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Abstract. This paper presents new classes of multifunctions called upper quasi θ(τ1, τ2)-continuous
multifunctions and lower quasi θ(τ1, τ2)-continuous multifunctions. Furthermore, several charac-
terizations and some properties concerning upper quasi θ(τ1, τ2)-continuous multifunctions and
lower quasi θ(τ1, τ2)-continuous multifunctions are established.
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1. Introduction

Stronger and weaker forms of open sets in topological spaces such as semi-open sets
[42], preopen sets [44], α-open sets [46], β-open sets [35] and θ-open sets [65] play an
important role in the research of generalizations of continuity. Using these notions many
authors introduced and studied various types of generalizations of continuity for functions
and multifunctions. Levine [42] introduced and studied the notion of semi-continuous
functions. Arya and Bhamini [1] introduced the concept of θ-semi-continuity as a gener-
alization of semi-continuity. Noiri [47] and Jafari and Noiri [36] have further investigated
some characterizations of θ-semi-continuous functions. Marcus [43] introduced and inves-
tigated the notion of quasi continuous functions. Popa [51] introduced and studied the
notion of almost quasi continuous functions. Neubrunnovaá [45] showed that quasi conti-
nuity is equivalent to semi-continuity due to Levine [42]. Popa and Stan [54] introduced
and investigated the notion of weakly quasi continuous functions. Weak quasi continuity is
implied by quasi continuity and weak continuity [41] which are independent of each other.
Viriyapong and Boonpok [67] investigated some characterizations of (Λ, sp)-continuous
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functions by utilizing the notions of (Λ, sp)-open sets and (Λ, sp)-closed sets due to Boon-
pok and Khampakdee [13]. Dungthaisong et al. [34] introduced and studied the concept
of g(m,n)-continuous functions. Duangphui et al. [33] introduced and investigated the

notion of (µ, µ′)(m,n)-continuous functions. Moreover, several characterizations of almost
(Λ, p)-continuous functions, strongly θ(Λ, p)-continuous functions, almost strongly θ(Λ, p)-
continuous functions, θ(Λ, p)-continuous functions, weakly (Λ, b)-continuous functions,
θ(⋆)-precontinuous functions, (Λ, p(⋆))-continuous functions, ⋆-continuous functions, θ-I -
continuous functions, almost (g,m)-continuous functions, pairwise almost M -continuous
functions, (τ1, τ2)-continuous functions, almost (τ1, τ2)-continuous functions and weakly
(τ1, τ2)-continuous functions were presented in [60], [63], [17], [55], [26], [12], [9], [11], [5],
[2], [3], [27], [24] and [19], respectively. Srisarakham et al. [61] introduced and studied
the concept of faintly (τ1, τ2)-continuous functions. Kong-ied et al. [40] introduced and
investigated the notion of almost quasi (τ1, τ2)-continuous functions. Chiangpradit et al.
[32] introduced and studied the concept of weakly quasi (τ1, τ2)-continuous functions.

In 1975, Popa [50] extended the concept of quasicontinuous functions to the setting of
multifunctions. Furthermore, Popa and Noiri [53] introduced the concept of almost quasi
continuous multifunctions and investigated some characterizations of such multifunctions.
Noiri and Popa [48] introduced and studied the notion of weakly quasi continuous mul-
tifunctions. Popa and Noiri [52] introduced the notion of θ-quasicontinuous multifunc-
tions and investigated several further properties of such multifunctions. Moreover, several
characterizations and some properties concerning (τ1, τ2)δ-semicontinuous multifunctions,
almost weakly (τ1, τ2)-continuous multifunctions, weakly quasi (Λ, sp)-continuous mul-
tifunctions, ⋆-continuous multifunctions, β(⋆)-continuous multifunctions, α-⋆-continuous
multifunctions, almost α-⋆-continuous multifunctions, almost quasi ⋆-continuous multi-
functions, weakly α-⋆-continuous multifunctions, sβ(⋆)-continuous multifunctions, weakly
sβ(⋆)-continuous multifunctions, θ(⋆)-quasi continuous multifunctions, almost ı⋆-continuous
multifunctions, weakly (Λ, sp)-continuous multifunctions, α(Λ, sp)-continuous multifunc-
tions, almost α(Λ, sp)-continuous multifunctions, weakly α(Λ, sp)-continuous multifunc-
tions, almost β(Λ, sp)-continuous multifunctions, slightly (Λ, sp)-continuous multifunc-
tions, (τ1, τ2)-continuous multifunctions, almost (τ1, τ2)-continuous multifunctions, weakly
(τ1, τ2)-continuous multifunctions, weakly quasi (τ1, τ2)-continuous multifunctions, almost
quasi (τ1, τ2)-continuous multifunctions, c-(τ1, τ2)-continuous multifunctions and slightly
(τ1, τ2)p-continuous multifunctions were established in [6], [29], [68], [4], [8], [18], [25],
[7], [22], [21], [16], [10], [20], [23], [37], [14], [28], [62], [15], [58], [39], [64], [59], [57], [38]
and [70], respectively. Noiri and Popa [49] investigated some characterizations of upper
and lower θ-quasicontinuous multifunctions. Pue-on et al. [56] introduced and studied
the concept of c-quasi (τ1, τ2)-continuous multifunctions. Viriyapong et al. [72] intro-
duced and investigated the notion of s-(τ1, τ2)p-continuous multifunctions. Furthermore,
Viriyapong et al. [69] introduced and studied the concept of slightly (τ1, τ2)-continuous
multifunctions. In this paper, we introduce the notions of upper quasi θ(τ1, τ2)-continuous
multifunctions and lower quasi θ(τ1, τ2)-continuous multifunctions. We also investigate
several characterizations of upper quasi θ(τ1, τ2)-continuous multifunctions and lower quasi
θ(τ1, τ2)-continuous multifunctions.
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2. Preliminaries

Throughout the present paper, spaces (X, τ1, τ2) and (Y, σ1, σ2) (or simply X and
Y ) always mean bitopological spaces on which no separation axioms are assumed unless
explicitly stated. Let A be a subset of a bitopological space (X, τ1, τ2). The closure of A
and the interior of A with respect to τi are denoted by τi-Cl(A) and τi-Int(A), respectively,
for i = 1, 2. A subset A of a bitopological space (X, τ1, τ2) is called τ1τ2-closed [30] if
A = τ1-Cl(τ2-Cl(A)). The complement of a τ1τ2-closed set is called τ1τ2-open. Let A be
a subset of a bitopological space (X, τ1, τ2). The intersection of all τ1τ2-closed sets of X
containing A is called the τ1τ2-closure [30] of A and is denoted by τ1τ2-Cl(A). The union
of all τ1τ2-open sets of X contained in A is called the τ1τ2-interior [30] of A and is denoted
by τ1τ2-Int(A). A subset A of a bitopological space (X, τ1, τ2) is said to be τ1τ2-clopen [30]
if A is both τ1τ2-open and τ1τ2-closed. A subset A of a bitopological space (X, τ1, τ2) is
said to be (τ1, τ2)r-open [66] (resp. (τ1, τ2)s-open [6], (τ1, τ2)p-open [6], (τ1, τ2)β-open [6])
if A = τ1τ2-Int(τ1τ2-Cl(A)) (resp. A ⊆ τ1τ2-Cl(τ1τ2-Int(A)), A ⊆ τ1τ2-Int(τ1τ2-Cl(A)),
A ⊆ τ1τ2-Cl(τ1τ2-Int(τ1τ2-Cl(A)))). The complement of a (τ1, τ2)r-open (resp. (τ1, τ2)s-
open, (τ1, τ2)p-open, (τ1, τ2)β-open) set is called (τ1, τ2)r-closed (resp. (τ1, τ2)s-closed,
(τ1, τ2)p-closed, (τ1, τ2)β-closed). A subset A of a bitopological space (X, τ1, τ2) is said
to be α(τ1, τ2)-open [71] if A ⊆ τ1τ2-Int(τ1τ2-Cl(τ1τ2-Int(A))). The complement of an
α(τ1, τ2)-open set is said to be α(τ1, τ2)-closed.

Let A be a subset of a bitopological space (X, τ1, τ2). A point x ∈ X is called a
(τ1, τ2)θ-cluster point [66] of A if τ1τ2-Cl(U)∩A ̸= ∅ for every τ1τ2-open set U containing
x. The set of all (τ1, τ2)θ-cluster points of A is called the (τ1, τ2)θ-closure [66] of A and
is denoted by (τ1, τ2)θ-Cl(A). A subset A of a bitopological space (X, τ1, τ2) is said to be
(τ1, τ2)θ-closed [66] if (τ1, τ2)θ-Cl(A) = A. The complement of a (τ1, τ2)θ-closed set is said
to be (τ1, τ2)θ-open. The union of all (τ1, τ2)θ-open sets of X contained in A is called the
(τ1, τ2)θ-interior [66] of A and is denoted by (τ1, τ2)θ-Int(A).

Lemma 1. [66] For a subset A of a bitopological space (X, τ1, τ2), the following properties
hold:

(1) If A is τ1τ2-open in X, then τ1τ2-Cl(A) = (τ1, τ2)θ-Cl(A).

(2) (τ1, τ2)θ-Cl(A) is τ1τ2-closed in X.

Let A be a subset of a bitopological space (X, τ1, τ2). A point x ∈ X is called a
θ(τ1, τ2)s-cluster point of A if (τ1, τ2)-sCl(U) ∩ A ̸= ∅ for every (τ1, τ2)s-open set U con-
taining x. The set of all θ(τ1, τ2)s-cluster points of A is called the θ(τ1, τ2)s-closure of A
and is denoted by θ(τ1, τ2)-sCl(A). A subset A of a bitopological space (X, τ1, τ2) is said
to be θ(τ1, τ2)s-closed if θ(τ1, τ2)-sCl(A) = A. The complement of a θ(τ1, τ2)s-closed set
is said to be θ(τ1, τ2)s-open. The union of all θ(τ1, τ2)s-open sets of X contained in A is
called the θ(τ1, τ2)s-interior of A and is denoted by θ(τ1, τ2)-sInt(A).

By a multifunction F : X → Y , we mean a point-to-set correspondence from X into Y ,
and always assume that F (x) ̸= ∅ for all x ∈ X. For a multifunction F : X → Y , we shall
denote the upper and lower inverse of a set B of Y by F+(B) and F−(B), respectively,
that is, F+(B) = {x ∈ X | F (x) ⊆ B} and F−(B) = {x ∈ X | F (x) ∩B ̸= ∅}.
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3. Upper and lower quasi θ(τ1, τ2)-continuous multifunctions

In this section, we introduce the notions of upper quasi θ(τ1, τ2)-continuous multi-
functions and lower quasi θ(τ1, τ2)-continuous multifunctions. Moreover, several charac-
terizations of upper quasi θ(τ1, τ2)-continuous multifunctions and lower quasi θ(τ1, τ2)-
continuous multifunctions are discussed.

Definition 1. A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is said to be upper quasi
θ(τ1, τ2)-continuous if for each x ∈ X and each σ1σ2-open set V of Y containing F (x),
there exists a (τ1, τ2)s-open set U of X containing x such that F ((τ1, τ2)-sCl(U)) ⊆
σ1σ2-Cl(V ).

Theorem 1. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following properties are
equivalent:

(1) F is upper quasi θ(τ1, τ2)-continuous;

(2) θ(τ1, τ2)-sCl(F
−(σ1σ2-Int((σ1, σ2)θ-Cl(B)))) ⊆ F−((σ1, σ2)θ-Cl(B)) for every subset

B of Y ;

(3) θ(τ1, τ2)-sCl(F
−(σ1σ2-Int(σ1σ2-Cl(V )))) ⊆ F−(σ1σ2-Cl(V )) for every σ1σ2-open set

V of Y ;

(4) θ(τ1, τ2)-sCl(F
−(σ1σ2-Int(K))) ⊆ F−(K) for every (σ1, σ2)r-closed set K of Y ;

(5) F+(V ) ⊆ θ(τ1, τ2)-sInt(F
+(σ1σ2-Cl(V ))) for every σ1σ2-open set V of Y ;

(6) θ(τ1, τ2)-sCl(F
−(σ1σ2-Int(K))) ⊆ F−(K) for every σ1σ2-closed set K of Y ;

(7) θ(τ1, τ2)-sCl(F
−(V )) ⊆ F−(σ1σ2-Cl(V )) for every σ1σ2-open set V of Y .

Proof. (1) ⇒ (2): Let B be any subset of Y . Suppose that x ̸∈ F−((σ1, σ2)θ-Cl(B)).
Then, x ∈ X−F−((σ1, σ2)θ-Cl(B)) and F (x) ⊆ Y −(σ1, σ2)θ-Cl(B). Since (σ1, σ2)θ-Cl(B)
is σ1σ2-closed in Y , there exists a (τ1, τ2)s-open set U of X containing x such that
F ((τ1, τ2)-sCl(U)) ⊆ σ1σ2-Cl(Y −(σ1, σ2)θ-Cl(B)) = Y −σ1σ2-Int((σ1, σ2)θ-Cl(B)). Thus,
we have F ((τ1, τ2)-sCl(U)) ∩ σ1σ2-Int((σ1, σ2)θ-Cl(B)) = ∅ and

(τ1, τ2)-sCl(U) ∩ F−(σ1σ2-Int((σ1, σ2)θ-Cl(B))) = ∅.

This shows that x ̸∈ θ(τ1, τ2)-sCl(F
−(σ1σ2-Int((σ1, σ2)θ-Cl(B)))). Thus,

θ(τ1, τ2)-sCl(F
−(σ1σ2-Int((σ1, σ2)θ-Cl(B)))) ⊆ F−((σ1, σ2)θ-Cl(B)).

(2) ⇒ (3): This is obvious since σ1σ2-Cl(V ) = (σ1, σ2)θ-Cl(V ) for every σ1σ2-open set
V of Y .

(3) ⇒ (4): Let K be any (σ1, σ2)r-closed set of Y . By (3), we have

θ(τ1, τ2)-sCl(F
−(σ1σ2-Int(K))) = θ(τ1, τ2)-sCl(F

−(σ1σ2-Int(σ1σ2-Cl(σ1σ2-Int(K)))))
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⊆ F−(σ1σ2-Cl(σ1σ2-Int(K)))

= F−(K).

(4) ⇒ (5): Let V be any σ1σ2-open set of Y . Then, we have

X − θ(τ1, τ2)-sInt(F
+(σ1σ2-Cl(V ))) = θ(τ1, τ2)-sCl(X − F+(σ1σ2-Cl(V )))

= θ(τ1, τ2)-sCl(F
−(Y − σ1σ2-Cl(V ))),

Y − σ1σ2-Cl(V ) = σ1σ2-Int(Y − σ1σ2-Cl(V )) ⊆ σ1σ2-Int(Y − σ1σ2-Int(σ1σ2-Cl(V ))) and
Y − σ1σ2-Int(σ1σ2-Cl(V )) is (σ1, σ2)r-closed in Y . Thus by (4),

θ(τ1, τ2)-sCl(F
−(σ1σ2-Int(Y − σ1σ2-Int(σ1σ2-Cl(V ))))) ⊆ F−(Y − σ1σ2-Int(σ1σ2-Cl(V )))

= X − F+(σ1σ2-Int(σ1σ2-Cl(V )))

⊆ X − F+(V )

and hence F+(V ) ⊆ θ(τ1, τ2)-sInt(F
+(σ1σ2-Cl(V ))).

(5) ⇒ (6): Let K be any σ1σ2-closed set of Y . Then by (5), we have

X − F−(K) = F+(Y −K)

⊆ θ(τ1, τ2)-sInt(F
+(σ1σ2-Cl(Y −K)))

= θ(τ1, τ2)-sInt(F
+(Y − σ1σ2-Int(K)))

= θ(τ1, τ2)-sInt(X − F−(σ1σ2-Int(K)))

= X − θ(τ1, τ2)-sCl(F
−(σ1σ2-Int(K))).

Thus, θ(τ1, τ2)-sCl(F
−(σ1σ2-Int(K))) ⊆ F−(K).

(6) ⇒ (7): Let V be any σ1σ2-closed set of Y . Then, we have σ1σ2-Cl(V ) is σ1σ2-closed
in Y and by (6),

θ(τ1, τ2)-sCl(F
−(V )) ⊆ θ(τ1, τ2)-sCl(F

−(σ1σ2-Int(σ1σ2-Cl(V ))))

⊆ F−(σ1σ2-Cl(V )).

(7) ⇒ (1): Let x ∈ X and V be any σ1σ2-open set of Y containing F (x). Then,
σ1σ2-Cl(Y − σ1σ2-Cl(V )) ∩ F (x) = ∅ and x ̸∈ F−(σ1σ2-Cl(Y − σ1σ2-Cl(V ))). It follows
from (7) that x ̸∈ θ(τ1, τ2)-sCl(F

−(Y − σ1σ2-Cl(V ))). Then, there exists a (τ1, τ2)s-open
set U of X containing x such that (τ1, τ2)-sCl(U) ∩ F−(Y − σ1σ2-Cl(V )) = ∅; hence
F ((τ1, τ2)-sCl(U)) ⊆ σ1σ2-Cl(V ). This shows that F is upper quasi θ(τ1, τ2)-continuous.

Definition 2. A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is said to be lower quasi
θ(τ1, τ2)-continuous if for each x ∈ X and each σ1σ2-open set V of Y such that F (x)∩V ̸=
∅, there exists a (τ1, τ2)s-open set U of X containing x such that σ1σ2-Cl(V ) ∩ F (z) ̸= ∅
for every z ∈ (τ1, τ2)-sCl(U).

Lemma 2. If F : (X, τ1, τ2) → (Y, σ1, σ2) is lower quasi θ(τ1, τ2)-continuous, then for each
x ∈ X and each subset B of Y with (σ1, σ2)θ-Int(B)∩F (x) ̸= ∅ there exists a (τ1, τ2)s-open
set U of X containing x such that (τ1, τ2)-sCl(U) ⊆ F−(B).
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Proof. Since (σ1, σ2)θ-Int(B) ∩ F (x) ̸= ∅, there exists a σ1σ2-open set V of Y such
that V ⊆ σ1σ2-Cl(V ) ⊆ B and F (x) ∩ V ̸= ∅. Since F is lower quasi θ(τ1, τ2)-continuous,
there exists a (τ1, τ2)s-open set U of X containing x such that σ1σ2-Cl(V ) ∩ F (z) ̸= ∅ for
every z ∈ (τ1, τ2)-sCl(U) and hence (τ1, τ2)-sCl(U) ⊆ F−(B).

Theorem 2. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following properties are
equivalent:

(1) F is lower quasi θ(τ1, τ2)-continuous;

(2) θ(τ1, τ2)-sCl(F
+(B)) ⊆ F+((σ1, σ2)θ-Cl(B)) for every subset B of Y ;

(3) θ(τ1, τ2)-sCl(F
+(V )) ⊆ F+(σ1σ2-Cl(V )) for every σ1σ2-open set V of Y ;

(4) F−(V ) ⊆ θ(τ1, τ2)-sInt(F
−(σ1σ2-Cl(V ))) for every σ1σ2-open set V of Y ;

(5) F (θ(τ1, τ2)-sCl(A)) ⊆ (σ1, σ2)θ-Cl(F (A)) for every subset A of X;

(6) θ(τ1, τ2)-sCl(F
+(σ1σ2-Int((σ1, σ2)θ-Cl(B)))) ⊆ F+((σ1, σ2)θ-Cl(B)) for every subset

B of Y ;

(7) θ(τ1, τ2)-sCl(F
+(σ1σ2-Int(σ1σ2-Cl(V )))) ⊆ F+(σ1σ2-Cl(V )) for every σ1σ2-open set

V of Y ;

(8) θ(τ1, τ2)-sCl(F
+(σ1σ2-Int(K))) ⊆ F+(K) for every (σ1, σ2)r-closed set K of Y ;

(9) θ(τ1, τ2)-sCl(F
+(σ1σ2-Int(K))) ⊆ F+(K) for every σ1σ2-closed set K of Y .

Proof. (1) ⇒ (2): Let B be any subset of Y . Suppose that x ̸∈ F+((σ1, σ2)θ-Cl(B)).
Then, x ∈ F−(Y − (σ1, σ2)θ-Cl(B)) = F−((σ1, σ2)θ-Int(Y − B)). Since F is lower quasi
θ(τ1, τ2)-continuous, by Lemma 2 there exists a (τ1, τ2)s-open set U of X containing x
such that (τ1, τ2)-sCl(U) ⊆ F−(Y −B) = X − F+(B). Thus, we have

(τ1, τ2)-sCl(U) ∩ F+(B) = ∅

and hence x ̸∈ θ(τ1, τ2)-sCl(F
+(B)).

(2) ⇒ (3): This is obvious since σ1σ2-Cl(V ) = (σ1, σ2)θ-Cl(V ) for every σ1σ2-open set
V of Y .

(3) ⇒ (4): Let V be any σ1σ2-open set of Y . Then by (3), we have

X − θ(τ1, τ2)-sInt(F
−(σ1σ2-Cl(V ))) = θ(τ1, τ2)-sCl(X − F−(σ1σ2-Cl(V )))

= θ(τ1, τ2)-sCl(F
+(Y − σ1σ2-Cl(V )))

⊆ F+(σ1σ2-Cl(Y − σ1σ2-Cl(V )))

⊆ F+(σ1σ2-Cl(Y − V ))

= F+(Y − V )

= X − F−(V )
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and hence F−(V ) ⊆ θ(τ1, τ2)-sInt(F
−(σ1σ2-Cl(V ))).

(4) ⇒ (1): Let x ∈ X and V be any σ1σ2-open set of Y such that F (x) ∩ V ̸= ∅. By
(4), x ∈ F−(V ) ⊆ θ(τ1, τ2)-sInt(F

−(σ1σ2-Cl(V ))). Then, there exists a (τ1, τ2)s-open set
U of X containing x such that (τ1, τ2)-sCl(U) ⊆ F−(σ1σ2-Cl(V )); hence

σ1σ2-Cl(V ) ∩ F (z) ̸= ∅

for every z ∈ (τ1, τ2)-sCl(U). This shows that F is lower quasi θ(τ1, τ2)-continuous.
(2) ⇒ (5): Let A be any subset of X. By replacing B in (2) by F (A), we have

θ(τ1, τ2)-sCl(A) ⊆ θ(τ1, τ2)-sCl(F
+(F (A))) ⊆ F+((σ1, σ2)θ-Cl(F (A))). Thus,

F (θ(τ1, τ2)-sCl(A)) ⊆ (σ1, σ2)θ-Cl(F (A)).

(5) ⇒ (2): Let B be any subset of Y . Replacing A in (5) by F+(B), we have
F (θ(τ1, τ2)-sCl(F

+(B))) ⊆ (σ1, σ2)θ-Cl(F (F+(B))) ⊆ (σ1, σ2)θ-Cl(B) and hence

θ(τ1, τ2)-sCl(F
+(B)) ⊆ F+((σ1, σ2)θ-Cl(B)).

(3) ⇒ (6): Let B be any subset of Y . Put V = σ1σ2-Int((σ1, σ2)θ-Cl(B)) in (3). Then,
since (σ1, σ2)θ-Cl(B) is σ1σ2-closed in Y , we have

θ(τ1, τ2)-sCl(F
+(σ1σ2-Int((σ1, σ2)θ-Cl(B)))) ⊆ F+(σ1σ2-Cl(σ1σ2-Int((σ1, σ2)θ-Cl(B))))

⊆ F+((σ1, σ2)θ-Cl(B)).

(6) ⇒ (7): This is obvious since σ1σ2-Cl(V ) = (σ1, σ2)θ-Cl(V ) for every σ1σ2-open set
V of Y .

(7) ⇒ (8): Let K be any (σ1, σ2)r-closed set of Y . Then by (7), we have

θ(τ1, τ2)-sCl(F
+(σ1σ2-Int(K))) = θ(τ1, τ2)-sCl(F

+(σ1σ2-Int(σ1σ2-Cl(σ1σ2-Int(K)))))

⊆ F+(σ1σ2-Cl(σ1σ2-Int(K)))

= F+(K).

(8) ⇒ (9): LetK be any σ1σ2-closed set of Y . Then, σ1σ2-Cl(σ1σ2-Int(K)) is (σ1, σ2)r-
closed in Y and by (8),

θ(τ1, τ2)-sCl(F
+(σ1σ2-Int(K))) = θ(τ1, τ2)-sCl(F

+(σ1σ2-Int(σ1σ2-Cl(σ1σ2-Int(K)))))

⊆ F+(σ1σ2-Cl(σ1σ2-Int(K)))

⊆ F+(K).

(9) ⇒ (4): Let V be any σ1σ2-open set of Y . Then, Y − V is σ1σ2-closed in Y and by
(9), θ(τ1, τ2)-sCl(F

+(σ1σ2-Int(Y − V ))) ⊆ F+(Y − V ) = X − F−(V ). Moreover, we have

θ(τ1, τ2)-sCl(F
+(σ1σ2-Int(Y − V ))) = θ(τ1, τ2)-sCl(F

+(Y − σ1σ2-Cl(V )))

= θ(τ1, τ2)-sCl(X − F−(σ1σ2-Cl(V )))

= X − θ(τ1, τ2)-sInt(F
−(σ1σ2-Cl(V ))).

Thus, F−(V ) ⊆ θ(τ1, τ2)-sInt(F
−(σ1σ2-Cl(V ))).
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Theorem 3. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following properties are
equivalent:

(1) F is upper quasi θ(τ1, τ2)-continuous;

(2) θ(τ1, τ2)-sCl(F
−(σ1σ2-Int(σ1σ2-Cl(V )))) ⊆ F−(σ1σ2-Cl(V )) for every (σ1, σ2)β-open

set V of Y ;

(3) θ(τ1, τ2)-sCl(F
−(σ1σ2-Int(σ1σ2-Cl(V )))) ⊆ F−(σ1σ2-Cl(V )) for every (σ1, σ2)s-open

set V of Y .

Proof. (1) ⇒ (2): Let V be any (σ1, σ2)β-open set of Y . Then,

V ⊆ σ1σ2-Cl(σ1σ2-Int(σ1σ2-Cl(V )))

and hence σ1σ2-Cl(V ) = σ1σ2-Cl(σ1σ2-Int(σ1σ2-Cl(V ))). Since σ1σ2-Cl(V ) is (σ1, σ2)r-
closed in Y , by Theorem 1 we have

θ(τ1, τ2)-sCl(F
−(σ1σ2-Int(σ1σ2-Cl(V )))) ⊆ F−(σ1σ2-Cl(V )).

(2) ⇒ (3): The proof is obvious.
(3) ⇒ (1): Let V be any σ1σ2-open set of Y . Then, V is (σ1, σ2)s-open in Y and by

(3), θ(τ1, τ2)-sCl(F
−(σ1σ2-Int(σ1σ2-Cl(V )))) ⊆ F−(σ1σ2-Cl(V )). Thus by Theorem 1, F

is upper quasi θ(τ1, τ2)-continuous.

Theorem 4. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following properties are
equivalent:

(1) F is lower quasi θ(τ1, τ2)-continuous;

(2) θ(τ1, τ2)-sCl(F
+(σ1σ2-Int(σ1σ2-Cl(V )))) ⊆ F+(σ1σ2-Cl(V )) for every (σ1, σ2)β-open

set V of Y ;

(3) θ(τ1, τ2)-sCl(F
+(σ1σ2-Int(σ1σ2-Cl(V )))) ⊆ F+(σ1σ2-Cl(V )) for every (σ1, σ2)s-open

set V of Y .

Proof. The proof is similar to that of Theorem 3.

Theorem 5. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following properties are
equivalent:

(1) F is upper quasi θ(τ1, τ2)-continuous;

(2) θ(τ1, τ2)-sCl(F
−(σ1σ2-Int(σ1σ2-Cl(V )))) ⊆ F−(σ1σ2-Cl(V )) for every (σ1, σ2)p-open

set V of Y ;

(3) θ(τ1, τ2)-sCl(F
−(V )) ⊆ F−(σ1σ2-Cl(V )) for every (σ1, σ2)p-open set V of Y ;
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(4) F+(V ) ⊆ θ(τ1, τ2)-sInt(F
+(σ1σ2-Cl(V ))) for every (σ1, σ2)p-open set V of Y .

Proof. (1) ⇒ (2): Let V be any (σ1, σ2)p-open set of Y . Since σ1σ2-Int(σ1σ2-Cl(V ))
is a σ1σ2-open set of Y , by Theorem 3 we have

θ(τ1, τ2)-sCl(F
−(σ1σ2-Int(σ1σ2-Cl(V )))) ⊆ F−(σ1σ2-Cl(σ1σ2-Int(σ1σ2-Cl(V ))))

= F−(σ1σ2-Cl(V )).

(2) ⇒ (3): Let V be any (σ1, σ2)p-open set of Y . Then, V ⊆ σ1σ2-Int(σ1σ2-Cl(V ))
and by (2),

θ(τ1, τ2)-sCl(F
−(V )) ⊆ θ(τ1, τ2)-sCl(F

−(σ1σ2-Int(σ1σ2-Cl(V ))))

⊆ F−(σ1σ2-Cl(V )).

(3) ⇒ (4): Let V be any (σ1, σ2)p-open set of Y . Then by (3), we have

X − θ(τ1, τ2)-sInt(F
+(σ1σ2-Cl(V ))) = θ(τ1, τ2)-sCl(X − F+(σ1σ2-Cl(V )))

= θ(τ1, τ2)-sCl(F
−(Y − σ1σ2-Cl(V )))

⊆ F−(σ1σ2-Cl(Y − σ1σ2-Cl(V )))

= X − F+(σ1σ2-Int(σ1σ2-Cl(V )))

⊆ X − F+(V )

and hence F+(V ) ⊆ θ(τ1, τ2)-sInt(F
+(σ1σ2-Cl(V ))).

(4) ⇒ (1): Let V be any σ1σ2-open set of Y . Then, V is (σ1, σ2)p-open in Y and by
(4), we have F+(V ) ⊆ θ(τ1, τ2)-sInt(F

+(σ1σ2-Cl(V ))). By Theorem 1, F is upper quasi
θ(τ1, τ2)-continuous.

Theorem 6. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following properties are
equivalent:

(1) F is lower quasi θ(τ1, τ2)-continuous;

(2) θ(τ1, τ2)-sCl(F
+(σ1σ2-Int(σ1σ2-Cl(V )))) ⊆ F+(σ1σ2-Cl(V )) for every (σ1, σ2)p-open

set V of Y ;

(3) θ(τ1, τ2)-sCl(F
+(V )) ⊆ F+(σ1σ2-Cl(V )) for every (σ1, σ2)p-open set V of Y ;

(4) F−(V ) ⊆ θ(τ1, τ2)-sInt(F
−(σ1σ2-Cl(V ))) for every (σ1, σ2)p-open set V of Y .

Proof. The proof is similar to that of Theorem 5.

Recall that a bitopological space (X, τ1, τ2) is said to be τ1τ2-compact [30] if every
cover of X by τ1τ2-open sets of X has a finite subcover. A bitopological space (X, τ1, τ2) is
said to be quasi (τ1, τ2)-H -closed [64] if every τ1τ2-open cover {Uγ | γ ∈ Γ}, there exists
a finite subset Γ0 of Γ such that X = ∪{τ1τ2-Cl(Uγ) | γ ∈ Γ0}.
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Definition 3. A bitopological space (X, τ1, τ2) is called s-(τ1, τ2)-closed if every (τ1, τ2)s-
open cover {Uγ | γ ∈ Γ}, there exists a finite subset Γ0 of Γ such that

X = ∪{(τ1, τ2)-sCl(Uγ) | γ ∈ Γ0}.

Theorem 7. Let F : (X, τ1, τ2) → (Y, σ1, σ2) be an upper quasi θ(τ1, τ2)-continuous sur-
jective multifunction such that F (x) is σ1σ2-compact for each x ∈ X. If (X, τ1, τ2) is
s-(τ1, τ2)-closed, then (Y, σ1, σ2) is quasi (σ1, σ2)-H -closed.

Proof. Let {Vγ | γ ∈ Γ} be any σ1σ2-open cover of Y . For each x ∈ X, F (x) is σ1σ2-
compact and there exists a finite subset Γ(x) of Γ such that F (x) ⊆ ∪{Vγ | γ ∈ Γ(x)}.
Put V (x) = ∪{Vγ | γ ∈ Γ(x)}. Then, F (x) ⊆ V (x) and V (x) is σ1σ2-open in Y . Since F
is upper quasi θ(τ1, τ2)-continuous, there exists a (τ1, τ2)s-open set U(x) of X containing
x such that F ((τ1, τ2)-sCl(U(x))) ⊆ σ1σ2-Cl(V (x)). The family {U(x) | x ∈ X} is a
(τ1, τ2)s-open cover of X. Since (X, τ1, τ2) is s-(τ1, τ2)-closed, there exists a finite number
of points, says, x1, x2, ..., xn in X such that X = ∪{(τ1, τ2)-sCl(U(xi)) | i = 1, 2, ..., n}.
Since F is surjective,

Y = F (X) = F (
n
∪
i=1

(τ1, τ2)-sCl(U(xi)))

=
n
∪
i=1

F ((τ1, τ2)-sCl(U(xi)))

⊆
n
∪
i=1

σ1σ2-Cl(V (xi))

=
n
∪
i=1

∪γ∈Γ(xi) σ1σ2-Cl(Vγ).

This shows that (Y, σ1, σ2) is quasi (σ1, σ2)-H -closed.

For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), a multifunction

sClF⊛ : (X, τ1, τ2) → (Y, σ1, σ2)

is defined in [31] as follows: sClF⊛(x) = (σ1, σ2)-sCl(F (x)) for each x ∈ X.

Lemma 3. Let F : (X, τ1, τ2) → (Y, σ1, σ2) be a multifunction. Then, sClF−
⊛ (V ) = F−(V )

for ever (σ1, σ2)s-open set V of Y .

Proof. Let V be any (σ1, σ2)s-open set of Y . Let x ∈ sClF−
⊛ (V ). Then,

(σ1, σ2)-sCl(F (x)) ∩ V = sClF⊛(x) ∩ V ̸= ∅.

Since V is (σ1, σ2)s-open in Y , we have V ∩ F (x) ̸= ∅ and hence x ∈ F−(V ). Thus,
sClF−

⊛ (V ) ⊆ F−(V ). On the other hand, let x ∈ F−(V ). Then,

∅ ≠ F (x) ∩ V ⊆ (σ1, σ2)-sCl(F (x)) ∩ V

and so x ∈ sClF−
⊛ (V ). Consequently, we obtain sClF−

⊛ (V ) = F−(V ).
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Theorem 8. A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is lower quasi θ(τ1, τ2)-continuous
if and only if sClF⊛ : (X, τ1, τ2) → (Y, σ1, σ2) is lower quasi θ(τ1, τ2)-continuous.

Proof. Suppose that F is lower quasi θ(τ1, τ2)-continuous. Let x ∈ X and V be any
σ1σ2-open set of Y such that sClF⊛(x)∩V ̸= ∅. By Lemma 3, we have F (x)∩V ̸= ∅. Since
F is lower quasi θ(τ1, τ2)-continuous, there exists a (τ1, τ2)s-open set ofX containing x such
that σ1σ2-Cl(V ) ∩ F (z) ̸= ∅ for every z ∈ (τ1, τ2)-sCl(U). Since σ1σ2-Cl(V ) is (σ1, σ2)s-
open in Y , by Lemma 3 we have (τ1, τ2)-sCl(U) ⊆ F−(σ1σ2-Cl(V )) = sClF−

⊛ (σ1σ2-Cl(V ))
and hence sClF⊛(z)∩σ1σ2-Cl(V ) ̸= ∅ for every z ∈ (τ1, τ2)-sCl(U). This shows that sClF⊛

is lower quasi θ(τ1, τ2)-continuous.
Conversely, suppose that sClF⊛ is lower quasi θ(τ1, τ2)-continuous. Let x ∈ X and V

be any σ1σ2-open set of Y such that F (x)∩V ̸= ∅. Then, (σ1, σ2)-sCl(F (x))∩V ̸= ∅. Since
sClF⊛ is lower quasi θ(τ1, τ2)-continuous, there exists a (τ1, τ2)s-open set of X containing
x such that sClF⊛(z) ∩ σ1σ2-Cl(V ) ̸= ∅ for every z ∈ (τ1, τ2)-sCl(U). Since σ1σ2-Cl(V ) is
(σ1, σ2)s-open in Y , by Lemma 3

(τ1, τ2)-sCl(U) ⊆ sClF−
⊛ (σ1σ2-Cl(V )) = F−(σ1σ2-Cl(V ))

and hence σ1σ2-Cl(V ) ∩ F (z) ̸= ∅ for every z ∈ (τ1, τ2)-sCl(U). Thus, F is lower quasi
θ(τ1, τ2)-continuous.

Definition 4. [30] A subset A of a bitopological space (X, τ1, τ2) is said to be:

(1) τ1τ2-paracompact if every cover of A by τ1τ2-open sets of X is refined by a cover of
A which consists of τ1τ2-open sets of X and is τ1τ2-locally finite in X;

(2) τ1τ2-regular if for each x ∈ A and each τ1τ2-open set U of X containing x, there
exists a τ1τ2-open set V of X such that x ∈ V ⊆ τ1τ2-Cl(V ) ⊆ U .

Lemma 4. [30] If A is a τ1τ2-regular τ1τ2-paracompact set of a bitopological space (X, τ1, τ2)
and U is a τ1τ2-open neighborhood of A, then there exists a τ1τ2-open set V of X such
that A ⊆ V ⊆ τ1τ2-Cl(V ) ⊆ U .

Lemma 5. If F : (X, τ1, τ2) → (Y, σ1, σ2) is a multifunction such that F (x) is τ1τ2-regular
and τ1τ2-paracompact for each x ∈ X, then sClF+

⊛ (V ) = F+(V ) for each σ1σ2-open set V
of Y .

Proof. Let V be any σ1σ2-open set of Y and x ∈ sClF+
⊛ (V ). Then, sClF+

⊛ (x) ⊆ V and
F (x) ⊆ (σ1, σ2)-sCl(F (x)) = sClF+

⊛ (x) ⊆ V . Thus, x ∈ F+(V ) and hence

sClF+
⊛ (V ) ⊆ F+(V ).

On the other hand, let x ∈ F+(V ). Then, F (x) ⊆ V and by Lemma 5, there exists a
σ1σ2-open set W of Y such that F (x) ⊆ W ⊆ σ1σ2-Cl(W ) ⊆ V ; hence

sClF+
⊛ (x) = (σ1, σ2)-sCl(F (x)) ⊆ σ1σ2-Cl(W ) ⊆ V.

Thus, x ∈ sClF+
⊛ (V ) and so F+(V ) ⊆ sClF+

⊛ (V ). Therefore, F+(V ) = sClF+
⊛ (V ).
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Theorem 9. Let F : (X, τ1, τ2) → (Y, σ1, σ2) be a multifunction such that F (x) is σ1σ2-
paracompact and σ1σ2-regular for each x ∈ X. Then, F is upper quasi θ(τ1, τ2)-continuous
if and only if sClF⊛ : (X, τ1, τ2) → (Y, σ1, σ2) is upper quasi θ(τ1, τ2)-continuous.

Proof. Suppose that F is upper quasi θ(τ1, τ2)-continuous. It follows from Theorem 1
and Lemma 5 that for every σ1σ2-open set V of Y ,

sClF+
⊛ (V ) = F+(V ) ⊆ θ(τ1, τ2)-sInt(F

+(σ1σ2-Cl(V )))

= θ(τ1, τ2)-sInt(sClF
+
⊛ (σ1σ2-Cl(V ))).

By Theorem 1, sClF⊛ is upper quasi θ(τ1, τ2)-continuous.
Conversely, suppose that sClF⊛ is upper quasi θ(τ1, τ2)-continuous. It follows from

Theorem 1 and Lemma 5 that for every σ1σ2-open set V of Y ,

F+(V ) = sClF+
⊛ (V ) ⊆ θ(τ1, τ2)-sInt(sClF

+
⊛ (σ1σ2-Cl(V )))

= θ(τ1, τ2)-sInt(F
+(σ1σ2-Cl(V ))).

Thus by Theorem 1, F is upper quasi θ(τ1, τ2)-continuous.
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ţii din Timişoara, Seria Ştiinţe Matematice, 26:33–38, 1988.

[49] T. Noiri and V. Popa. Some properties of upper and lower θ-quasicontinuous multi-
functions. Demonstratio Mathematica, 38(1):223–234, 2005.

[50] V. Popa. On a decomposition of quasicontinuity for multifunctions. Studii şi Cercetǎri
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