EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

2025, Vol. 18, Issue 1, Article Number 5717 ISSN 1307-5543 – ejpam.com Published by New York Business Global

Quasi $\theta(\tau_1, \tau_2)$ -continuity for Multifunctions

Prapart Pue-on¹, Areeyuth Sama-Ae², Chawalit Boonpok^{1,*}

 ¹ Mathematics and Applied Mathematics Research Unit, Department of Mathematics, Faculty of Science, Mahasarakham University, Maha Sarakham, 44150, Thailand
 ² Department of Mathematics and Computer Science, Faculty of Science and Technology, Prince of Songkla University, Pattani Campus, Pattani, 94000, Thailand

Abstract. This paper presents new classes of multifunctions called upper quasi $\theta(\tau_1, \tau_2)$ -continuous multifunctions and lower quasi $\theta(\tau_1, \tau_2)$ -continuous multifunctions. Furthermore, several characterizations and some properties concerning upper quasi $\theta(\tau_1, \tau_2)$ -continuous multifunctions and lower quasi $\theta(\tau_1, \tau_2)$ -continuous multifunctions are established.

2020 Mathematics Subject Classifications: 54C08, 54C60

Key Words and Phrases: Upper quasi $\theta(\tau_1, \tau_2)$ -continuous multifunction, lower quasi $\theta(\tau_1, \tau_2)$ continuous multifunction

1. Introduction

Stronger and weaker forms of open sets in topological spaces such as semi-open sets [42], preopen sets [44], α -open sets [46], β -open sets [35] and θ -open sets [65] play an important role in the research of generalizations of continuity. Using these notions many authors introduced and studied various types of generalizations of continuity for functions and multifunctions. Levine [42] introduced and studied the notion of semi-continuous functions. Arya and Bhamini [1] introduced the concept of θ -semi-continuity as a generalization of semi-continuity. Noiri [47] and Jafari and Noiri [36] have further investigated some characterizations of θ -semi-continuous functions. Marcus [43] introduced and studied the notion of almost quasi continuous functions. Neubrunnovaá [45] showed that quasi continuity is equivalent to semi-continuity due to Levine [42]. Popa and Stan [54] introduced and investigated the notion of weakly quasi continuous functions. Weak quasi continuity is implied by quasi continuity and weak continuity [41] which are independent of each other. Viriyapong and Boonpok [67] investigated some characterizations of (Λ, sp) -continuous

1

https://www.ejpam.com

Copyright: © 2025 The Author(s). (CC BY-NC 4.0)

^{*}Corresponding author.

DOI: https://doi.org/10.29020/nybg.ejpam.v18i1.5717

Email addresses: prapart.p@msu.ac.th (P. Pue-on), areeyuth.s@psu.ac.th (A. Sama-Ae), chawalit.b@msu.ac.th (C. Boonpok)

functions by utilizing the notions of (Λ, sp) -open sets and (Λ, sp) -closed sets due to Boonpok and Khampakdee [13]. Dungthaisong et al. [34] introduced and studied the concept of $g_{(m,n)}$ -continuous functions. Duangphui et al. [33] introduced and investigated the notion of $(\mu, \mu')^{(m,n)}$ -continuous functions. Moreover, several characterizations of almost (Λ, p) -continuous functions, strongly $\theta(\Lambda, p)$ -continuous functions, almost strongly $\theta(\Lambda, p)$ continuous functions, $\theta(\Lambda, p)$ -continuous functions, weakly (Λ, b) -continuous functions, $\theta(\star)$ -precontinuous functions, $(\Lambda, p(\star))$ -continuous functions, \star -continuous functions, $\theta(\star)$ -precontinuous functions, $(\Lambda, p(\star))$ -continuous functions, pairwise almost M-continuous functions, (τ_1, τ_2) -continuous functions, almost (τ_1, τ_2) -continuous functions and weakly (τ_1, τ_2) -continuous functions were presented in [60], [63], [17], [55], [26], [12], [9], [11], [5], [2], [3], [27], [24] and [19], respectively. Srisarakham et al. [61] introduced and studied the concept of faintly (τ_1, τ_2) -continuous functions. Kong-ied et al. [40] introduced and investigated the notion of almost quasi (τ_1, τ_2) -continuous functions. Chiangpradit et al. [32] introduced and studied the concept of weakly quasi (τ_1, τ_2) -continuous functions.

In 1975, Popa [50] extended the concept of quasicontinuous functions to the setting of multifunctions. Furthermore, Popa and Noiri [53] introduced the concept of almost quasi continuous multifunctions and investigated some characterizations of such multifunctions. Noiri and Popa [48] introduced and studied the notion of weakly quasi continuous multifunctions. Popa and Noiri [52] introduced the notion of θ -quasicontinuous multifunctions and investigated several further properties of such multifunctions. Moreover, several characterizations and some properties concerning $(\tau_1, \tau_2)\delta$ -semicontinuous multifunctions, almost weakly (τ_1, τ_2) -continuous multifunctions, weakly quasi (Λ, sp) -continuous multifunctions, *-continuous multifunctions, $\beta(\star)$ -continuous multifunctions, α -*-continuous multifunctions, almost α -*-continuous multifunctions, almost quasi *-continuous multifunctions, weakly α -*-continuous multifunctions, $s\beta(\star)$ -continuous multifunctions, weakly $s\beta(\star)$ -continuous multifunctions, $\theta(\star)$ -quasi continuous multifunctions, almost ι^{\star} -continuous multifunctions, weakly (Λ, sp) -continuous multifunctions, $\alpha(\Lambda, sp)$ -continuous multifunctions, almost $\alpha(\Lambda, sp)$ -continuous multifunctions, weakly $\alpha(\Lambda, sp)$ -continuous multifunctions, almost $\beta(\Lambda, sp)$ -continuous multifunctions, slightly (Λ, sp) -continuous multifunctions, (τ_1, τ_2) -continuous multifunctions, almost (τ_1, τ_2) -continuous multifunctions, weakly (τ_1, τ_2) -continuous multifunctions, weakly quasi (τ_1, τ_2) -continuous multifunctions, almost quasi (τ_1, τ_2) -continuous multifunctions, c- (τ_1, τ_2) -continuous multifunctions and slightly (τ_1, τ_2) p-continuous multifunctions were established in [6], [29], [68], [4], [8], [18], [25], [7], [22], [21], [16], [10], [20], [23], [37], [14], [28], [62], [15], [58], [39], [64], [59], [57], [38]and [70], respectively. Noiri and Popa [49] investigated some characterizations of upper and lower θ -quasicontinuous multifunctions. Pue-on et al. [56] introduced and studied the concept of c-quasi (τ_1, τ_2) -continuous multifunctions. Viriyapong et al. [72] introduced and investigated the notion of s_{τ_1,τ_2} -continuous multifunctions. Furthermore, Viriyapong et al. [69] introduced and studied the concept of slightly (τ_1, τ_2) -continuous multifunctions. In this paper, we introduce the notions of upper quasi $\theta(\tau_1, \tau_2)$ -continuous multifunctions and lower quasi $\theta(\tau_1, \tau_2)$ -continuous multifunctions. We also investigate several characterizations of upper quasi $\theta(\tau_1, \tau_2)$ -continuous multifunctions and lower quasi $\theta(\tau_1, \tau_2)$ -continuous multifunctions.

2. Preliminaries

Throughout the present paper, spaces (X, τ_1, τ_2) and (Y, σ_1, σ_2) (or simply X and Y) always mean bitopological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a bitopological space (X, τ_1, τ_2) . The closure of A and the interior of A with respect to τ_i are denoted by τ_i -Cl(A) and τ_i -Int(A), respectively, for i = 1, 2. A subset A of a bitopological space (X, τ_1, τ_2) is called $\tau_1 \tau_2$ -closed [30] if $A = \tau_1 - \text{Cl}(\tau_2 - \text{Cl}(A))$. The complement of a $\tau_1 \tau_2$ -closed set is called $\tau_1 \tau_2$ -open. Let A be a subset of a bitopological space (X, τ_1, τ_2) . The intersection of all $\tau_1 \tau_2$ -closed sets of X containing A is called the $\tau_1\tau_2$ -closure [30] of A and is denoted by $\tau_1\tau_2$ -Cl(A). The union of all $\tau_1 \tau_2$ -open sets of X contained in A is called the $\tau_1 \tau_2$ -interior [30] of A and is denoted by $\tau_1 \tau_2$ -Int(A). A subset A of a bitopological space (X, τ_1, τ_2) is said to be $\tau_1 \tau_2$ -clopen [30] if A is both $\tau_1\tau_2$ -open and $\tau_1\tau_2$ -closed. A subset A of a bitopological space (X, τ_1, τ_2) is said to be $(\tau_1, \tau_2)r$ -open [66] (resp. $(\tau_1, \tau_2)s$ -open [6], $(\tau_1, \tau_2)p$ -open [6], $(\tau_1, \tau_2)\beta$ -open [6]) if $A = \tau_1 \tau_2$ -Int $(\tau_1 \tau_2$ -Cl(A)) (resp. $A \subseteq \tau_1 \tau_2$ -Cl $(\tau_1 \tau_2$ -Int(A)), $A \subseteq \tau_1 \tau_2$ -Int $(\tau_1 \tau_2$ -Cl(A)), $A \subseteq \tau_1 \tau_2$ -Cl $(\tau_1 \tau_2$ -Cl $(\tau_1 \tau_2$ -Cl(A)))). The complement of a $(\tau_1, \tau_2)r$ -open (resp. $(\tau_1, \tau_2)s$ open, $(\tau_1, \tau_2)p$ -open, $(\tau_1, \tau_2)\beta$ -open) set is called $(\tau_1, \tau_2)r$ -closed (resp. $(\tau_1, \tau_2)s$ -closed, (τ_1, τ_2) *p-closed*, $(\tau_1, \tau_2)\beta$ *-closed*). A subset A of a bitopological space (X, τ_1, τ_2) is said to be $\alpha(\tau_1, \tau_2)$ -open [71] if $A \subseteq \tau_1 \tau_2$ -Int $(\tau_1 \tau_2$ -Cl $(\tau_1 \tau_2$ -Int(A))). The complement of an $\alpha(\tau_1, \tau_2)$ -open set is said to be $\alpha(\tau_1, \tau_2)$ -closed.

Let A be a subset of a bitopological space (X, τ_1, τ_2) . A point $x \in X$ is called a $(\tau_1, \tau_2)\theta$ -cluster point [66] of A if $\tau_1\tau_2$ -Cl $(U) \cap A \neq \emptyset$ for every $\tau_1\tau_2$ -open set U containing x. The set of all $(\tau_1, \tau_2)\theta$ -cluster points of A is called the $(\tau_1, \tau_2)\theta$ -closure [66] of A and is denoted by $(\tau_1, \tau_2)\theta$ -Cl(A). A subset A of a bitopological space (X, τ_1, τ_2) is said to be $(\tau_1, \tau_2)\theta$ -closed [66] if $(\tau_1, \tau_2)\theta$ -Cl(A) = A. The complement of a $(\tau_1, \tau_2)\theta$ -closed set is said to be $(\tau_1, \tau_2)\theta$ -open. The union of all $(\tau_1, \tau_2)\theta$ -open sets of X contained in A is called the $(\tau_1, \tau_2)\theta$ -interior [66] of A and is denoted by $(\tau_1, \tau_2)\theta$ -Int(A).

Lemma 1. [66] For a subset A of a bitopological space (X, τ_1, τ_2) , the following properties hold:

- (1) If A is $\tau_1\tau_2$ -open in X, then $\tau_1\tau_2$ -Cl(A) = $(\tau_1, \tau_2)\theta$ -Cl(A).
- (2) $(\tau_1, \tau_2)\theta$ -Cl(A) is $\tau_1\tau_2$ -closed in X.

Let A be a subset of a bitopological space (X, τ_1, τ_2) . A point $x \in X$ is called a $\theta(\tau_1, \tau_2)s$ -cluster point of A if (τ_1, τ_2) -sCl $(U) \cap A \neq \emptyset$ for every $(\tau_1, \tau_2)s$ -open set U containing x. The set of all $\theta(\tau_1, \tau_2)s$ -cluster points of A is called the $\theta(\tau_1, \tau_2)s$ -closure of A and is denoted by $\theta(\tau_1, \tau_2)$ -sCl(A). A subset A of a bitopological space (X, τ_1, τ_2) is said to be $\theta(\tau_1, \tau_2)s$ -closed if $\theta(\tau_1, \tau_2)$ -sCl(A) = A. The complement of a $\theta(\tau_1, \tau_2)s$ -closed set is said to be $\theta(\tau_1, \tau_2)s$ -open. The union of all $\theta(\tau_1, \tau_2)s$ -open sets of X contained in A is called the $\theta(\tau_1, \tau_2)s$ -interior of A and is denoted by $\theta(\tau_1, \tau_2)$ -sInt(A).

By a multifunction $F: X \to Y$, we mean a point-to-set correspondence from X into Y, and always assume that $F(x) \neq \emptyset$ for all $x \in X$. For a multifunction $F: X \to Y$, we shall denote the upper and lower inverse of a set B of Y by $F^+(B)$ and $F^-(B)$, respectively, that is, $F^+(B) = \{x \in X \mid F(x) \subseteq B\}$ and $F^-(B) = \{x \in X \mid F(x) \cap B \neq \emptyset\}$.

3. Upper and lower quasi $\theta(\tau_1, \tau_2)$ -continuous multifunctions

In this section, we introduce the notions of upper quasi $\theta(\tau_1, \tau_2)$ -continuous multifunctions and lower quasi $\theta(\tau_1, \tau_2)$ -continuous multifunctions. Moreover, several characterizations of upper quasi $\theta(\tau_1, \tau_2)$ -continuous multifunctions and lower quasi $\theta(\tau_1, \tau_2)$ continuous multifunctions are discussed.

Definition 1. A multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be upper quasi $\theta(\tau_1, \tau_2)$ -continuous if for each $x \in X$ and each $\sigma_1 \sigma_2$ -open set V of Y containing F(x), there exists a (τ_1, τ_2) s-open set U of X containing x such that $F((\tau_1, \tau_2)$ -sCl $(U)) \subseteq \sigma_1 \sigma_2$ -Cl(V).

Theorem 1. For a multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

- (1) F is upper quasi $\theta(\tau_1, \tau_2)$ -continuous;
- (2) $\theta(\tau_1, \tau_2)$ -sCl($F^-(\sigma_1\sigma_2$ -Int($(\sigma_1, \sigma_2)\theta$ -Cl(B)))) $\subseteq F^-((\sigma_1, \sigma_2)\theta$ -Cl(B)) for every subset B of Y;
- (3) $\theta(\tau_1, \tau_2)$ -sCl($F^-(\sigma_1\sigma_2$ -Int($\sigma_1\sigma_2$ -Cl(V)))) $\subseteq F^-(\sigma_1\sigma_2$ -Cl(V)) for every $\sigma_1\sigma_2$ -open set V of Y;
- (4) $\theta(\tau_1, \tau_2)$ -sCl($F^-(\sigma_1 \sigma_2$ -Int(K))) $\subseteq F^-(K)$ for every (σ_1, σ_2) r-closed set K of Y;
- (5) $F^+(V) \subseteq \theta(\tau_1, \tau_2)$ -sInt $(F^+(\sigma_1 \sigma_2 Cl(V)))$ for every $\sigma_1 \sigma_2$ -open set V of Y;
- (6) $\theta(\tau_1, \tau_2)$ -sCl($F^-(\sigma_1 \sigma_2$ -Int(K))) $\subseteq F^-(K)$ for every $\sigma_1 \sigma_2$ -closed set K of Y;
- (7) $\theta(\tau_1, \tau_2)$ -sCl($F^-(V)$) $\subseteq F^-(\sigma_1 \sigma_2$ -Cl(V)) for every $\sigma_1 \sigma_2$ -open set V of Y.

Proof. (1) ⇒ (2): Let *B* be any subset of *Y*. Suppose that $x \notin F^-((\sigma_1, \sigma_2)\theta - \operatorname{Cl}(B))$. Then, $x \in X - F^-((\sigma_1, \sigma_2)\theta - \operatorname{Cl}(B))$ and $F(x) \subseteq Y - (\sigma_1, \sigma_2)\theta - \operatorname{Cl}(B)$. Since $(\sigma_1, \sigma_2)\theta - \operatorname{Cl}(B)$ is $\sigma_1\sigma_2$ -closed in *Y*, there exists a $(\tau_1, \tau_2)s$ -open set *U* of *X* containing *x* such that $F((\tau_1, \tau_2) - \operatorname{sCl}(U)) \subseteq \sigma_1\sigma_2 - \operatorname{Cl}(Y - (\sigma_1, \sigma_2)\theta - \operatorname{Cl}(B)) = Y - \sigma_1\sigma_2 - \operatorname{Int}((\sigma_1, \sigma_2)\theta - \operatorname{Cl}(B))$. Thus, we have $F((\tau_1, \tau_2) - \operatorname{sCl}(U)) \cap \sigma_1\sigma_2 - \operatorname{Int}((\sigma_1, \sigma_2)\theta - \operatorname{Cl}(B)) = \emptyset$ and

$$(\tau_1, \tau_2)\operatorname{-sCl}(U) \cap F^-(\sigma_1 \sigma_2 \operatorname{-Int}((\sigma_1, \sigma_2)\theta \operatorname{-Cl}(B))) = \emptyset.$$

This shows that $x \notin \theta(\tau_1, \tau_2)$ -sCl $(F^-(\sigma_1 \sigma_2 \operatorname{-Int}((\sigma_1, \sigma_2)\theta \operatorname{-Cl}(B))))$. Thus,

$$\theta(\tau_1, \tau_2) \operatorname{-sCl}(F^-(\sigma_1 \sigma_2 \operatorname{-Int}((\sigma_1, \sigma_2) \theta \operatorname{-Cl}(B)))) \subseteq F^-((\sigma_1, \sigma_2) \theta \operatorname{-Cl}(B))$$

(2) \Rightarrow (3): This is obvious since $\sigma_1 \sigma_2$ -Cl(V) = $(\sigma_1, \sigma_2)\theta$ -Cl(V) for every $\sigma_1 \sigma_2$ -open set V of Y.

 $(3) \Rightarrow (4)$: Let K be any $(\sigma_1, \sigma_2)r$ -closed set of Y. By (3), we have

$$\theta(\tau_1, \tau_2) \operatorname{-sCl}(F^-(\sigma_1 \sigma_2 \operatorname{-Int}(K))) = \theta(\tau_1, \tau_2) \operatorname{-sCl}(F^-(\sigma_1 \sigma_2 \operatorname{-Int}(\sigma_1 \sigma_2 \operatorname{-Int}(K)))))$$

$$\subseteq F^{-}(\sigma_{1}\sigma_{2}\text{-}\operatorname{Cl}(\sigma_{1}\sigma_{2}\text{-}\operatorname{Int}(K)))$$

= $F^{-}(K)$.

 $(4) \Rightarrow (5)$: Let V be any $\sigma_1 \sigma_2$ -open set of Y. Then, we have

$$X - \theta(\tau_1, \tau_2) \operatorname{sInt}(F^+(\sigma_1 \sigma_2 \operatorname{-Cl}(V))) = \theta(\tau_1, \tau_2) \operatorname{sCl}(X - F^+(\sigma_1 \sigma_2 \operatorname{-Cl}(V)))$$
$$= \theta(\tau_1, \tau_2) \operatorname{-sCl}(F^-(Y - \sigma_1 \sigma_2 \operatorname{-Cl}(V))),$$

 $Y - \sigma_1 \sigma_2 - \operatorname{Cl}(V) = \sigma_1 \sigma_2 - \operatorname{Int}(Y - \sigma_1 \sigma_2 - \operatorname{Cl}(V)) \subseteq \sigma_1 \sigma_2 - \operatorname{Int}(Y - \sigma_1 \sigma_2 - \operatorname{Int}(\sigma_1 \sigma_2 - \operatorname{Cl}(V)))$ and $Y - \sigma_1 \sigma_2 - \operatorname{Int}(\sigma_1 \sigma_2 - \operatorname{Cl}(V))$ is $(\sigma_1, \sigma_2)r$ -closed in Y. Thus by (4),

$$\theta(\tau_1, \tau_2) \operatorname{sCl}(F^-(\sigma_1 \sigma_2 \operatorname{-Int}(Y - \sigma_1 \sigma_2 \operatorname{-Int}(\sigma_1 \sigma_2 \operatorname{-Cl}(V))))) \subseteq F^-(Y - \sigma_1 \sigma_2 \operatorname{-Int}(\sigma_1 \sigma_2 \operatorname{-Cl}(V))) = X - F^+(\sigma_1 \sigma_2 \operatorname{-Int}(\sigma_1 \sigma_2 \operatorname{-Cl}(V))) \subset X - F^+(V)$$

and hence $F^+(V) \subseteq \theta(\tau_1, \tau_2)$ -sInt $(F^+(\sigma_1 \sigma_2$ -Cl(V))).

(5) \Rightarrow (6): Let K be any $\sigma_1 \sigma_2$ -closed set of Y. Then by (5), we have

$$X - F^{-}(K) = F^{+}(Y - K)$$

$$\subseteq \theta(\tau_{1}, \tau_{2}) \operatorname{sInt}(F^{+}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(Y - K)))$$

$$= \theta(\tau_{1}, \tau_{2}) \operatorname{sInt}(F^{+}(Y - \sigma_{1}\sigma_{2}\operatorname{-Int}(K)))$$

$$= \theta(\tau_{1}, \tau_{2}) \operatorname{sInt}(X - F^{-}(\sigma_{1}\sigma_{2}\operatorname{-Int}(K)))$$

$$= X - \theta(\tau_{1}, \tau_{2}) \operatorname{sCl}(F^{-}(\sigma_{1}\sigma_{2}\operatorname{-Int}(K))).$$

Thus, $\theta(\tau_1, \tau_2)$ -sCl $(F^-(\sigma_1 \sigma_2$ -Int $(K))) \subseteq F^-(K)$.

(6) \Rightarrow (7): Let V be any $\sigma_1 \sigma_2$ -closed set of Y. Then, we have $\sigma_1 \sigma_2$ -Cl(V) is $\sigma_1 \sigma_2$ -closed in Y and by (6),

$$\theta(\tau_1, \tau_2) \operatorname{-sCl}(F^-(V)) \subseteq \theta(\tau_1, \tau_2) \operatorname{-sCl}(F^-(\sigma_1 \sigma_2 \operatorname{-Int}(\sigma_1 \sigma_2 \operatorname{-Cl}(V)))) \\ \subseteq F^-(\sigma_1 \sigma_2 \operatorname{-Cl}(V)).$$

(7) \Rightarrow (1): Let $x \in X$ and V be any $\sigma_1 \sigma_2$ -open set of Y containing F(x). Then, $\sigma_1 \sigma_2$ -Cl $(Y - \sigma_1 \sigma_2$ -Cl(V)) $\cap F(x) = \emptyset$ and $x \notin F^-(\sigma_1 \sigma_2$ -Cl $(Y - \sigma_1 \sigma_2$ -Cl(V))). It follows from (7) that $x \notin \theta(\tau_1, \tau_2)$ -sCl $(F^-(Y - \sigma_1 \sigma_2$ -Cl(V))). Then, there exists a (τ_1, τ_2) -sopen set U of X containing x such that (τ_1, τ_2) -sCl $(U) \cap F^-(Y - \sigma_1 \sigma_2$ -Cl $(V)) = \emptyset$; hence $F((\tau_1, \tau_2)$ -sCl $(U)) \subseteq \sigma_1 \sigma_2$ -Cl(V). This shows that F is upper quasi $\theta(\tau_1, \tau_2)$ -continuous.

Definition 2. A multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be lower quasi $\theta(\tau_1, \tau_2)$ -continuous if for each $x \in X$ and each $\sigma_1 \sigma_2$ -open set V of Y such that $F(x) \cap V \neq \emptyset$, there exists a (τ_1, τ_2) s-open set U of X containing x such that $\sigma_1 \sigma_2$ - $Cl(V) \cap F(z) \neq \emptyset$ for every $z \in (\tau_1, \tau_2)$ -sCl(U).

Lemma 2. If $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is lower quasi $\theta(\tau_1, \tau_2)$ -continuous, then for each $x \in X$ and each subset B of Y with $(\sigma_1, \sigma_2)\theta$ -Int $(B) \cap F(x) \neq \emptyset$ there exists a (τ_1, τ_2) s-open set U of X containing x such that (τ_1, τ_2) -s $Cl(U) \subseteq F^-(B)$.

5 of 16

Proof. Since $(\sigma_1, \sigma_2)\theta$ -Int $(B) \cap F(x) \neq \emptyset$, there exists a $\sigma_1\sigma_2$ -open set V of Y such that $V \subseteq \sigma_1\sigma_2$ -Cl $(V) \subseteq B$ and $F(x) \cap V \neq \emptyset$. Since F is lower quasi $\theta(\tau_1, \tau_2)$ -continuous, there exists a (τ_1, τ_2) s-open set U of X containing x such that $\sigma_1\sigma_2$ -Cl $(V) \cap F(z) \neq \emptyset$ for every $z \in (\tau_1, \tau_2)$ -sCl(U) and hence (τ_1, τ_2) -sCl $(U) \subseteq F^-(B)$.

Theorem 2. For a multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

- (1) F is lower quasi $\theta(\tau_1, \tau_2)$ -continuous;
- (2) $\theta(\tau_1, \tau_2)$ -sCl(F⁺(B)) \subseteq F⁺((σ_1, σ_2) θ -Cl(B)) for every subset B of Y;
- (3) $\theta(\tau_1, \tau_2)$ -sCl(F⁺(V)) \subseteq F⁺($\sigma_1 \sigma_2$ -Cl(V)) for every $\sigma_1 \sigma_2$ -open set V of Y;
- (4) $F^{-}(V) \subseteq \theta(\tau_1, \tau_2)$ -sInt $(F^{-}(\sigma_1 \sigma_2 Cl(V)))$ for every $\sigma_1 \sigma_2$ -open set V of Y;
- (5) $F(\theta(\tau_1, \tau_2) \text{-sCl}(A)) \subseteq (\sigma_1, \sigma_2)\theta \text{-Cl}(F(A))$ for every subset A of X;
- (6) $\theta(\tau_1, \tau_2)$ -sCl($F^+(\sigma_1\sigma_2$ -Int($(\sigma_1, \sigma_2)\theta$ -Cl(B)))) $\subseteq F^+((\sigma_1, \sigma_2)\theta$ -Cl(B)) for every subset B of Y;
- (7) $\theta(\tau_1, \tau_2)$ -sCl($F^+(\sigma_1\sigma_2$ -Int($\sigma_1\sigma_2$ -Cl(V)))) $\subseteq F^+(\sigma_1\sigma_2$ -Cl(V)) for every $\sigma_1\sigma_2$ -open set V of Y;
- (8) $\theta(\tau_1, \tau_2)$ -sCl($F^+(\sigma_1 \sigma_2$ -Int(K))) $\subseteq F^+(K)$ for every (σ_1, σ_2) r-closed set K of Y;
- (9) $\theta(\tau_1, \tau_2)$ -sCl($F^+(\sigma_1 \sigma_2$ -Int(K))) $\subseteq F^+(K)$ for every $\sigma_1 \sigma_2$ -closed set K of Y.

Proof. (1) \Rightarrow (2): Let *B* be any subset of *Y*. Suppose that $x \notin F^+((\sigma_1, \sigma_2)\theta$ -Cl(*B*)). Then, $x \in F^-(Y - (\sigma_1, \sigma_2)\theta$ -Cl(*B*)) = $F^-((\sigma_1, \sigma_2)\theta$ -Int(*Y* - *B*)). Since *F* is lower quasi $\theta(\tau_1, \tau_2)$ -continuous, by Lemma 2 there exists a $(\tau_1, \tau_2)s$ -open set *U* of *X* containing *x* such that (τ_1, τ_2) -sCl(*U*) $\subseteq F^-(Y - B) = X - F^+(B)$. Thus, we have

$$(\tau_1, \tau_2)$$
-sCl $(U) \cap F^+(B) = \emptyset$

and hence $x \notin \theta(\tau_1, \tau_2)$ -sCl $(F^+(B))$.

(2) \Rightarrow (3): This is obvious since $\sigma_1 \sigma_2$ -Cl(V) = $(\sigma_1, \sigma_2)\theta$ -Cl(V) for every $\sigma_1 \sigma_2$ -open set V of Y.

 $(3) \Rightarrow (4)$: Let V be any $\sigma_1 \sigma_2$ -open set of Y. Then by (3), we have

$$X - \theta(\tau_1, \tau_2) \operatorname{-sInt}(F^-(\sigma_1 \sigma_2 \operatorname{-Cl}(V))) = \theta(\tau_1, \tau_2) \operatorname{-sCl}(X - F^-(\sigma_1 \sigma_2 \operatorname{-Cl}(V)))$$
$$= \theta(\tau_1, \tau_2) \operatorname{-sCl}(F^+(Y - \sigma_1 \sigma_2 \operatorname{-Cl}(V)))$$
$$\subseteq F^+(\sigma_1 \sigma_2 \operatorname{-Cl}(Y - \sigma_1 \sigma_2 \operatorname{-Cl}(V)))$$
$$\subseteq F^+(\sigma_1 \sigma_2 \operatorname{-Cl}(Y - V))$$
$$= F^+(Y - V)$$
$$= X - F^-(V)$$

and hence $F^{-}(V) \subseteq \theta(\tau_1, \tau_2)$ -sInt $(F^{-}(\sigma_1 \sigma_2$ -Cl(V))).

(4) \Rightarrow (1): Let $x \in X$ and V be any $\sigma_1 \sigma_2$ -open set of Y such that $F(x) \cap V \neq \emptyset$. By (4), $x \in F^-(V) \subseteq \theta(\tau_1, \tau_2)$ -sInt $(F^-(\sigma_1 \sigma_2 - \operatorname{Cl}(V)))$. Then, there exists a (τ_1, τ_2) s-open set U of X containing x such that (τ_1, τ_2) -sCl $(U) \subseteq F^-(\sigma_1 \sigma_2 - \operatorname{Cl}(V))$; hence

$$\sigma_1 \sigma_2 \text{-} \operatorname{Cl}(V) \cap F(z) \neq \emptyset$$

for every $z \in (\tau_1, \tau_2)$ -sCl(U). This shows that F is lower quasi $\theta(\tau_1, \tau_2)$ -continuous.

(2) \Rightarrow (5): Let A be any subset of X. By replacing B in (2) by F(A), we have $\theta(\tau_1, \tau_2)$ -sCl $(A) \subseteq \theta(\tau_1, \tau_2)$ -sCl $(F^+(F(A))) \subseteq F^+((\sigma_1, \sigma_2)\theta$ -Cl(F(A))). Thus,

$$F(\theta(\tau_1, \tau_2)\operatorname{-sCl}(A)) \subseteq (\sigma_1, \sigma_2)\theta\operatorname{-Cl}(F(A)).$$

(5) \Rightarrow (2): Let *B* be any subset of *Y*. Replacing *A* in (5) by $F^+(B)$, we have $F(\theta(\tau_1, \tau_2)\text{-sCl}(F^+(B))) \subseteq (\sigma_1, \sigma_2)\theta\text{-Cl}(F(F^+(B))) \subseteq (\sigma_1, \sigma_2)\theta\text{-Cl}(B)$ and hence

$$\theta(\tau_1, \tau_2)$$
-sCl $(F^+(B)) \subseteq F^+((\sigma_1, \sigma_2)\theta$ -Cl $(B))$

(3) \Rightarrow (6): Let *B* be any subset of *Y*. Put $V = \sigma_1 \sigma_2$ -Int $((\sigma_1, \sigma_2)\theta$ -Cl(B)) in (3). Then, since $(\sigma_1, \sigma_2)\theta$ -Cl(B) is $\sigma_1 \sigma_2$ -closed in *Y*, we have

$$\theta(\tau_1, \tau_2) \operatorname{sCl}(F^+(\sigma_1 \sigma_2 \operatorname{-Int}((\sigma_1, \sigma_2)\theta \operatorname{-Cl}(B)))) \subseteq F^+(\sigma_1 \sigma_2 \operatorname{-Cl}(\sigma_1 \sigma_2 \operatorname{-Int}((\sigma_1, \sigma_2)\theta \operatorname{-Cl}(B)))) \subseteq F^+((\sigma_1, \sigma_2)\theta \operatorname{-Cl}(B)).$$

(6) \Rightarrow (7): This is obvious since $\sigma_1 \sigma_2$ -Cl(V) = $(\sigma_1, \sigma_2)\theta$ -Cl(V) for every $\sigma_1 \sigma_2$ -open set V of Y.

 $(7) \Rightarrow (8)$: Let K be any $(\sigma_1, \sigma_2)r$ -closed set of Y. Then by (7), we have

$$\theta(\tau_1, \tau_2) \operatorname{sCl}(F^+(\sigma_1 \sigma_2 \operatorname{-Int}(K))) = \theta(\tau_1, \tau_2) \operatorname{sCl}(F^+(\sigma_1 \sigma_2 \operatorname{-Int}(\sigma_1 \sigma_2 \operatorname{-Cl}(\sigma_1 \sigma_2 \operatorname{-Int}(K)))))$$
$$\subseteq F^+(\sigma_1 \sigma_2 \operatorname{-Cl}(\sigma_1 \sigma_2 \operatorname{-Int}(K)))$$
$$= F^+(K).$$

(8) \Rightarrow (9): Let K be any $\sigma_1 \sigma_2$ -closed set of Y. Then, $\sigma_1 \sigma_2$ -Cl $(\sigma_1 \sigma_2$ -Int(K)) is $(\sigma_1, \sigma_2)r$ -closed in Y and by (8),

$$\theta(\tau_1, \tau_2) \operatorname{sCl}(F^+(\sigma_1 \sigma_2 \operatorname{-Int}(K))) = \theta(\tau_1, \tau_2) \operatorname{sCl}(F^+(\sigma_1 \sigma_2 \operatorname{-Int}(\sigma_1 \sigma_2 \operatorname{-Int}(K)))))$$
$$\subseteq F^+(\sigma_1 \sigma_2 \operatorname{-Cl}(\sigma_1 \sigma_2 \operatorname{-Int}(K)))$$
$$\subseteq F^+(K).$$

(9) \Rightarrow (4): Let V be any $\sigma_1 \sigma_2$ -open set of Y. Then, Y - V is $\sigma_1 \sigma_2$ -closed in Y and by (9), $\theta(\tau_1, \tau_2)$ -sCl $(F^+(\sigma_1 \sigma_2$ -Int $(Y - V))) \subseteq F^+(Y - V) = X - F^-(V)$. Moreover, we have

$$\theta(\tau_1, \tau_2) \operatorname{sCl}(F^+(\sigma_1 \sigma_2 \operatorname{-Int}(Y - V))) = \theta(\tau_1, \tau_2) \operatorname{sCl}(F^+(Y - \sigma_1 \sigma_2 \operatorname{-Cl}(V)))$$
$$= \theta(\tau_1, \tau_2) \operatorname{-sCl}(X - F^-(\sigma_1 \sigma_2 \operatorname{-Cl}(V)))$$
$$= X - \theta(\tau_1, \tau_2) \operatorname{-sInt}(F^-(\sigma_1 \sigma_2 \operatorname{-Cl}(V))).$$

Thus, $F^{-}(V) \subseteq \theta(\tau_1, \tau_2)$ -sInt $(F^{-}(\sigma_1 \sigma_2$ -Cl(V))).

Theorem 3. For a multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

- (1) F is upper quasi $\theta(\tau_1, \tau_2)$ -continuous;
- (2) $\theta(\tau_1, \tau_2)$ -sCl($F^-(\sigma_1\sigma_2$ -Int($\sigma_1\sigma_2$ -Cl(V)))) $\subseteq F^-(\sigma_1\sigma_2$ -Cl(V)) for every $(\sigma_1, \sigma_2)\beta$ -open set V of Y;
- (3) $\theta(\tau_1, \tau_2)$ -sCl($F^-(\sigma_1\sigma_2$ -Int($\sigma_1\sigma_2$ -Cl(V)))) $\subseteq F^-(\sigma_1\sigma_2$ -Cl(V)) for every (σ_1, σ_2) s-open set V of Y.

Proof. (1) \Rightarrow (2): Let V be any $(\sigma_1, \sigma_2)\beta$ -open set of Y. Then,

$$V \subseteq \sigma_1 \sigma_2 \operatorname{-Cl}(\sigma_1 \sigma_2 \operatorname{-Int}(\sigma_1 \sigma_2 \operatorname{-Cl}(V)))$$

and hence $\sigma_1 \sigma_2$ -Cl(V) = $\sigma_1 \sigma_2$ -Cl($\sigma_1 \sigma_2$ -Cl(V))). Since $\sigma_1 \sigma_2$ -Cl(V) is $(\sigma_1, \sigma_2)r$ closed in Y, by Theorem 1 we have

$$\theta(\tau_1, \tau_2)\operatorname{-sCl}(F^-(\sigma_1\sigma_2\operatorname{-Int}(\sigma_1\sigma_2\operatorname{-Cl}(V)))) \subseteq F^-(\sigma_1\sigma_2\operatorname{-Cl}(V)).$$

 $(2) \Rightarrow (3)$: The proof is obvious.

(3) \Rightarrow (1): Let V be any $\sigma_1 \sigma_2$ -open set of Y. Then, V is $(\sigma_1, \sigma_2)s$ -open in Y and by (3), $\theta(\tau_1, \tau_2)$ -sCl $(F^-(\sigma_1 \sigma_2$ -Cl $(V)))) \subseteq F^-(\sigma_1 \sigma_2$ -Cl(V)). Thus by Theorem 1, F is upper quasi $\theta(\tau_1, \tau_2)$ -continuous.

Theorem 4. For a multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

- (1) F is lower quasi $\theta(\tau_1, \tau_2)$ -continuous;
- (2) $\theta(\tau_1, \tau_2)$ -sCl(F⁺($\sigma_1 \sigma_2$ -Int($\sigma_1 \sigma_2$ -Cl(V)))) \subseteq F⁺($\sigma_1 \sigma_2$ -Cl(V)) for every (σ_1, σ_2) β -open set V of Y;
- (3) $\theta(\tau_1, \tau_2)$ -sCl($F^+(\sigma_1\sigma_2$ -Int($\sigma_1\sigma_2$ -Cl(V)))) $\subseteq F^+(\sigma_1\sigma_2$ -Cl(V)) for every (σ_1, σ_2) s-open set V of Y.

Proof. The proof is similar to that of Theorem 3.

Theorem 5. For a multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

- (1) F is upper quasi $\theta(\tau_1, \tau_2)$ -continuous;
- (2) $\theta(\tau_1, \tau_2)$ -sCl($F^-(\sigma_1\sigma_2$ -Int($\sigma_1\sigma_2$ -Cl(V)))) $\subseteq F^-(\sigma_1\sigma_2$ -Cl(V)) for every (σ_1, σ_2) p-open set V of Y;
- (3) $\theta(\tau_1, \tau_2)$ -sCl(F⁻(V)) \subseteq F⁻($\sigma_1 \sigma_2$ -Cl(V)) for every (σ_1, σ_2)p-open set V of Y;

$$9 \text{ of } 16$$

(4) $F^+(V) \subseteq \theta(\tau_1, \tau_2)$ -sInt $(F^+(\sigma_1 \sigma_2 - Cl(V)))$ for every (σ_1, σ_2) p-open set V of Y.

Proof. (1) \Rightarrow (2): Let V be any $(\sigma_1, \sigma_2)p$ -open set of Y. Since $\sigma_1\sigma_2$ -Int $(\sigma_1\sigma_2$ -Cl(V)) is a $\sigma_1\sigma_2$ -open set of Y, by Theorem 3 we have

$$\theta(\tau_1, \tau_2) \operatorname{-sCl}(F^-(\sigma_1 \sigma_2 \operatorname{-Int}(\sigma_1 \sigma_2 \operatorname{-Cl}(V)))) \subseteq F^-(\sigma_1 \sigma_2 \operatorname{-Cl}(\sigma_1 \sigma_2 \operatorname{-Int}(\sigma_1 \sigma_2 \operatorname{-Cl}(V)))) = F^-(\sigma_1 \sigma_2 \operatorname{-Cl}(V)).$$

(2) \Rightarrow (3): Let V be any $(\sigma_1, \sigma_2)p$ -open set of Y. Then, $V \subseteq \sigma_1 \sigma_2$ -Int $(\sigma_1 \sigma_2$ -Cl(V)) and by (2),

$$\theta(\tau_1, \tau_2)\operatorname{-sCl}(F^-(V)) \subseteq \theta(\tau_1, \tau_2)\operatorname{-sCl}(F^-(\sigma_1\sigma_2\operatorname{-Int}(\sigma_1\sigma_2\operatorname{-Cl}(V)))) \\ \subseteq F^-(\sigma_1\sigma_2\operatorname{-Cl}(V)).$$

 $(3) \Rightarrow (4)$: Let V be any $(\sigma_1, \sigma_2)p$ -open set of Y. Then by (3), we have

$$X - \theta(\tau_1, \tau_2) \operatorname{-sInt}(F^+(\sigma_1 \sigma_2 \operatorname{-Cl}(V))) = \theta(\tau_1, \tau_2) \operatorname{-sCl}(X - F^+(\sigma_1 \sigma_2 \operatorname{-Cl}(V)))$$
$$= \theta(\tau_1, \tau_2) \operatorname{-sCl}(F^-(Y - \sigma_1 \sigma_2 \operatorname{-Cl}(V)))$$
$$\subseteq F^-(\sigma_1 \sigma_2 \operatorname{-Cl}(Y - \sigma_1 \sigma_2 \operatorname{-Cl}(V)))$$
$$= X - F^+(\sigma_1 \sigma_2 \operatorname{-Int}(\sigma_1 \sigma_2 \operatorname{-Cl}(V)))$$
$$\subseteq X - F^+(V)$$

and hence $F^+(V) \subseteq \theta(\tau_1, \tau_2)$ -sInt $(F^+(\sigma_1 \sigma_2$ -Cl(V))).

(4) \Rightarrow (1): Let V be any $\sigma_1 \sigma_2$ -open set of Y. Then, V is $(\sigma_1, \sigma_2)p$ -open in Y and by (4), we have $F^+(V) \subseteq \theta(\tau_1, \tau_2)$ -sInt $(F^+(\sigma_1 \sigma_2$ -Cl(V))). By Theorem 1, F is upper quasi $\theta(\tau_1, \tau_2)$ -continuous.

Theorem 6. For a multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

- (1) F is lower quasi $\theta(\tau_1, \tau_2)$ -continuous;
- (2) $\theta(\tau_1, \tau_2)$ -sCl($F^+(\sigma_1\sigma_2$ -Int($\sigma_1\sigma_2$ -Cl(V)))) $\subseteq F^+(\sigma_1\sigma_2$ -Cl(V)) for every (σ_1, σ_2) p-open set V of Y;
- (3) $\theta(\tau_1, \tau_2)$ -sCl(F⁺(V)) \subseteq F⁺($\sigma_1 \sigma_2$ -Cl(V)) for every (σ_1, σ_2)p-open set V of Y;
- (4) $F^{-}(V) \subseteq \theta(\tau_1, \tau_2)$ -sInt $(F^{-}(\sigma_1 \sigma_2 Cl(V)))$ for every (σ_1, σ_2) p-open set V of Y.

Proof. The proof is similar to that of Theorem 5.

Recall that a bitopological space (X, τ_1, τ_2) is said to be $\tau_1 \tau_2$ -compact [30] if every cover of X by $\tau_1 \tau_2$ -open sets of X has a finite subcover. A bitopological space (X, τ_1, τ_2) is said to be quasi (τ_1, τ_2) - \mathscr{H} -closed [64] if every $\tau_1 \tau_2$ -open cover $\{U_{\gamma} \mid \gamma \in \Gamma\}$, there exists a finite subset Γ_0 of Γ such that $X = \bigcup \{\tau_1 \tau_2 \operatorname{-Cl}(U_{\gamma}) \mid \gamma \in \Gamma_0\}$. **Definition 3.** A bitopological space (X, τ_1, τ_2) is called $s \cdot (\tau_1, \tau_2)$ -closed if every $(\tau_1, \tau_2)s$ open cover $\{U_{\gamma} \mid \gamma \in \Gamma\}$, there exists a finite subset Γ_0 of Γ such that

$$X = \bigcup \{ (\tau_1, \tau_2) \text{-} sCl(U_\gamma) \mid \gamma \in \Gamma_0 \}.$$

Theorem 7. Let $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be an upper quasi $\theta(\tau_1, \tau_2)$ -continuous surjective multifunction such that F(x) is $\sigma_1\sigma_2$ -compact for each $x \in X$. If (X, τ_1, τ_2) is $s \cdot (\tau_1, \tau_2)$ -closed, then (Y, σ_1, σ_2) is quasi (σ_1, σ_2) - \mathscr{H} -closed.

Proof. Let $\{V_{\gamma} \mid \gamma \in \Gamma\}$ be any $\sigma_1 \sigma_2$ -open cover of Y. For each $x \in X$, F(x) is $\sigma_1 \sigma_2$ compact and there exists a finite subset $\Gamma(x)$ of Γ such that $F(x) \subseteq \cup \{V_{\gamma} \mid \gamma \in \Gamma(x)\}$. Put $V(x) = \cup \{V_{\gamma} \mid \gamma \in \Gamma(x)\}$. Then, $F(x) \subseteq V(x)$ and V(x) is $\sigma_1 \sigma_2$ -open in Y. Since Fis upper quasi $\theta(\tau_1, \tau_2)$ -continuous, there exists a $(\tau_1, \tau_2)s$ -open set U(x) of X containing x such that $F((\tau_1, \tau_2)$ -sCl $(U(x))) \subseteq \sigma_1 \sigma_2$ -Cl(V(x)). The family $\{U(x) \mid x \in X\}$ is a $(\tau_1, \tau_2)s$ -open cover of X. Since (X, τ_1, τ_2) is s- (τ_1, τ_2) -closed, there exists a finite number
of points, says, $x_1, x_2, ..., x_n$ in X such that $X = \cup \{(\tau_1, \tau_2)\text{-sCl}(U(x_i)) \mid i = 1, 2, ..., n\}$.
Since F is surjective,

$$Y = F(X) = F(\bigcup_{i=1}^{n} (\tau_1, \tau_2) \operatorname{sCl}(U(x_i)))$$
$$= \bigcup_{i=1}^{n} F((\tau_1, \tau_2) \operatorname{sCl}(U(x_i)))$$
$$\subseteq \bigcup_{i=1}^{n} \sigma_1 \sigma_2 \operatorname{-Cl}(V(x_i))$$
$$= \bigcup_{i=1}^{n} \cup_{\gamma \in \Gamma(x_i)} \sigma_1 \sigma_2 \operatorname{-Cl}(V_{\gamma}).$$

This shows that (Y, σ_1, σ_2) is quasi (σ_1, σ_2) - \mathscr{H} -closed.

For a multifunction $F: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, a multifunction

$$\mathrm{sCl}F_{\circledast}: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$$

is defined in [31] as follows: $sClF_{\circledast}(x) = (\sigma_1, \sigma_2) - sCl(F(x))$ for each $x \in X$.

Lemma 3. Let $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a multifunction. Then, $sClF^-_{\circledast}(V) = F^-(V)$ for ever $(\sigma_1, \sigma_2)s$ -open set V of Y.

Proof. Let V be any (σ_1, σ_2) s-open set of Y. Let $x \in \mathrm{sCl}F^-_{\circledast}(V)$. Then,

$$(\sigma_1, \sigma_2)$$
-sCl $(F(x)) \cap V$ = sCl $F_{\circledast}(x) \cap V \neq \emptyset$.

Since V is $(\sigma_1, \sigma_2)s$ -open in Y, we have $V \cap F(x) \neq \emptyset$ and hence $x \in F^-(V)$. Thus, $\mathrm{sCl}F^-_{\circledast}(V) \subseteq F^-(V)$. On the other hand, let $x \in F^-(V)$. Then,

$$\emptyset \neq F(x) \cap V \subseteq (\sigma_1, \sigma_2) \text{-sCl}(F(x)) \cap V$$

and so $x \in \mathrm{sCl}F^-_{\circledast}(V)$. Consequently, we obtain $\mathrm{sCl}F^-_{\circledast}(V) = F^-(V)$.

Theorem 8. A multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is lower quasi $\theta(\tau_1, \tau_2)$ -continuous if and only if $sClF_{\circledast} : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is lower quasi $\theta(\tau_1, \tau_2)$ -continuous.

Proof. Suppose that F is lower quasi $\theta(\tau_1, \tau_2)$ -continuous. Let $x \in X$ and V be any $\sigma_1\sigma_2$ -open set of Y such that $\mathrm{sCl}F_{\circledast}(x) \cap V \neq \emptyset$. By Lemma 3, we have $F(x) \cap V \neq \emptyset$. Since F is lower quasi $\theta(\tau_1, \tau_2)$ -continuous, there exists a $(\tau_1, \tau_2)s$ -open set of X containing x such that $\sigma_1\sigma_2$ -Cl(V) $\cap F(z) \neq \emptyset$ for every $z \in (\tau_1, \tau_2)$ -sCl(U). Since $\sigma_1\sigma_2$ -Cl(V) is $(\sigma_1, \sigma_2)s$ -open in Y, by Lemma 3 we have (τ_1, τ_2) -sCl(U) $\subseteq F^-(\sigma_1\sigma_2$ -Cl(V)) = sCl $F_{\circledast}^-(\sigma_1\sigma_2$ -Cl(V)) and hence sCl $F_{\circledast}(z) \cap \sigma_1\sigma_2$ -Cl(V) $\neq \emptyset$ for every $z \in (\tau_1, \tau_2)$ -sCl(U). This shows that sCl F_{\circledast} is lower quasi $\theta(\tau_1, \tau_2)$ -continuous.

Conversely, suppose that $\mathrm{sCl}F_{\circledast}$ is lower quasi $\theta(\tau_1, \tau_2)$ -continuous. Let $x \in X$ and V be any $\sigma_1\sigma_2$ -open set of Y such that $F(x) \cap V \neq \emptyset$. Then, (σ_1, σ_2) -sCl $(F(x)) \cap V \neq \emptyset$. Since $\mathrm{sCl}F_{\circledast}$ is lower quasi $\theta(\tau_1, \tau_2)$ -continuous, there exists a (τ_1, τ_2) -sopen set of X containing x such that $\mathrm{sCl}F_{\circledast}(z) \cap \sigma_1\sigma_2$ -Cl $(V) \neq \emptyset$ for every $z \in (\tau_1, \tau_2)$ -sCl(U). Since $\sigma_1\sigma_2$ -Cl(V) is (σ_1, σ_2) -sopen in Y, by Lemma 3

$$(\tau_1, \tau_2)\operatorname{-sCl}(U) \subseteq \operatorname{sCl}F^-_{\circledast}(\sigma_1\sigma_2\operatorname{-Cl}(V)) = F^-(\sigma_1\sigma_2\operatorname{-Cl}(V))$$

and hence $\sigma_1 \sigma_2$ -Cl(V) $\cap F(z) \neq \emptyset$ for every $z \in (\tau_1, \tau_2)$ -sCl(U). Thus, F is lower quasi $\theta(\tau_1, \tau_2)$ -continuous.

Definition 4. [30] A subset A of a bitopological space (X, τ_1, τ_2) is said to be:

- (1) $\tau_1\tau_2$ -paracompact if every cover of A by $\tau_1\tau_2$ -open sets of X is refined by a cover of A which consists of $\tau_1\tau_2$ -open sets of X and is $\tau_1\tau_2$ -locally finite in X;
- (2) $\tau_1\tau_2$ -regular if for each $x \in A$ and each $\tau_1\tau_2$ -open set U of X containing x, there exists a $\tau_1\tau_2$ -open set V of X such that $x \in V \subseteq \tau_1\tau_2$ - $Cl(V) \subseteq U$.

Lemma 4. [30] If A is a $\tau_1\tau_2$ -regular $\tau_1\tau_2$ -paracompact set of a bitopological space (X, τ_1, τ_2) and U is a $\tau_1\tau_2$ -open neighborhood of A, then there exists a $\tau_1\tau_2$ -open set V of X such that $A \subseteq V \subseteq \tau_1\tau_2$ -Cl(V) $\subseteq U$.

Lemma 5. If $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is a multifunction such that F(x) is $\tau_1\tau_2$ -regular and $\tau_1\tau_2$ -paracompact for each $x \in X$, then $sClF^+_{\circledast}(V) = F^+(V)$ for each $\sigma_1\sigma_2$ -open set Vof Y.

Proof. Let V be any $\sigma_1 \sigma_2$ -open set of Y and $x \in \mathrm{sCl}F^+_{\circledast}(V)$. Then, $\mathrm{sCl}F^+_{\circledast}(x) \subseteq V$ and $F(x) \subseteq (\sigma_1, \sigma_2)$ -sCl $(F(x)) = \mathrm{sCl}F^+_{\circledast}(x) \subseteq V$. Thus, $x \in F^+(V)$ and hence

$$\mathrm{sCl}F^+_{\circledast}(V) \subseteq F^+(V).$$

On the other hand, let $x \in F^+(V)$. Then, $F(x) \subseteq V$ and by Lemma 5, there exists a $\sigma_1 \sigma_2$ -open set W of Y such that $F(x) \subseteq W \subseteq \sigma_1 \sigma_2$ -Cl $(W) \subseteq V$; hence

$$\operatorname{sCl}F^+_{\circledast}(x) = (\sigma_1, \sigma_2)\operatorname{-sCl}(F(x)) \subseteq \sigma_1\sigma_2\operatorname{-Cl}(W) \subseteq V.$$

Thus, $x \in \mathrm{sCl}F^+_{\circledast}(V)$ and so $F^+(V) \subseteq \mathrm{sCl}F^+_{\circledast}(V)$. Therefore, $F^+(V) = \mathrm{sCl}F^+_{\circledast}(V)$.

Theorem 9. Let $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a multifunction such that F(x) is $\sigma_1 \sigma_2$ paracompact and $\sigma_1 \sigma_2$ -regular for each $x \in X$. Then, F is upper quasi $\theta(\tau_1, \tau_2)$ -continuous
if and only if $sClF_{\circledast} : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is upper quasi $\theta(\tau_1, \tau_2)$ -continuous.

Proof. Suppose that F is upper quasi $\theta(\tau_1, \tau_2)$ -continuous. It follows from Theorem 1 and Lemma 5 that for every $\sigma_1 \sigma_2$ -open set V of Y,

$$sClF^+_{\circledast}(V) = F^+(V) \subseteq \theta(\tau_1, \tau_2) \cdot sInt(F^+(\sigma_1\sigma_2 - Cl(V)))$$
$$= \theta(\tau_1, \tau_2) \cdot sInt(sClF^+_{\circledast}(\sigma_1\sigma_2 - Cl(V))).$$

By Theorem 1, $sClF_{\circledast}$ is upper quasi $\theta(\tau_1, \tau_2)$ -continuous.

Conversely, suppose that $\mathrm{sCl}F_{\circledast}$ is upper quasi $\theta(\tau_1, \tau_2)$ -continuous. It follows from Theorem 1 and Lemma 5 that for every $\sigma_1\sigma_2$ -open set V of Y,

$$F^{+}(V) = \operatorname{sCl} F^{+}_{\circledast}(V) \subseteq \theta(\tau_{1}, \tau_{2}) \operatorname{sInt}(\operatorname{sCl} F^{+}_{\circledast}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(V)))$$
$$= \theta(\tau_{1}, \tau_{2}) \operatorname{sInt}(F^{+}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(V))).$$

Thus by Theorem 1, F is upper quasi $\theta(\tau_1, \tau_2)$ -continuous.

Acknowledgements

This research project was financially supported by Mahasarakham University.

References

- S. P. Arya and M. P. Bhamini. Some weaker forms of semi-continuous functions. Ganita, 33:124–134, 1982.
- [2] C. Boonpok. Almost (g, m)-continuous functions. International Journal of Mathematical Analysis, 4(40):1957–1964, 2010.
- C. Boonpok. M-continuous functions in biminimal structure spaces. Far East Journal of Mathematical Sciences, 43(1):41–58, 2010.
- [4] C. Boonpok. On continuous multifunctions in ideal topological spaces. Lobachevskii Journal of Mathematics, 40(1):24–35, 2019.
- [5] C. Boonpok. On characterizations of *-hyperconnected ideal topological spaces. Journal of Mathematics, 2020:9387601, 2020.
- [6] C. Boonpok. $(\tau_1, \tau_2)\delta$ -semicontinuous multifunctions. *Heliyon*, 6:e05367, 2020.
- [7] C. Boonpok. Weak quasi continuity for multifunctions in ideal topological spaces. Advances in Mathematics: Scientific Journal, 9(1):339–355, 2020.
- [8] C. Boonpok. Upper and lower $\beta(\star)$ -continuity. *Heliyon*, 7:e05986, 2021.
- [9] C. Boonpok. On some closed sets and low separation axioms via topological ideals. European Journal of Pure and Applied Mathematics, 15(3):1023–1046, 2022.
- [10] C. Boonpok. $\theta(\star)$ -quasi continuity for multifunctions. WSEAS Transactions on Mathematics, 21:245–251, 2022.

- [11] C. Boonpok. On some spaces via topological ideals. Open Mathematics, 21:20230118, 2023.
- [12] C. Boonpok. $\theta(\star)$ -precontinuity. *Mathematica*, 65(1):31–42, 2023.
- [13] C. Boonpok and J. Khampakdee. (Λ, sp) -open sets in topological spaces. European Journal of Pure and Applied Mathematics, 15(2):572–588, 2022.
- [14] C. Boonpok and J. Khampakdee. On almost $\alpha(\Lambda, sp)$ -continuous multifunctions. European Journal of Pure and Applied Mathematics, 15(2):626–634, 2022.
- [15] C. Boonpok and J. Khampakdee. Slight (Λ, sp) -continuity and Λ_{sp} -extremally disconnectedness. European Journal of Pure and Applied Mathematics, 15(3):1180–1188, 2022.
- [16] C. Boonpok and J. Khampakdee. Upper and lower weak sβ(*)-continuity. European Journal of Pure and Applied Mathematics, 16(4):2544–2556, 2023.
- [17] C. Boonpok and J. Khampakdee. Almost strong $\theta(\Lambda, p)$ -continuity for functions. European Journal of Pure and Applied Mathematics, 17(1):300–309, 2024.
- [18] C. Boonpok and J. Khampakdee. Upper and lower α-*-continuity. European Journal of Pure and Applied Mathematics, 17(1):201–211, 2024.
- [19] C. Boonpok and C. Klanarong. On weakly (τ_1, τ_2) -continuous functions. European Journal of Pure and Applied Mathematics, 17(1):416–425, 2024.
- [20] C. Boonpok and P. Pue-on. Continuity for multifunctions in ideal topological spaces. WSEAS Transactions on Mathematics, 19:624–631, 2020.
- [21] C. Boonpok and P. Pue-on. Upper and lower sβ(*)-continuous multifunctions. European Journal of Pure and Applied Mathematics, 16(3):1634–1646, 2023.
- [22] C. Boonpok and P. Pue-on. Upper and lower weakly α-*-continuous multifunctions. International Journal of Analysis and Applications, 21:90, 2023.
- [23] C. Boonpok and P. Pue-on. Upper and lower weakly (Λ, sp) -continuous multifunctions. European Journal of Pure and Applied Mathematics, 16(2):1047–1058, 2023.
- [24] C. Boonpok and P. Pue-on. Characterizations of almost (τ_1, τ_2) -continuous functions. International Journal of Analysis and Applications, 22:33, 2024.
- [25] C. Boonpok and N. Srisarakham. Almost α-*-continuity for multifunctions. International Journal of Analysis and Applications, 21:107, 2023.
- [26] C. Boonpok and N. Srisarakham. Weak forms of (Λ, b) -open sets and weak (Λ, b) continuity. European Journal of Pure and Applied Mathematics, 16(1):29–43, 2023.
- [27] C. Boonpok and N. Srisarakham. (τ_1, τ_2) -continuity for functions. Asia Pacific Journal of Mathematics, 11:21, 2024.
- [28] C. Boonpok and M. Thongmoon. Weak $\alpha(\Lambda, sp)$ -continuity for multifunctions. European Journal of Pure and Applied Mathematics, 16(1):465–478, 2023.
- [29] C. Boonpok and C. Viriyapong. Upper and lower almost weak (τ_1, τ_2) -continuity. European Journal of Pure and Applied Mathematics, 14(4):1212–1225, 2021.
- [30] C. Boonpok, C. Viriyapong, and M. Thongmoon. On upper and lower (τ_1, τ_2) precontinuous multifunctions. Journal of Mathematics and Computer Science,
 18:282–293, 2018.
- [31] M. Chiangpradit, A. Sama-Ae, and C. Boonpok. Almost nearly quasi (τ_1, τ_2) continuous multifunctions. (accepted).

- [32] M. Chiangpradit, S. Sompong, and C. Boonpok. Weakly quasi (τ_1, τ_2) -continuous functions. International Journal of Analysis and Applications, 22:125, 2024.
- [33] T. Duangphui, C. Boonpok, and C. Viriyapong. Continuous functions on bigeneralized topological spaces. *International Journal of Mathematical Analysis*, 5(24):1165– 1174, 2011.
- [34] T. Dungthaisong, C. Boonpok, and C. Viriyapong. Generalized closed sets in bigeneralized topological spaces. *International Journal of Mathematical Analysis*, 5(24):1175–1184, 2011.
- [35] M. E. Abd El-Monsef, S. N. El-Deeb, and R. A. Mahmoud. β-open sets and βcontinuous mappings. Bulletin of the Faculty of Science, Assiut University, 12:77–90, 1983.
- [36] S. Jafari and T. Noiri. Properties of θ-continuous functions. Journal of Institute of Mathematics and Computer Science, Mathematics Series, 13:123–128, 2000.
- [37] J. Khampakdee and C. Boonpok. Upper and lower $\alpha(\Lambda, sp)$ -continuous multifunctions. WSEAS Transactions on Mathematics, 21:684–690, 2022.
- [38] J. Khampakdee, S. Sompong, and C. Boonpok. c- (τ_1, τ_2) -continuity for multifunctions. European Journal of Pure and Applied Mathematics, 17(3):2289–2299, 2024.
- [39] C. Klanarong, S. Sompong, and C. Boonpok. Upper and lower almost (τ_1, τ_2) continuous multifunctions. European Journal of Pure and Applied Mathematics, 17(2):1244–1253, 2024.
- [40] B. Kong-ied, S. Sompong, and C. Boonpok. Almost quasi (τ_1, τ_2) -continuous functions. Asia Pacific Journal of Mathematics, 11:64, 2024.
- [41] N. Levine. A decomposition of continuity in topological spaces. The American Mathematical Monthly, 60:44–46, 1961.
- [42] N. Levine. Semi-open sets and semi-continuity in topological spaces. The American Mathematical Monthly, 70:36–41, 1963.
- [43] S. Marcus. Sur les fonctions quasicontinues au sens de S. Kempisty. Colloquium Mathematicum, 8:47–53, 1961.
- [44] A. S. Mashhour, M. E. Abd El-Monsef, and S. N. El-Deeb. On precontinuous and weak precontinuous mappings. *Proceedings of the Mathematical and Physical Society* of Egypt, 53:47–53, 1982.
- [45] A. Neubrunnová. On certain generalizations of the notion of continuity. Matematický Časopis, 23:374–380, 1973.
- [46] O. Njåstad. On some classes of nearly open sets. Pacific Journal of Mathematics, 15:961–970, 1965.
- [47] T. Noiri. On θ-continuous functions. Indian Journal of Pure and Applied Mathematics, 21:410–415, 1990.
- [48] T. Noiri and V. Popa. Weakly quasi continuous multifunctions. Analele Universită ții din Timişoara, Seria Științe Matematice, 26:33–38, 1988.
- [49] T. Noiri and V. Popa. Some properties of upper and lower θ-quasicontinuous multifunctions. Demonstratio Mathematica, 38(1):223–234, 2005.
- [50] V. Popa. On a decomposition of quasicontinuity for multifunctions. Studii şi Cercetări Matematică, 27:323–328, 1975.

- [51] V. Popa. On the decompositions of the quasicontinuity in topological spaces. *Studii şi Cercetări Matematică*, 30:31–35, 1978.
- [52] V. Popa and T. Noiri. On θ-quasicontinuous multifunctions. Demonstratio Mathematica, 28:111–122, 1995.
- [53] V. Popa and T. Noiri. Almost quasi continuous multifunctions. Tatra Mountains Mathematical Publications, 14:81–90, 1998.
- [54] V. Popa and C. Stan. On a decomposition of quasicontinuity in topological spaces. Studii şi Cercetări Matematică, 25:41–43, 1973.
- [55] P. Pue-on and C. Boonpok. $\theta(\Lambda, p)$ -continuity for functions. International Journal of Mathematics and Computer Science, 19(2):491–495, 2024.
- [56] P. Pue-on, A. Sama-Ae, and C. Boonpok. *c*-quasi (τ_1, τ_2) -continuous multifunctions. European Journal of Pure and Applied Mathematics, 17(4):3242–3253, 2024.
- [57] P. Pue-on, S. Sompong, and C. Boonpok. Almost quasi (τ_1, τ_2) -continuity for multifunctions. International Journal of Analysis and Applications, 22:97, 2024.
- [58] P. Pue-on, S. Sompong, and C. Boonpok. Upper and lower (τ_1, τ_2) -continuous mulfunctions. International Journal of Mathematics and Computer Science, 19(4):1305– 1310, 2024.
- [59] P. Pue-on, S. Sompong, and C. Boonpok. Weakly quasi (τ_1, τ_2) -continuous multifunctions. European Journal of Pure and Applied Mathematics, 17(3):1553–1564, 2024.
- [60] N. Srisarakham and C. Boonpok. Almost (Λ, p) -continuous functions. International Journal of Mathematics and Computer Science, 18(2):255–259, 2023.
- [61] N. Srisarakham, A. Sama-Ae, and C. Boonpok. Characterizations of faintly (τ_1, τ_2) -continuous functions. European Journal of Pure and Applied Mathematics, 17(4):2753-2762, 2024.
- [62] M. Thongmoon and C. Boonpok. Upper and lower almost $\beta(\Lambda, sp)$ -continuous multifunctions. WSEAS Transactions on Mathematics, 21:844–853, 2022.
- [63] M. Thongmoon and C. Boonpok. Strongly $\theta(\Lambda, p)$ -continuous functions. International Journal of Mathematics and Computer Science, 19(2):475–479, 2024.
- [64] M. Thongmoon, S. Sompong, and C. Boonpok. Upper and lower weak (τ_1, τ_2) continuity. European Journal of Pure and Applied Mathematics, 17(3):1705–1716,
 2024.
- [65] N. V. Veličko. H-closed topological spaces. American Mathematical Society Translations, 78(2):102–118, 1968.
- [66] C. Viriyapong and C. Boonpok. $(\tau_1, \tau_2)\alpha$ -continuity for multifunctions. Journal of Mathematics, 2020:6285763, 2020.
- [67] C. Viriyapong and C. Boonpok. (Λ, sp)-continuous functions. WSEAS Transactions on Mathematics, 21:380–385, 2022.
- [68] C. Viriyapong and C. Boonpok. Weak quasi (Λ, sp) -continuity for multifunctions. International Journal of Mathematics and Computer Science, 17(3):1201–1209, 2022.
- [69] C. Viriyapong, S. Sompong, and C. Boonpok. Upper and lower slight (τ_1, τ_2) continuity. European Journal of Pure and Applied Mathematics, 17(3):2142–2154,
 2024.
- [70] N. Viriyapong, S. Sompong, and C. Boonpok. Slightly $(\tau_1, \tau_2)p$ -continuous multifunc-

tions. International Journal of Analysis and Applications, 22:152, 2024.

- [71] N. Viriyapong, S. Sompong, and C. Boonpok. (τ_1, τ_2) -extremal disconnectedness in bitopological spaces. International Journal of Mathematics and Computer Science, 19(3):855–860, 2024.
- [72] N. Viriyapong, S. Sompong, and C. Boonpok. Upper and lower s- $(\tau_1, \tau_2)p$ -continuous multifunctions. European Journal of Pure and Applied Mathematics, 17(3):2210–2220, 2024.