energy properties
of non-Newtonian Reiner-Philippoff nanofluids. We thoroughly examine the species response con-
cerning activation energy, thermal radiation at the surface, viscous dissipation, Cattaneo-Christov
double diffusions, and mass and energy transfer. This analysis also examines the impacts of an ap-
plied transverse magnetic field and Ohmic heating. Using appropriate similarity variables converts
the specified governing system of PDEs into a non-linear system of ODEs. We numerically solve the
governing equations using the Mohand transform (MT) in conjunction with the Adomian decom-
position method (ADM). The sophisticated Modified Decomposition Method (MDM) streamlines
complex equations for computational solutions. It uses ADM and the MT to make sure that the
series converges, giving a solution very close to the exact solution. We illustrate the temperature,
species distributions, and flow velocity for the relevant parameters governing the Reiner-Philippoff
model on two-dimensional charts to understand the influence of dimensionless parameters on these
values. The tabulation, depiction, and interpretation of the local Nusselt number, local Sherwood
number, and skin friction coefficient exemplify further engineering inquiry. We have utilized a
table to illustrate the concordance between the current numerical data and previously published
findings.
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1. Introduction

The study of non-Newtonian fluids has attracted a lot of interest because of its nu-
merous uses in various industrial settings, such as drilling rigs, food processing, cooling
systems, nuclear reactors, and organic material handling. These fluids are especially well
suited for these intricate and demanding situations because of their distinctive flow behav-
iors. Because of this, it is now essential to comprehend their characteristics and behaviors
to maximize productivity and efficiency in these sectors. Non-Newtonian liquids can be
represented by several models that are frequently used in technology and engineering do-
mains. Examples of these models include the Gingham plastic model, Sisal model, Carrell-
Cauda model, Jeffrey model, Caisson model, Power-law model, Ellipse model, and Jeffrey
model. We explore a particular kind of non-Newtonian model called the Reiner-Philippoff
fluid [16] in this work. This model stands out in particular because of its distinct rhe-
ological characteristics, which make it useful for a wide range of real-world applications.
The goal of this study is to gain a better understanding of the Reiner-Philippoff fluid
and its possible use in industrial processes where conventional fluid assumptions are not
applicable. Several researchers have thoroughly examined the Reiner-Philippoff model.
For in-depth analyses and research on this subject, see references like ([2], [12], [13], [20]).
These studies offer insightful information about the properties and uses of the Reiner-
Philippoff fluid, facilitating a better comprehension of its behavior in diverse settings.

In the same area of research, there are many researchers studied the same and similar
problems for example ([11], [22], [21]): The authors conducted a comparative analysis
of flow and Cattaneo-Christov heat flux in the presence of a magnetic field, taking into
account the influence of nonmaterial and carbon annotations. The researchers also looked
at magnetic swirling flow and the Cattaneo-Christov heat and mass flux over a stretchable
cylinder. They also looked at how heat moves and melts in a Reiner-Philippoff fluid on a
Darby-Herxheimer medium.

One important natural occurrence is the movement of heat between two objects or
within one object. Numerous academic fields rely heavily on this process: thermodynam-
ics, where it is critical to comprehending energy systems; meteorology, where it impacts
weather patterns and climate; engineering, where it is essential to the design and operation
of machinery and structures; environmental science, where it impacts ecological dynamics;
and material science, where it affects the characteristics and capabilities of various mate-
rials. The Cattaneo-Christov heat flux model is the name given to this intricate mathe-
matical structure. It offers a more realistic representation of non-Fourier heat conduction
phenomena by taking into account thermal relaxation effects, which is an advanced method
of explaining heat transfer [9]. Accurately describing thermal conduction-especially in dy-
namic situations is one of the advantages of the Cattaneo-Christov heat flux model for
heat transfer studies. For accurate forecasts in sectors like biotechnology and high-speed
thermal processes, it is crucial to consider time-dependent effects including thermal relax-
ation, which is not possible with Fourier’s equation. Numerous investigations ([7], [8], [19])
have been motivated by the significance and broad uses of this concept. Also, different nu-
merical techniques studied many important problems like ([6], [10]), the authors presented
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numerical methods for solving the Laplace equation’s IBM; finite difference methods un-
derpin the method. Also, the authors numerically solved the period of a simple pendulum
in a magnetic field.

These days, nanofluid investigations are receiving a lot of interest due to their amaz-
ing applications in engineering, science, and technology. Chop [5] came up with the idea
of nanofluids first. Because of their improved thermal and lubricating qualities, panoti-
tides are used in machining processes such as milling and turning. By examining the
consequences of suspending different nonmaterials in fluids, scientists ([1], [4], [15]) have
significantly advanced our understanding of nanofluid flow. With continuous study aimed
at exploring and optimizing the efficiency of these sophisticated fluids in industrial appli-
cations, this focus has grown, especially in the current decade.

The concerned model simplifies to a system of extremely nonlinear ordinary differen-
tial equations. These equations are inherently nonlinear, hence it is impossible to discover
an accurate analytical solution. As such, to derive an approximation of the solution, a
strong numerical technique must be used. We can manage the system’s complexity and
obtain practical numerical results with this method. We addressed the given problem
analytically by applying a recently developed methodology. The modified decomposition
method replaces the classic Adomian decomposition technique with the Mohand trans-
form, employed in this strategy. This new approach offers greater accuracy and efficiency,
which makes it a significant advance in solving difficult analytical problems. Through the
application of the Mohand transform ([17], [18]), the enhanced decomposition method op-
timizes the solution process and yields more precise outcomes across a broader spectrum of
applications. The MDM provides multiple-form solutions, culminating in the exact form
solution. The solution to the resultant nonlinear system of ordinary differential equations
confirms the efficacy and applicability of this method. Tables and charts are employed to
compare the collected data.

Building upon the insights from prior research, this study addresses a significant gap
by exploring the flow dynamics of a non-Newtonian Reiner-Philippoff nanofluid over a
nonlinear stretching sheet, a scenario not extensively studied in the literature. Unlike
previous works, this analysis incorporates the complex effects of activation energy and
the Cattaneo-Christov double diffusion model, alongside the influences of Ohmic heating
and viscous dissipation, which are often overlooked in similar studies. By employing an
enhanced decomposition method refined with Mohand transforms, this work provides a
robust framework for tackling the challenges posed by these nonlinearities. Numerical
solutions are derived and examined for a wide range of parameter values, offering new
insights into the interplay of these effects. Furthermore, the method’s accuracy is vali-
dated by demonstrating strong agreement with existing solutions in specific limiting cases,
thereby filling a critical gap in understanding the behavior of Reiner-Philippoff nanofluids
under these unique conditions.
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2. Mathematical Development

In the context of magnetohydrodynamics (MHD) and thermal radiation, this section
provides a thorough summary of the mathematical framework used in the numerical analy-
sis of Reiner-Philippoff nanofluid flow encompasses the Cattaneo-Christov double diffusion

model (CADDY). The magnetic field strength, denoted by B = B0x
−1
3 , is defined as the

fluid flow past a nonlinearly extending sheet in the study. This formulation takes into
consideration both chemical interactions and viscous dissipation. The study also includes
diffusion from thermophagies, denoted by DT , and Browning diffusion, represented by DB.
This study considers activation energy since it is important for nanofluid flow and has a
significant effect on the rate of thermal and chemical processes, which in turn impacts
the fluid’s overall behavior and performance in many applications. Characterizing the
flow is a system of PDEs: the continuity equation, the momentum equation adjusted for
magnetohydrodynamic phenomena, the energy equation incorporating viscous dissipation,
the CCDM, the species concentration equation with activation energy phenomenon, and
the chemical reactions involved. This study considers the impact of heat radiation on the
sheet with the measurement and evaluation of Ohmic heating. The schematic configu-
ration diagram illustrates the surface velocity, represented by the equation: uw = ax

1
3 ,

where a is a positive constant. Figure 1 offers a more comprehensive depiction of the flow
pattern.

Figure 1. Modeling geometry flow

Furthermore, during the flow motion, it is posited that the pertinent temperatures
remain constant. Throughout the operation, the ambient temperature T∞, indicative of
the temperature distant from the sheet, and the surface temperature Tw, denoting the
temperature at the surface of the stretching sheet, are both held at constant values. For
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better understanding, the assumptions made for this problem are summarized below in a
list for easier comprehension.

i. Flow Geometry:
The fluid flow is modeled as two-dimensional, with a constant velocity, and exhibits
laminar behavior over the stretching surface.

ii. Governing Forces:
The fluid flow is affected by the presence of a magnetic field perpendicular to the
flow direction, heat transfer due to radiation, and energy dissipation caused by fluid
viscosity.

iii. Diffusion Mechanism:
The species concentration dynamics are modeled using the Cattaneo-Christov double
diffusion approach and incorporate activation energy effects.

iv. Similarity Transformation:
Similarity transformations are used to reduce the PDEs to a system of ODEs.

v. Numerical Methodology:
The governing equations are solved by employing the Mohand transform in con-
junction with the Adomian decomposition method. The Modified Decomposition
Method is utilized to guarantee the convergence of the series solution.

Considering these constraints, the governing equations for the modeled system are
derived as follows [14]:

∂u

∂x
+
∂v

∂y
= 0, (1)

∂u

∂y
=

τ(
µ0−µ∞

1+
(

τ
τs

)2 + µ∞

) , (2)

u
∂u

∂x
+ v

∂u

∂y
+
σ

ρ
B2u− 1

ρ

∂τ

∂y
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u
∂T
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(
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)(
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It is important to recognize that the system under study is two-dimensional. Therefore, it
is thought that there are two components to the flow velocity: u in the x−axis and v in the
y−axis. τ denotes shear stress, whereas τs denotes the reference shear stress. Λt represents
the relaxation time for heat flux, Ω represents the effective heat capacity ratio, and Λc

represents the relaxation time for mass flux. ρ denotes fluid density, µ∞ signifies ambient
viscosity, ν indicates kinematic viscosity, µ0 refers to dynamic viscosity at zero shear, and
σ symbolizes electrical conductivity. The concentration of a component in the fluid is
denoted by C, signifying its quantity or distribution within the fluid medium, while C∞
denotes the ambient concentration. The thermal condition and total thermal energy of the
nanofluid are indicated by its temperature, T . This value is essential because it sheds light
on the thermal state of the nanofluid, affecting its behavior and thermal characteristics in
a variety of applications. Particular boundary conditions apply to the regulation equations
(2) through (5). By specifying the restrictions that are applied to the equations at the
system’s edges, these conditions also define the behavior of the system at its boundaries:

u = uw(x) = ax
1
3 , v = −vw, T = Tw, C = Cw, at y = 0, (6)

u→ 0, C → C∞, T → T∞, at y → ∞. (7)

2.1. Dimensionless model

We reformulated the governing equations and boundary conditions in a dimensionless
format to enhance the efficacy of numerical analysis. By employing appropriate dimension-
less variables, this transformation simplifies the equations, facilitating the identification
of the primary variables influencing the system’s behavior. This approach simplifies the
analysis, highlighting critical aspects and improving our comprehension of the system’s
dynamics overall. Using this method simplifies the equations while highlighting the sig-
nificance of the dimensionless parameters. These include the radiation parameter, the
thermophoresis parameter, the chemical reaction parameter, the solutal relaxation time
parameter, the Brownian motion parameter, the Eckert number, the thermal relaxation
parameter, and the Prandtl number [3]:

ϕ(η) =
C − C∞
Cw − C∞

, θ(η) =
T − T∞
Tw − T∞

, (8)

τ = ρ
√
νa3g(η), ψ =

√
νax2/3f(η), η = y

√
a

ν
x−1/3. (9)

The continuity equation is readily fulfilled by inserting (8) and (9) into equations (2)-(5).
The linked nonlinear differential equations governing motion, concentration, and energy
can then be derived via the subsequent techniques, yielding the following outcomes:

g =

(
λγ2 + g2

γ2 + g2

)
f ′′, (10)

g′ =
1

3
f ′2 +Mf ′ − 2

3
ff ′′, (11)
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1

Pr

(
(R+ 1)θ′′

)
+M Ecf ′2 +Ec g f ′′ + Zb ϕ

′θ′ +Υt

(
η θ′′ f2 + f θ′ f ′

)
+ Zt θ

′2 +
2

3
fθ′ = 0,

(12)

ϕ′′ +
Zt

Zb
θ′′ − Scδr (1 + Γ θ)n e(

−E
1+Γ θ )ϕ+Υc Sc

(
η ϕ′′ f2 + f ϕ′ f ′

)
+

2

3
Sc fϕ

′ = 0. (13)

In addition, the relevant boundary conditions are modified to meet the predefined criteria
listed below. This modification guarantees the fulfillment of all requirements, upholding
the procedure’s accuracy and uniformity. The following are the specific requirements:

f(η) = β, f ′(η) = 1, θ(η) = 1, ϕ(η) = 1, at η = 0, (14)

f ′ → 0, θ → 0, ϕ→ 0, as η → ∞. (15)

Now, the model under investigation has been converted to (10)-(15), the definitions of the
regulating factors are as follows: The thermal relaxation parameter is represented by Υt =
Λtuw, the Brownian motion parameter by Zb = Ω(Cw−C∞)DB

ν , the magnetic parameter

can be expressed as M = σ
ρaB

2, the thermophoresis parameter by Zt = Ω(Tw−T∞)DT

νT∞
,

the solutal relaxation time parameter is denoted by Υc = Λcuw, the thermal radiation

parameter shown by R = 16σ∗T 3
∞

3κk∗ , the dimensionless activation energy variable by E =
Ea
κT∞

, the Reiner-Philippoff fluid parameter denoted by λ = µ0

µ∞
, the Schmidt number

by Sc =
ν

DB
, the temperature relative parameter represented by Γ = Tw−T∞

T∞
, the Prandtl

number by Pr =
µcp
κ , the Bingham number by γ = τs

ρ
√
a3ν

, the chemical reaction parameter

by δr =
Kr
a and the Eckert number by Ec = u2

w
cp(Tw−T∞) .

2.2. Important applicable quantities

Crucial and pertinent physical parameters of practical and technological importance
across various domains include the local Sherwood number Shx, the local Nusselt number
Nux, and the local skin friction coefficient Cfx in the proposed physical model. The
subsequent summary will help to clarify these requirements:

CfxRe
1
2 = −g(0), NuxRe

−1
2 = − (1 +R) θ′(0), ShxRe

−1
2 = −ϕ′(0),

where Re = uwx
ν is the local Reynolds number.

3. Procedure Solution

3.1. Fundamental principles of the Mohand transform

Definition 1: For a function f(t), the Mohand transformation indicated by M(.) is
defined as [17]:

M{f(t)} = F (s) = s2
∫ ∞

0
f(t)e−stdt, k1 ≤ s ≤ k2.
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If the Mohand transform of a function f(t) is F (s) then f(t) is known as the inverse of
F (s) which can be described by:

M−1{F (s)} = f(t), M−1 is the inverse Mohand operator.

The MT of the derivatives of the function f(t): If M{f(t)} = F (s) then we have

M
{
f (n)(t)

}
= sn F (s)− sn+1f(0)− snf ′(0)− . . .− s2 f (n−1)(0), n = 1, 2, ... . (16)

The MT for the power functions:

M{tn} =

{
n!

sn−1 , n ∈ N ;
Γ(n+1)
sn−1 , n > −1.

3.2. Implementation of modified decomposition method

This part succinctly outlines the procedure of the newly adopted modified technique.
To execute the MDM for addressing the proposed system (10)-(13), we will reformulate it
in the subsequent operator form:

f ′′(η) = N1(f, g) =

(
1

λγ2

)[
g
(
γ2 + g2

)
− g2f ′′

]
, (17)

g′(η) = N2(f) =
1

3
f ′2 − 2

3
ff ′′ +M f ′, (18)

θ′′(η) = N3(f, g, θ, φ) =

(
−Pr
1 +R

)[
M Ecf ′2 + Ec g f ′′ + Zb ϕ

′θ′

+Υt

(
η θ′′ f2 + f θ′ f ′

)
+ Zt θ

′2 +
2

3
fθ′
]
,

(19)

φ′′(η) = N4(f, θ, φ) =− Zt

Zb
θ′′ + Scδr (1 + Γ θ)n ϕExp

[
−E

1 + Γ θ

]
−Υc Sc

(
η ϕ′′ f2 + f ϕ′ f ′

)
− 2

3
Sc fϕ

′.

(20)

Take the Mohand transform of this system (17)-(20) as follows:

s2F (s)− s3f(0)− s2f ′(0) = M
[
N1(f, g)

]
,

sG(s)− s2g(0) = M
[
N2(f)

]
,

s2Θ(s)− s3θ(0)− s2θ′(0) = M
[
N3(f, g, θ, φ)

]
,

s2Φ(s)− s3φ(0)− s2φ′(0) = M
[
N4(f, θ, φ)

]
.

(21)
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By using the boundary conditions (14)-(15), we can solve the above algebraic system as
follows:

F (s) = 1 +
1

s2
M
[
N1(f, g)

]
,

G(s) = ℓ1 s+
1

s
M
[
N2(f)

]
,

Θ(s) = s+ ℓ2 +
1

s2
M
[
N3(f, g, θ, φ)

]
,

Φ(s) = s+ ℓ3 +
1

s2
M
[
N4(f, θ, φ)

]
.

(22)

Take the inverse Mohand transform of the system (22) as follows:

f(η) = η +M−1

[
1

s2
M
[
N1(f, g)

]]
,

g(η) = ℓ1 +M−1

[
1

s
M
[
N2(f)

]]
,

θ(η) = 1 + ℓ2 η +M−1

[
1

s2
M
[
N3(f, g, θ, φ)

]]
,

φ(η) = 1 + ℓ3 η +M−1

[
1

s2
M
[
N4(f, θ, φ)

]]
,

(23)

where
ℓ1 = g(0), ℓ2 = θ′(0), ℓ3 = φ′(0).

Consequently, the preliminary elements for the estimated solution of the specified problem
will be derived as follows:

f0(η) = η, g0(η) = ℓ1, θ0(η) = 1 + ℓ2 η, φ0(η) = 1 + ℓ3 η, (24)

subsequently, the conclusive iterative strategy for the remaining terms is expressed as:

fm+1(η) = M−1

[
1

s2
M
[
N1(f, g)

]]
= M−1

[
1

s2
M
[
A1

m

]]
,

gm+1(η) = M−1

[
1

s
M
[
N2(f)

]]
= M−1

[
1

s
M
[
A2

m

]]
,

θm+1(η) = M−1

[
1

s2
M
[
N3(f, g, θ, φ)

]]
= M−1

[
1

s2
M
[
A3

m

]]
,

φm+1(η) = M−1

[
1

s2
M
[
N4(f, θ, φ)

]]
= M−1

[
1

s2
M
[
A4

m

]]
.

(25)

The nonlinear terms Np(f, g, θ, φ), p = 1, 2, 3, 4, are decomposed by using the Adomian
polynomials defined as:

Np(f, g, θ, φ) =

∞∑
m=0

Aq
m, p = 1, 2, 3, 4, (26)
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where,

Ap
m =

1

m!

[
dm

dλm

[
Np

( ∞∑
i=0

λi fi,
∞∑
i=0

λi gi,
∞∑
i=0

λi θi,
∞∑
i=0

λi φi

)]]
λ=0

, p = 1, 2, 3, 4.

(27)
Considering these formulas, we can calculate the initial Adomian polynomials as follows:

A1
0 =

(
1

λγ2

)[
g0
(
γ2 + g20

)
− g20f

′′
0

]
=

(
1

λγ2

)[
ℓ1
(
γ2 + ℓ21

)
− ℓ21 ℓ4

]
,

A2
0 =

1

3
f ′20 − 2

3
f0f

′′
0 +M f ′0 =

1

3
+M,

A3
0 =

(
−Pr
1 +R

)[
M Ecf ′20 + Ec g0 f

′′
0 + Zb ϕ

′
0θ

′
0 +Υt

(
η θ′′0 f

2
0 + f0 θ

′
0 f

′
0

)
+ Zt θ

′2
0 +

2

3
f0θ

′
0

]
=

(
−Pr
1 +R

)[
M Ec+ Ec ℓ1 ℓ4 + Zbℓ2 ℓ3 + Ztℓ

2
2

]
,

A4
0 = −Zt

Zb
θ′′0 + Scδr (1 + Γ θ0)

n ϕ0Exp

[
−E

1 + Γ θ0

]
−Υc Sc

(
η ϕ′′0 f

2
0 + f0 ϕ

′
0 f

′
0

)
− 2

3
Sc f0ϕ

′
0

= −Zt

Zb
ℓ5 + Scδr (1 + Γ)n Exp

[
−E
1 + Γ

]
.

(28)

Considering the iteration formulas (25), we can calculate the first components of the
approximate solution as follows:

f1(η) = M−1

[
1

s2
M
[
A1

0

]]
=

(
1

2λγ2

)
η2
[
ℓ1
(
γ2 + ℓ21

)
− ℓ21 ℓ4

]
,

g1(η) = M−1

[
1

s
M
[
A2

0

]]
= η

[
1

3
+M

]
,

θ1(η) = M−1

[
1

s2
M
[
A3

0

]]
=

1

2
η2
[( −Pr

1 +R

)[
M Ec+ Ec ℓ1 ℓ4 + Zbℓ2 ℓ3 + Ztℓ

2
2

]]
,

φ1(η) = M−1

[
1

s2
M
[
A4

0

]]
=

1

2
η2
[
−Zt

Zb
ℓ5 + Scδr (1 + Γ)n Exp

[
−E
1 + Γ

]]
, ... .

(29)

Consequently, the approximate solution is derived by aggregatingm of the estimated terms
as follows:

f(η) =
m−1∑
k=0

fk(η), g(η) =
m−1∑
k=0

gk(η), θ(η) =
m−1∑
k=0

θk(η), φ(η) =
m−1∑
k=0

φk(η).

(30)
The series form solution converges to the exact solution as m approaches infinity.

The values of the quantities ℓk, k = 1, 2, 3 can be determined by applying certain
boundary conditions (14)-(15).
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4. Verification of Adomian Decomposition Approach

Through a comparison with the results from the body of previous research, particularly
the work by Sajid et al. [16]. Table 1 confirms for the current findings. Validating the
results acquired by the Mohand transform and the Adomian decomposition approach is
the goal of this comparison. The Prandtl number Pr represents the numerical values of
the following comparison with R = Zb =M = Zt = 0. The precision and dependability of
the results of the current investigation are demonstrated by this comparison. It is evident
from the comparison that the existing research approach and its outcomes are credible.

Table 1. −θ′(0) values in varying Pr with R = Zb =M = Zt = 0

Pr Sajid et al. [16] Present work

1.0 0.556065 0.556064892
1.5 0.727928 0.727927745
2.0 0.873992 0.873991029
2.5 1.012056 1.012055496

5. Results and Discussion

This section aims to demonstrate the influence of temperature, concentration, veloc-
ity, the local Sherwood number, the skin friction coefficient, and the local Nusselt number
as affected by the following parameters: chemical reaction parameter, Brownian motion
parameter, magnetic parameter, thermophoresis parameter, Bingham number, Reiner-
Philippoff fluid constraint, solutal relaxation time parameter, activation energy parameter,
Eckert number, Prandtl number, and temperature. The Adomian decomposition method,
grounded in the Mohand transform, offers a numerical characterization of the system
governing the model under certain physical conditions. A variation in the magnetic pa-
rameter M can influence the flow behavior, as illustrated in Figure 2, which demonstrates
the impact of the magnetic field parameter on temperature θ(η), concentration ϕ(η), and
velocity f ′(η). Graphing the data indicates that increasing the magnetic parameter M
reduces the velocity gradient, enhances the temperature of the nanofluid, and slightly in-
creases concentration. The fluid’s velocity diminishes due to elevated magnetic parameter
values generating a Lorentz force that counteracts fluid motion.
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Figure 2 (a) θ(η) and f ′(η) for assorted M (b) ϕ(η) for assorted M

Reiner-Philippoff nanofluid flow behavior in terms of temperature θ(η), concentration
ϕ(η), and velocity f ′(η) is illustrated in Figure 3 as a function of the Bingham number γ.
First, it’s crucial to understand that a Newtonian fluid is indicated by a Bingham number
of zero (γ = 0). Stated differently, a fluid that exhibits γ = 0 shows no yield stress
and, as a result, follows the standard Newtonian fluid behavior in which the viscosity
is independent of the applied shear rate. The graph demonstrates that while the fluid’s
concentration and velocity climb with increasing Bingham number, the thermal gradient
falls. This happens because a fluid is more resistant to deformation when its Bingham
number is larger, which denotes a bigger yield stress. Because of the increased internal
friction, this increased resistance decreases heat transfer. In addition, by promoting more
consistent flow and improved particle distribution, the increased yield stress allows for
higher fluid velocities and concentrations.

Figure 3 (a) θ(η) and f ′(η) for assorted γ (b) ϕ(η) for assorted γ

The Reiner-Philippoff parameter’s λ behavior about the temperature θ(η), velocity
f ′(η), and concentration ϕ(η) fields is depicted in Figure 4. Firstly, we must remember
that the fluid also exhibits Newtonian behavior at λ = 1, with a constant viscosity that
remains constant at different shear rates. On the other hand, when λ is less than 1, the fluid
is considered dilatant, indicating that its viscosity increases as the shear rate increases,
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making it more resistant to flow under larger stresses. In contrast, the fluid is considered
pseudo-plastic when λ > 1, meaning that when the shear stress increases, it will flow more
readily due to its decreasing viscosity with increasing shear rate. The graph indicates
that the pseudo-plastic fluid’s concentration and velocity exceed those of the dilatant and
Newtonian fluids when the Reiner-Philippoff parameter improves. By contrast, an inverse
correlation exists between the temperature fields and the Reiner-Philippoff parameter.

Figure 4 (a) θ(η) and f ′(η) for assorted λ (b) ϕ(η) for assorted λ

Figure 5 shows the impact of thermal relaxation time parameter Υt and solutal relax-
ation time parameter Υc on concentration and thermal fields. As the thermal relaxation
time parameter increases, the thermal gradient increases and the concentration field de-
creases. A steeper temperature gradient is the result of heat diffusing over a longer period,
which may be described physically by the longer thermal relaxation time. Yet, the con-
centration field decreases when heat is dispersed over a greater area because the thermal
gradients that drive the concentration distribution are less strong. Moreover, the concen-
tration gradient rises, and the associated thermal field falls with a boost in the solutal
relaxation time parameter. This is physically accounted for by the fact that the ther-
mal field drops as a result of the modified concentration dynamics, but the concentration
gradient is enhanced by the longer solutal relaxation time, which allows the solute to
accumulate more effectively.

Figure 5 (a) θ(η) and ϕ(η) for assorted Υt (b) θ(η) and ϕ(η) for assorted Υc
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Figure 6 shows the impact of gradients in temperature θ(η) and concentration ϕ(η) for
increasing radiation parameter R and Eckert number Ec values. The graph shows that
while concentration distribution falls, thermal distribution is enhanced by rising values of
the radiation parameter or Eckert number. The reason for this is that higher radiation
promotes heat transfer, which results in a more even distribution of heat, and higher Eckert
numbers enhance viscous dissipation and heat creation. Since temperature-driven solute
transport is reduced as a result of the higher thermal effects, the concentration gradient
is lowered.

Figure 6 (a) θ(η) and ϕ(η) for assorted Ec (b) θ(η) and ϕ(η) for assorted R

Figure 7 depicts the influence of the Brownian motion parameter Zb and the ther-
mophoresis parameter Zt on the thermal θ(η) and concentration ϕ(η) fields. The plotted
figure demonstrates the increase in temperature distribution and the decrease in con-
centration distribution as the Brownian motion parameter escalates. Furthermore, an
improvement in the temperature and concentration fields is brought about by the ther-
mophoresis parameter’s expanding values. The improvement in thermal and concentration
distributions can be attributed to the enhanced thermophoresis, which propels particles
from warmer to colder areas with greater efficiency.

Figure 7 (a) θ(η) and ϕ(η) for assorted Zb (b) θ(η) and ϕ(η) for assorted Zt
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Figure 8 displays the concentration profile change for various values of the chemical
reaction parameter δr or the activation energy parameter E. In this case, the mass dis-
tribution is enhanced by greater activation energy parameter values while it is weakened
by higher chemical reaction parameter values. This can be explained physically as faster
chemical reaction rates use more reactants, which reduces mass distribution, but increases
activation energy makes it simpler for particles to overcome energy barriers, enhancing
mass distribution.

Figure 8 (a) ϕ(η) for assorted δr (b) ϕ(η) for assorted E

Skin friction (CfxRe
1
2 ), Sherwood number (ShxRe

−1
2 ), and Nusselt number (NuxRe

−1
2 )

fluctuations in response to various controlling parameters are shown in Table 2. These
parameters affect the mass transfer rate, heat transfer rate, and surface friction, respec-
tively. The data show how these modifications affect these parameters. In the domains
of fluid dynamics, heat transfer, and mass transfer, in particular, these values are cru-
cial. Systems in engineering applications like heat management, chemical processing, and
aerospace require them to be carefully designed and optimized. Richer skin friction coeffi-
cient and poorer local Nusselt number are caused by rising amounts of the magnetic field
parameter, Bingham number, and Reiner-Philippoff fluid.
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Table 2. ShxRe
−1
2 , CfxRe

1
2 , and NuxRe

−1
2 as function of some of governing parameters
with

β = 0.5, Sc = 2.0, n = 0.1, P r = 3.0, E = 1.0 and Γ = 0.3

M γ λ Υt Υc Ec R Zb Zt δr CfxRe
1
2 NuxRe

−1
2 ShxRe

−1
2

0.0 0.1 1.5 0.1 0.1 0.1 0.5 0.8 0.2 0.2 0.881327 0.538817 1.18721
1.0 0.1 1.5 0.1 0.1 0.1 0.5 0.8 0.2 0.2 1.394642 0.358658 1.16321
2.0 0.1 1.5 0.1 0.1 0.1 0.5 0.8 0.2 0.2 1.750413 0.232276 1.15214

0.5 0.1 1.5 0.1 0.1 0.1 0.5 0.8 0.2 0.2 1.170692 0.464874 1.02306
0.5 0.3 1.5 0.1 0.1 0.1 0.5 0.8 0.2 0.2 1.200923 0.435463 1.17507
0.5 0.8 1.5 0.1 0.1 0.1 0.5 0.8 0.2 0.2 1.270380 0.405517 1.33093

0.5 0.1 0.5 0.1 0.1 0.1 0.5 0.8 0.2 0.2 1.150791 0.469372 1.02313
0.5 0.1 2.0 0.1 0.1 0.1 0.5 0.8 0.2 0.2 1.178753 0.436178 1.17256
0.5 0.1 6.0 0.1 0.1 0.1 0.5 0.8 0.2 0.2 1.226634 0.407493 1.27121

0.5 0.1 1.5 0.0 0.1 0.1 0.5 0.8 0.2 0.2 1.170692 0.514926 1.16189
0.5 0.1 1.5 0.2 0.1 0.1 0.5 0.8 0.2 0.2 1.170692 0.378464 1.18108
0.5 0.1 1.5 0.3 0.1 0.1 0.5 0.8 0.2 0.2 1.170692 0.340872 1.18647

0.5 0.1 1.5 0.1 0.0 0.1 0.5 0.8 0.2 0.2 1.170692 0.395878 1.26859
0.5 0.1 1.5 0.1 0.2 0.1 0.5 0.8 0.2 0.2 1.170692 0.479547 1.08722
0.5 0.1 1.5 0.1 0.3 0.1 0.5 0.8 0.2 0.2 1.170692 0.515606 1.01995

0.5 0.1 1.5 0.1 0.1 0.0 0.5 0.8 0.2 0.2 1.170692 0.609283 1.09733
0.5 0.1 1.5 0.1 0.1 0.2 0.5 0.8 0.2 0.2 1.170692 0.277313 1.19814
0.5 0.1 1.5 0.1 0.1 0.4 0.5 0.8 0.2 0.2 1.170692 0.047912 1.29726

0.5 0.1 1.5 0.1 0.1 0.1 0.0 0.8 0.2 0.2 1.170692 0.270952 0.27095
0.5 0.1 1.5 0.1 0.1 0.1 1.0 0.8 0.2 0.2 1.170692 0.579297 1.17214
0.5 0.1 1.5 0.1 0.1 0.1 2.0 0.8 0.2 0.2 1.170692 0.813973 1.13532

0.5 0.1 1.5 0.1 0.1 0.1 0.5 0.5 0.2 0.2 1.170692 0.665106 1.10042
0.5 0.1 1.5 0.1 0.1 0.1 0.5 1.0 0.2 0.2 1.170692 0.321876 1.19234
0.5 0.1 1.5 0.1 0.1 0.1 0.5 1.5 0.2 0.2 1.170692 0.127043 1.21107

0.5 0.1 1.5 0.1 0.1 0.1 0.5 0.8 0.0 0.2 1.170692 0.509556 1.19799
0.5 0.1 1.5 0.1 0.1 0.1 0.5 0.8 0.2 0.2 1.170692 0.437905 1.17259
0.5 0.1 1.5 0.1 0.1 0.1 0.5 0.8 0.5 0.2 1.170692 0.348344 1.16616

0.5 0.1 1.5 0.1 0.1 0.1 0.5 0.8 0.2 0.0 1.170692 0.467644 1.02194
0.5 0.1 1.5 0.1 0.1 0.1 0.5 0.8 0.2 0.5 1.170692 0.408185 1.35451
0.5 0.1 1.5 0.1 0.1 0.1 0.5 0.8 0.2 1.0 1.170692 0.377344 1.59455

Also, it is demonstrated that mass transfer is reduced by the solutal relaxation time
parameter and enhanced by the chemical reaction parameter. This demonstrates their
opposing effects on the mass transfer process, showing that a greater chemical reaction
parameter speeds mass transfer while an increase in solutal relaxation time slows it down.
Additionally, the same table shows that a rise in the Eckert number increases mass trans-
mission while decreasing heat transfer. This is because greater viscous dissipation increases
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species mixing, which enhances mass transfer, but also increases the amount of heat ab-
sorbed by the fluid, decreasing heat transfer efficiency. A little increase in the mass transfer
rate and a decrease in the heat transfer rate are also observed when the Brownian motion
parameter is raised. Additionally, since enhanced thermophoresis generates higher particle
movement due to temperature gradients, it disrupts the uniform distribution of heat and
mass and reduces transfer efficiency. As a result, raising the thermophoresis parameter
values often lowers both mass and heat transfer rates.

6. Conclusions

Under consideration are activation energy, thermal radiation, Ohmic heating, and vis-
cous dissipation in the flow of a hydromagnetic non-Newtonian Reiner-Philippoff nanofluid.
The theory of Cattaneo-Christov double diffusions is used in place of the traditional Fick’s
and Fourier’s laws during the modeling procedure. By adding relaxation durations into
the diffusion equations, this method takes into account the finite speed of thermal and
mass diffusions, resulting in a more accurate description of the actual processes. Mohand
transform combined with the Adomian decomposition approach yields the numerical so-
lution for the converted flow governing the model. The numerical findings’ generated flow
fields are shown while being influenced by several factors. Tabular data and graphics are
utilized to leverage the limits on temperature concentration and velocity. The concen-
tration profiles are enhanced by a surge in the Bingham number, the Reiner-Philippoff
fluid parameter, and the solutal relaxation time parameter. The velocity scale grows as
the Bingham number rises, but it decreases when the magnetic field parameter increases.
In contrast to the chemical reaction parameter, concentration distribution improves with
increasing the activation energy parameter. Higher chemical reaction parameter values
cause the concentration layer to get more compact, whilst higher activation energy pa-
rameter values cause it to expand. A greater estimate of the magnetic field parameter,
the Bingham number, and the Reiner-Philippoff fluid enriches the skin friction coefficient
and impoverishes the local Nusselt number. About the solutal relaxation time parameter,
mass transfer is shown to be reduced, whilst the chemical reaction parameter exhibits
enhancing behavior.
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