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1. Introduction

In topology, there has been recently significant interest in characterizing and inves-
tigating the characterizations of some weak forms of continuity for functions and mul-
tifunctions. As weak forms of continuity in topological spaces, weak continuity [44],
quasicontinuity [47], semi-continuity [45] and almost continuity in the sense of Husain
[36] are well-known. Lee [43] studied the concept of semiconnected functions. Kohli
[40] introduced the notion of s-continuous functions and investigated some character-
izations of semilocally connected spaces in terms of s-continuous functions. The no-
tion of s-continuity as a generalization of continuity and semiconnectedness. Moreover,
Kohli [41] introduced the concepts of s-regular spaces and completely s-regular spaces
and proved that s-regularity and complete s-regularity are preserved under certain s-
continuous functions. Viriyapong and Boonpok [68] investigated some characterizations
of (Λ, sp)-continuous functions by utilizing the notions of (Λ, sp)-open sets and (Λ, sp)-
closed sets due to Boonpok and Khampakdee [12]. Dungthaisong et al. [33] introduced
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and studied the concept of g(m,n)-continuous functions. Duangphui et al. [32] introduced

and investigated the notion of (µ, µ′)(m,n)-continuous functions. Furthermore, several
characterizations of almost (Λ, p)-continuous functions, strongly θ(Λ, p)-continuous func-
tions, almost strongly θ(Λ, p)-continuous functions, θ(Λ, p)-continuous functions, weakly
(Λ, b)-continuous functions, θ(⋆)-precontinuous functions, (Λ, p(⋆))-continuous functions,
⋆-continuous functions, θ-I -continuous functions, almost (g,m)-continuous functions,
pairwise almost M -continuous functions, (τ1, τ2)-continuous functions, almost (τ1, τ2)-
continuous functions, weakly (τ1, τ2)-continuous functions and slightly (τ1, τ2)s-continuous
functions were presented in [60], [63], [16], [54], [25], [11], [8], [10], [4], [1], [2], [26], [23],
[18] and [59], respectively. Srisarakham et al. [61] introduced and studied the concept
of faintly (τ1, τ2)-continuous functions. Thongmoon et al. [66] introduced and investi-
gated the notion of rarely (τ1, τ2)-continuous functions. Kong-ied at al. [42] introduced
and studied the concept of almost quasi (τ1, τ2)-continuous functions. Chiangpradit et al.
[30] introduced and investigated the notion of weakly quasi (τ1, τ2)-continuous functions.
Prachanpol et al. [53] introduced and studied the concept of weakly δ(τ1, τ2)-continuous
functions.

In 1989, Lipski [46] extended the concept of s-continuous functions to the setting of
multifunctions. Popa [49] introduced the concept of precontinuous multifunctions and
showed that H-almost continuity and precontinuity are equivalent for multifunctions.
Ewert and Lipski [35] introduced and studied the concept of s-quasi-continuous multi-
functions. Popa and Noiri [52] introduced and investigated the notion of s-precontinuous
multifunctions as a generalization of s-continuous multifunctions and precontinuous mul-
tifunctions. In particular, Popa and Noiri [51] introduced and studied the notion of s-
β-continuous multifunctions. Popa and Noiri [50] introduced and investigated the con-
cept of s-m-continuous multifunctions as multifunctions defined on a set satisfying some
minimal conditions. Moreover, several characterizations and some properties concern-
ing (τ1, τ2)δ-semicontinuous multifunctions, almost weakly (τ1, τ2)-continuous multifunc-
tions, weakly quasi (Λ, sp)-continuous multifunctions, ⋆-continuous multifunctions, β(⋆)-
continuous multifunctions, α-⋆-continuous multifunctions, almost α-⋆-continuous multi-
functions, almost quasi ⋆-continuous multifunctions, weakly α-⋆-continuous multifunc-
tions, sβ(⋆)-continuous multifunctions, weakly sβ(⋆)-continuous multifunctions, θ(⋆)-quasi
continuous multifunctions, almost ı⋆-continuous multifunctions, weakly (Λ, sp)-continuous
multifunctions, α(Λ, sp)-continuous multifunctions, almost α(Λ, sp)-continuous multifunc-
tions, weakly α(Λ, sp)-continuous multifunctions, almost β(Λ, sp)-continuous multifunc-
tions, slightly (Λ, sp)-continuous multifunctions, (τ1, τ2)-continuous multifunctions, al-
most (τ1, τ2)-continuous multifunctions, weakly (τ1, τ2)-continuous multifunctions, weakly
quasi (τ1, τ2)-continuous multifunctions, almost quasi (τ1, τ2)-continuous multifunctions,
c-(τ1, τ2)-continuous multifunctions, c-quasi (τ1, τ2)-continuous multifunctions, s-(τ1, τ2)p-
continuous multifunctions, slightly (τ1, τ2)-continuous multifunctions and slightly (τ1, τ2)p-
continuous multifunctions were established in [5], [28], [69], [3], [7], [17], [24], [6], [21], [20],
[15], [9], [19], [22], [37], [13], [27], [62], [14], [57], [39], [65], [58], [56], [38], [55], [73], [70] and
[71], respectively. Noiri and Popa [48] introduced and studied the notion of weakly s-m-
continuous multifunctions as a generalization of both weakly m-continuous multifunctions
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and s-m-continuous multifunctions. The class of weakly s-m-continuous multifunctions
contains weakly s-precontinuous multifunctions due to Ekici and Park [34]. In this paper,
we introduce the concepts of upper weakly s-(τ1, τ2)-continuous multifunctions and lower
weakly s-(τ1, τ2)-continuous multifunctions. We also investigate several characterizations
of upper weakly s-(τ1, τ2)-continuous multifunctions and lower weakly s-(τ1, τ2)-continuous
multifunctions.

2. Preliminaries

Throughout the present paper, spaces (X, τ1, τ2) and (Y, σ1, σ2) (or simply X and
Y ) always mean bitopological spaces on which no separation axioms are assumed unless
explicitly stated. Let A be a subset of a bitopological space (X, τ1, τ2). The closure of A
and the interior of A with respect to τi are denoted by τi-Cl(A) and τi-Int(A), respectively,
for i = 1, 2. A subset A of a bitopological space (X, τ1, τ2) is called τ1τ2-closed [29]
if A = τ1-Cl(τ2-Cl(A)). The complement of a τ1τ2-closed set is called τ1τ2-open. The
intersection of all τ1τ2-closed sets of X containing A is called the τ1τ2-closure [29] of A
and is denoted by τ1τ2-Cl(A). The union of all τ1τ2-open sets of X contained in A is called
the τ1τ2-interior [29] of A and is denoted by τ1τ2-Int(A).

Lemma 1. [29] Let A and B be subsets of a bitopological space (X, τ1, τ2). For the τ1τ2-
closure, the following properties hold:

(1) A ⊆ τ1τ2-Cl(A) and τ1τ2-Cl(τ1τ2-Cl(A)) = τ1τ2-Cl(A).

(2) If A ⊆ B, then τ1τ2-Cl(A) ⊆ τ1τ2-Cl(B).

(3) τ1τ2-Cl(A) is τ1τ2-closed.

(4) A is τ1τ2-closed if and only if A = τ1τ2-Cl(A).

(5) τ1τ2-Cl(X −A) = X − τ1τ2-Int(A).

A subset A of a bitopological space (X, τ1, τ2) is called α(τ1, τ2)-open [72] if A ⊆
τ1τ2-Int(τ1τ2-Cl(τ1τ2-Int(A))). The complement of an α(τ1, τ2)-open set is called α(τ1, τ2)-
closed. A subset A of a bitopological space (X, τ1, τ2) is called (τ1, τ2)r-open [67] (resp.
(τ1, τ2)s-open [5], (τ1, τ2)p-open [5], (τ1, τ2)β-open [5]) if A = τ1τ2-Int(τ1τ2-Cl(A)) (resp.
A ⊆ τ1τ2-Cl(τ1τ2-Int(A)), A ⊆ τ1τ2-Int(τ1τ2-Cl(A)), A ⊆ τ1τ2-Cl(τ1τ2-Int(τ1τ2-Cl(A)))).
The complement of a (τ1, τ2)r-open (resp. (τ1, τ2)s-open, (τ1, τ2)p-open, (τ1, τ2)β-open,
α(τ1, τ2)-open) set is called (τ1, τ2)r-closed (resp. (τ1, τ2)s-closed, (τ1, τ2)p-closed). Let A
be a subset of a bitopological space (X, τ1, τ2). A point x ∈ X is called a (τ1, τ2)θ-cluster
point [67] of A if τ1τ2-Cl(U) ∩ A ̸= ∅ for every τ1τ2-open set U containing x. The set of
all (τ1, τ2)θ-cluster points of A is called the (τ1, τ2)θ-closure [67] of A and is denoted by
(τ1, τ2)θ-Cl(A). A subset A of a bitopological space (X, τ1, τ2) is said to be (τ1, τ2)θ-closed
[67] if (τ1, τ2)θ-Cl(A) = A. The complement of a (τ1, τ2)θ-closed set is said to be (τ1, τ2)θ-
open. The union of all (τ1, τ2)θ-open sets of X contained in A is called the (τ1, τ2)θ-interior
[67] of A and is denoted by (τ1, τ2)θ-Int(A).
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Lemma 2. [67] For a subset A of a bitopological space (X, τ1, τ2), the following properties
hold:

(1) If A is τ1τ2-open in X, then τ1τ2-Cl(A) = (τ1, τ2)θ-Cl(A).

(2) (τ1, τ2)θ-Cl(A) is τ1τ2-closed in X.

By a multifunction F : X → Y , we mean a point-to-set correspondence from X into
Y , and we always assume that F (x) ̸= ∅ for all x ∈ X. For a multifunction F : X → Y , we
shall denote the upper and lower inverse of a set B of Y by F+(B) and F−(B), respectively,
that is, F+(B) = {x ∈ X | F (x) ⊆ B} and F−(B) = {x ∈ X | F (x) ∩ B ̸= ∅}. In
particular, F−(y) = {x ∈ X | y ∈ F (x)} for each point y ∈ Y . For each A ⊆ X,
F (A) = ∪x∈AF (x).

3. Upper and lower wekly s-(τ1, τ2)-continuous multifunctions

In this section, we introduce the notions of upper weakly s-(τ1, τ2)-continuous multi-
functions and lower weakly s-(τ1, τ2)-continuous multifunctions. Moreover, some charac-
terizations of upper weakly s-(τ1, τ2)-continuous multifunctions and lower weakly s-(τ1, τ2)-
continuous multifunctions are discussed.

Definition 1. A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is said to be upper weakly
s-(τ1, τ2)-continuous at a point x ∈ X if for each σ1σ2-open set V of Y containing F (x)
and having σ1σ2-connected complement, there exists a τ1τ2-open set U of X containing x
such that F (U) ⊆ σ1σ2-Cl(V ). A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is said to be
upper weakly s-(τ1, τ2)-continuous if F is upper weakly s-(τ1, τ2)-continuous at each point
x of X.

Theorem 1. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following properties are
equivalent:

(1) F is upper weakly s-(τ1, τ2)-continuous;

(2) F+(V ) ⊆ τ1τ2-Int(F
+(σ1σ2-Cl(V ))) for every σ1σ2-open set V of Y having σ1σ2-

connected complement;

(3) τ1τ2-Cl(F
−(σ1σ2-Int(K))) ⊆ F−(K) for every σ1σ2-connected σ1σ2-closed set K of

Y ;

(4) τ1τ2-Cl(F
−(σ1σ2-Int(σ1σ2-Cl(B)))) ⊆ F−(σ1σ2-Cl(B)) for every subset B of Y hav-

ing the σ1σ2-connected σ1σ2-closure;

(5) F+(σ1σ2-Int(B)) ⊆ τ1τ2-Int(F
+(σ1σ2-Cl(σ1σ2-Int(B)))) for every subset B of Y

such that Y − σ1σ2-Int(B) is σ1σ2-connected;

(6) τ1τ2-Cl(F
−(σ1σ2-Int(σ1σ2-Cl(V )))) ⊆ F−(σ1σ2-Cl(V )) for every σ1σ2-open set V of

Y having the σ1σ2-connected σ1σ2-closure;
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(7) τ1τ2-Cl(F
−(V )) ⊆ F−(σ1σ2-Cl(V )) for every σ1σ2-open set V of Y having the σ1σ2-

connected σ1σ2-closure;

(8) τ1τ2-Cl(F
−(σ1σ2-Int(K))) ⊆ F−(K) for every σ1σ2-connected (σ1, σ2)r-closed set K

of Y .

Proof. (1) ⇒ (2): Let V be any σ1σ2-open set of Y having the σ1σ2-connected comple-
ment and x ∈ F+(V ). Then, there exists a τ1τ2-open set U of X containing x such that
F (U) ⊆ σ1σ2-Cl(V ). Therefore, we have x ∈ U ⊆ F+(σ1σ2-Cl(V )). Since U is τ1τ2-open,
we have x ∈ τ1τ2-Int(F

+(σ1σ2-Cl(V ))) and hence F+(V ) ⊆ τ1τ2-Int(F
+(σ1σ2-Cl(V ))).

(2) ⇒ (3): LetK be any σ1σ2-connected σ1σ2closed set of Y . Then, Y −K is σ1σ2-open
in Y having σ1σ2-connected complement. By (2), we have

X − F−(K) = F+(Y −K)

⊆ τ1τ2-Int(F
+(σ1σ2-Cl(Y −K)))

= τ1τ2-Int(F
+(Y − σ1σ2-Int(K)))

= τ1τ2-Int(X − F−(σ1σ2-Int(K)))

= X − τ1τ2-Cl(F
−(σ1σ2-Int(K)))

and hence τ1τ2-Cl(F
−(σ1σ2-Int(K))) ⊆ F−(K).

(3) ⇒ (4): Let B be any subset of Y having the σ1σ2-connected σ1σ2-closure. Then,
σ1σ2-Cl(B) is σ1σ2-closed σ1σ2-connected in Y and by (3), we have

τ1τ2-Cl(F
−(σ1σ2-Int(σ1σ2-Cl(B)))) ⊆ F−(σ1σ2-Cl(B)).

(4) ⇒ (5): Let B be any subset of Y such that Y − σ1σ2-Int(B) is σ1σ2-connected.
Then by (4),

X − τ1τ2-Int(F
+(σ1σ2-Cl(σ1σ2-Int(B)))) = τ1τ2-Cl(X − F+(σ1σ2-Cl(σ1σ2-Int(B))))

= τ1τ2-Cl(F
−(Y − σ1σ2-Cl(σ1σ2-Int(B))))

= τ1τ2-Cl(F
−(σ1σ2-Int(σ1σ2-Cl(Y −B))))

⊆ F−(σ1σ2-Cl(Y −B))

= X − F+(σ1σ2-Int(B)).

Thus, F+(σ1σ2-Int(B)) ⊆ τ1τ2-Int(F
+(σ1σ2-Cl(σ1σ2-Int(B)))).

(5) ⇒ (1): Let x ∈ X and V be any σ1σ2-open set of Y containing F (x) and having
σ1σ2-connected complement. By (5), we have

x ∈ F+(V ) = F+(σ1σ2-Int(V )) ⊆ τ1τ2-Int(F
+(σ1σ2-Cl(V ))).

Then, there exists a τ1τ2-open set U of X containing x such that U ⊆ F+(σ1σ2-Cl(V )).
Thus, F (U) ⊆ σ1σ2-Cl(V ) and hence F is upper weakly s-(τ1, τ2)-continuous.

(4) ⇒ (6) and (6) ⇒ (7): The proofs are obvious.
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(7) ⇒ (8): Let K be any σ1σ2-connected (σ1, σ2)r-closed set of Y . Then, we have
K = σ1σ2-Cl(σ1σ2-Int(K)) is σ1σ2-connected and by (7),

τ1τ2-Cl(F
−(σ1σ2-Int(K))) ⊆ F−(σ1σ2-Cl(σ1σ2-Int(K))) = F−(K).

(8) ⇒ (3): Let K be any σ1σ2-connected σ1σ2-closed set of Y . Since K is σ1σ2-
connected, we have σ1σ2-Int(K) is σ1σ2-connected and hence σ1σ2-Cl(σ1σ2-Int(K)) is
σ1σ2-connected. Let H = σ1σ2-Cl(σ1σ2-Int(K)). Then, H is a (σ1, σ2)r-closed σ1σ2-
connected set of Y and σ1σ2-Int(H) = σ1σ2-Int(σ1σ2-Cl(σ1σ2-Int(K))) = σ1σ2-Int(K). By
(8), we have τ1τ2-Cl(F

−(σ1σ2-Int(K))) = τ1τ2-Cl(F
−(σ1σ2-Int(H))) ⊆ F−(H) ⊆ F−(K).

Definition 2. A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is said to be lower weakly s-
(τ1, τ2)-continuous at a point x ∈ X if for each σ1σ2-open set V of Y such that F (x)∩V ̸= ∅
and having σ1σ2-connected complement, there exists a τ1τ2-open set U of X containing x
such that σ1σ2-Cl(V ) ∩ F (z) ̸= ∅ for each z ∈ U . A multifunction

F : (X, τ1, τ2) → (Y, σ1, σ2)

is said to be lower weakly s-(τ1, τ2)-continuous if F is lower weakly s-(τ1, τ2)-continuous
at each point x of X.

Theorem 2. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following properties are
equivalent:

(1) F is lower weakly s-(τ1, τ2)-continuous;

(2) F−(V ) ⊆ τ1τ2-Int(F
−(σ1σ2-Cl(V ))) for every σ1σ2-open set V of Y having σ1σ2-

connected complement;

(3) τ1τ2-Cl(F
+(σ1σ2-Int(K))) ⊆ F+(K) for every σ1σ2-connected σ1σ2-closed set K of

Y ;

(4) τ1τ2-Cl(F
+(σ1σ2-Int(σ1σ2-Cl(B)))) ⊆ F+(σ1σ2-Cl(B)) for every subset B of Y hav-

ing the σ1σ2-connected σ1σ2-closure;

(5) F−(σ1σ2-Int(B)) ⊆ τ1τ2-Int(F
−(σ1σ2-Cl(σ1σ2-Int(B)))) for every subset B of Y

such that Y − σ1σ2-Int(B) is σ1σ2-connected;

(6) τ1τ2-Cl(F
+(σ1σ2-Int(σ1σ2-Cl(V )))) ⊆ F+(σ1σ2-Cl(V )) for every σ1σ2-open set V of

Y having the σ1σ2-connected σ1σ2-closure;

(7) τ1τ2-Cl(F
+(V )) ⊆ F+(σ1σ2-Cl(V )) for every σ1σ2-open set V of Y having the σ1σ2-

connected σ1σ2-closure;

(8) τ1τ2-Cl(F
+(σ1σ2-Int(K))) ⊆ F+(K) for every σ1σ2-connected (σ1, σ2)r-closed set K

of Y .
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Proof. The proof is similar to that of Theorem 1.

Theorem 3. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following properties are
equivalent:

(1) F is upper weakly s-(τ1, τ2)-continuous;

(2) τ1τ2-Cl(F
−(σ1σ2-Int(σ1σ2-Cl(V )))) ⊆ F−(σ1σ2-Cl(V )) for every (σ1, σ2)β-open set

V of Y having the σ1σ2-connected σ1σ2-closure;

(3) τ1τ2-Cl(F
−(σ1σ2-Int(σ1σ2-Cl(V )))) ⊆ F−(σ1σ2-Cl(V )) for every (σ1, σ2)s-open set

V of Y having the σ1σ2-connected σ1σ2-closure.

Proof. (1) ⇒ (2): This follows from Theorem 1(4).
(2) ⇒ (3): The proof is obvious since every (σ1, σ2)s-open set is (σ1, σ2)β-open.
(3) ⇒ (1): Since every σ1σ2-open set is (σ1, σ2)s-open, the proof follows from Theorem

1(7).

Theorem 4. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following properties are
equivalent:

(1) F is lower weakly s-(τ1, τ2)-continuous;

(2) τ1τ2-Cl(F
+(σ1σ2-Int(σ1σ2-Cl(V )))) ⊆ F+(σ1σ2-Cl(V )) for every (σ1, σ2)β-open set

V of Y having the σ1σ2-connected σ1σ2-closure;

(3) τ1τ2-Cl(F
+(σ1σ2-Int(σ1σ2-Cl(V )))) ⊆ F+(σ1σ2-Cl(V )) for every (σ1, σ2)s-open set

V of Y having the σ1σ2-connected σ1σ2-closure.

Proof. The proof is similar to that of Theorem 3.

Theorem 5. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following properties are
equivalent:

(1) F is upper weakly s-(τ1, τ2)-continuous;

(2) τ1τ2-Cl(F
−(σ1σ2-Int((σ1, σ2)θ-Cl(B)))) ⊆ F−((σ1, σ2)θ-Cl(B)) for every subset B

of Y having the σ1σ2-connected (σ1, σ2)θ-closure;

(3) τ1τ2-Cl(F
−(σ1σ2-Int(σ1σ2-Cl(B)))) ⊆ F−((σ1, σ2)θ-Cl(B)) for every subset B of Y

having the σ1σ2-connected (σ1, σ2)θ-closure.

Proof. (1) ⇒ (2): Let B be any subset of Y having the σ1σ2-connected (σ1, σ2)θ-
closure. Then, (σ1, σ2)θ-Cl(B) is σ1σ2-connected σ1σ2-closed and by Theorem1,

τ1τ2-Cl(F
−(σ1σ2-Int((σ1, σ2)θ-Cl(B)))) ⊆ F−((σ1, σ2)θ-Cl(B)).
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(2) ⇒ (3): The proof is obvious since σ1σ2-Cl(B) ⊆ (σ1, σ2)θ-Cl(B) for every subset
B of Y .

(3) ⇒ (1): Let K be any (σ1, σ2)r-closed σ1σ2-connected set of Y . Then, we have
(σ1, σ2)θ-Cl(σ1σ2-Int(K)) = σ1σ2-Cl(σ1σ2-Int(K)) = K and by (3),

τ1τ2-Cl(F
−(σ1σ2-Int(K))) = τ1τ2-Cl(F

−(σ1σ2-Int(σ1σ2-Cl(σ1σ2-Int(K)))))

⊆ F−((σ1, σ2)θ-Cl(σ1σ2-Cl(K)))

= F−(σ1σ2-Cl(σ1σ2-Cl(K)))

= F−(K).

Thus, τ1τ2-Cl(F
−(σ1σ2-Int(K))) ⊆ F−(K) and by Theorem 1(8), F is upper weakly s-

(τ1, τ2)-continuous.

Theorem 6. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following properties are
equivalent:

(1) F is lower weakly s-(τ1, τ2)-continuous;

(2) τ1τ2-Cl(F
+(σ1σ2-Int((σ1, σ2)θ-Cl(B)))) ⊆ F+((σ1, σ2)θ-Cl(B)) for every subset B

of Y having the σ1σ2-connected (σ1, σ2)θ-closure;

(3) τ1τ2-Cl(F
+(σ1σ2-Int(σ1σ2-Cl(B)))) ⊆ F+((σ1, σ2)θ-Cl(B)) for every subset B of Y

having the σ1σ2-connected (σ1, σ2)θ-closure.

Proof. The proof is similar to that of Theorem 5.

For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), by ClF⊛ : (X, τ1, τ2) → (Y, σ1, σ2) [29]
we denote a multifunction defined as follows: ClF⊛(x) = σ1σ2-Cl(F (x)) for each x ∈ X.

Definition 3. [29] A subset A of a bitopological space (X, τ1, τ2) is said to be:

(1) τ1τ2-paracompact if every cover of A by τ1τ2-open sets of X is refined by a cover of
A which consists of τ1τ2-open sets of X and is τ1τ2-locally finite in X;

(2) τ1τ2-regular if for each x ∈ A and each τ1τ2-open set U of X containing x, there
exists a τ1τ2-open set V of X such that x ∈ V ⊆ τ1τ2-Cl(V ) ⊆ U .

Lemma 3. [29] If F : (X, τ1, τ2) → (Y, σ1, σ2) is a multifunction such that F (x) is τ1τ2-
regular and τ1τ2-paracompact for each x ∈ X, then ClF+

⊛ (V ) = F+(V ) for each σ1σ2-open
set V of Y .

Lemma 4. [29] For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), ClF
−
⊛ (V ) = F−(V ) for

each σ1σ2-open set V of Y .

Theorem 7. Let F : (X, τ1, τ2) → (Y, σ1, σ2) be a multifunction such that F (x) is
σ1σ2-paracompact and σ1σ2-regular for each x ∈ X. Then, F is upper weakly s-(τ1, τ2)-
continuous if and only if ClF⊛ : (X, τ1, τ2) → (Y, σ1, σ2) is upper weakly s-(τ1, τ2)-continuous.
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Proof. Suppose that F is upper weakly s-(τ1, τ2)-continuous. Let V be any σ1σ2-open
set of Y having σ1σ2-connected complement. By Theorem 1, Lemma 3 and Lemma 4,
we have ClF+

⊛ (V ) = F+(V ) ⊆ τ1τ2-Int(F
+(σ1σ2-Cl(V ))) = τ1τ2-Int(ClF

+
⊛ (σ1σ2-Cl(V ))).

Thus by Theorem 1, ClF⊛ is upper weakly s-(τ1, τ2)-continuous.
Conversely, suppose that ClF⊛ is upper weakly s-(τ1, τ2)-continuous. Let V be any

σ1σ2-open set of Y having σ1σ2-connected complement. By Theorem 1, Lemma 3 and
Lemma 4, we have

F+(V ) = ClF+
⊛ (V ) ⊆ τ1τ2-Int(ClF

+
⊛ (σ1σ2-Cl(V ))) = τ1τ2-Int(F

+(σ1σ2-Cl(V ))).

By Theorem 1, F is upper weakly s-(τ1, τ2)-continuous.

Theorem 8. Let F : (X, τ1, τ2) → (Y, σ1, σ2) be a multifunction such that F (x) is
σ1σ2-paracompact and σ1σ2-regular for each x ∈ X. Then, F is lower weakly s-(τ1, τ2)-
continuous if and only if ClF⊛ : (X, τ1, τ2) → (Y, σ1, σ2) is lower weakly s-(τ1, τ2)-continuous.

Proof. The proof is similar to that of Theorem 7.

4. Some results on weak s-(τ1, τ2)-continuity

Recall that a subset A of a bitopological space (X, τ1, τ2) is said to be τ1τ2-clopen [29]
if A is both τ1τ2-open and τ1τ2-closed.

Definition 4. [29] A bitopological space (X, τ1, τ2) is said to be τ1τ2-connected if X cannot
be written as the union of two disjoint nonempty τ1τ2-open sets.

Definition 5. [64] A bitopological space (X, τ1, τ2) is said to be s-τ1τ2-connected if X can-
not be written as the union of two disjoint nonempty τ1τ2-open sets having τ1τ2-connected
complements.

Theorem 9. If F : (X, τ1, τ2) → (Y, σ1, σ2) is an upper or lower weakly s-(τ1, τ2)-
continuous surjective multifunction such that F (x) is σ1σ2-connected for each x ∈ X
and (X, τ1, τ2) is τ1τ2-connected, then (Y, σ1, σ2) is s-σ1σ2-connected.

Proof. Suppose that (Y, σ1, σ2) is not σ1σ2-connected. There exist nonempty σ1σ2-
open sets U and V of Y having σ1σ2-connected complement such that U ∩ V = ∅ and
U ∪ V = Y . Since F (x) is σ1σ2-connected for each x ∈ X, either F (x) ⊆ U or F (x) ⊆ V .
If x ∈ F+(U∪V ), then F (x) ⊆ U∪V and hence x ∈ F+(U)∪F+(V ). Moreover, since F is
surjective, there exist x and y in X such that F (x) ⊆ U and F (y) ⊆ V ; hence x ∈ F+(U)
and y ∈ F+(V ). Therefore, we obtain the following:

(1) F+(U) ∪ F+(V ) = F+(U ∪ V ) = X;

(2) F+(U) ∩ F+(V ) = F+(U ∩ V ) = ∅;

(3) F+(U) ̸= ∅ and F+(V ) ̸= ∅.
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Next, we shall show that F+(U) and F+(V ) are τ1τ2-open in X. (i) Let F be upper
weakly s-(τ1, τ2)-continuous. By Theorem 1,

F+(V ) ⊆ τ1τ2-Int(F
+(σ1σ2-Cl(V ))) = τ1τ2-Int(F

+(V ))

since V is σ1σ2-clopen. Thus, F+(V ) = τ1τ2-Int(F
+(V )) and hence F+(V ) is τ1τ2-open

in X. Similarly, we obtain F+(U) is τ1τ2-open in X. This shows that (X, τ1, τ2) is not
τ1τ2-connected. (ii) Let F be lower weakly s-(τ1, τ2)-continuous. Since V is a σ1σ2-clopen
set with σ1σ2-connected complement, by Theorem 2

τ1τ2-Cl(F
+(V )) ⊆ F+(σ1σ2-Cl(V )) = F+(V ).

Thus, F+(V ) = τ1τ2-Cl(F
+(V )) and hence F+(V ) is τ1τ2-closed in X. Therefore, F+(U)

is τ1τ2-open in X. Similarly, we obtain F+(V ) is τ1τ2-open in X. Consequently, this shows
that (X, τ1, τ2) is not τ1τ2-connected. This completes the proof.

The τ1τ2-frontier [26] of a subset A of a bitopological space (X, τ1, τ2), denoted by
τ1τ2-fr(A), is defined by τ1τ2-fr(A) = τ1τ2-Cl(A)∩τ1τ2-Cl(X−A) = τ1τ2-Cl(A)−τ1τ2-Int(A).

Theorem 10. The set of all points x ∈ X at which a multifunction

F : (X, τ1, τ2) → (Y, σ1, σ2)

is not upper weakly s-(τ1, τ2)-continuous is identical with the union of the τ1τ2-frontier of
the upper inverse images of the σ1σ2-closure of σ1σ2-open sets containing F (x) and having
σ1σ2-connected complement.

Proof. Let x be a point of X at which F is not upper weakly s-(τ1, τ2)-continuous.
Then, there exists a σ1σ2-open set V of Y containing F (x) and having σ1σ2-connected
complement such that U ∩ (X − F+(σ1σ2-Cl(V ))) ̸= ∅ for every τ1τ2-open set U of X
containing x. Then, we have x ∈ τ1τ2-Cl(X − F+(σ1σ2-Cl(V ))) and hence

x ∈ τ1τ2-fr(F
+(σ1σ2-Cl(V )))

since x ∈ F+(V ) ⊆ τ1τ2-Cl(F
+(σ1σ2-Cl(V ))).

Conversely, suppose that V is a σ1σ2-open set of Y containing F (x) and having σ1σ2-
connected complement such that x ∈ τ1τ2-fr(F

+(σ1σ2-Cl(V ))). If F is upper weakly
s-(τ1, τ2)-continuous at x ∈ X, there exists a τ1τ2-open set U of X containing x such that
F (U) ⊆ σ1σ2-Cl(V ); hence U ⊆ F+(σ1σ2-Cl(V )). Thus,

x ∈ U ⊆ τ1τ2-Int(F
+(σ1σ2-Cl(V ))).

This contradicts that x ∈ τ1τ2-fr(F
+(σ1σ2-Cl(V ))).

Theorem 11. The set of all points x ∈ X at which a multifunction

F : (X, τ1, τ2) → (Y, σ1, σ2)

is not lower weakly s-(τ1, τ2)-continuous is identical with the union of the τ1τ2-frontier of
the lower inverse images of the σ1σ2-closure of σ1σ2-open sets meeting F (x) and having
σ1σ2-connected complement.
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Proof. The proof is similar to that of Theorem 10.

A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is said to be injective if x ̸= y implies that
F (x) ∩ F (y) = ∅.

Definition 6. [31] A bitopological space (X, τ1, τ2) is said to be (τ1, τ2)-T2 if for any pair
of distinct points x, y in X, there exist disjoint τ1τ2-open sets U and V of X containing x
and y, respectively.

Definition 7. A bitopological space (X, τ1, τ2) is said to be strongly s-(τ1, τ2)-normal if for
every disjoint τ1τ2-closed sets F and K of X, there exist τ1τ2-open sets U and V having
τ1τ2-connected complements such that F ⊆ U , K ⊆ V and τ1τ2-Cl(U) ∩ τ1τ2-Cl(V ) = ∅.

Theorem 12. If F : (X, τ1, τ2) → (Y, σ1, σ2) is an injective upper weakly s-(τ1, τ2)-
continuous multifunction into a strongly s-(τ1, τ2)-normal space (Y, σ1, σ2) and F (x) is
σ1σ2-closed for each x ∈ X, then (X, τ1, τ2) is (τ1, τ2)-T2.

Proof. For any distinct points x, y of X, we have F (x)∩F (y) = ∅ since F is injective.
Since F (x) is σ1σ2-closed for each x ∈ X and (Y, σ1, σ2) is strongly s-(τ1, τ2)-normal,
there exist σ1σ2-open sets V and W of Y having σ1σ2-connected complements such that
F (x) ⊆ V , F (y) ⊆ W and σ1σ2-Cl(V ) ∩ σ1σ2-Cl(W ) = ∅. Since F is upper weakly s-
(τ1, τ2)-continuous, there exist τ1τ2-open sets G,U of X containing x, y, respectively, such
that F (G) ⊆ V and F (U) ⊆ W . Thus, G ∩ U = ∅ and hence (X, τ1, τ2) is (τ1, τ2)-T2.

Definition 8. [64] A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is said to be upper s-
(τ1, τ2)-continuous at x ∈ X if for each σ1σ2-open set V of Y containing F (x) and having
σ1σ2-connected complement, there exists a τ1τ2-open set U of X containing x such that
F (U) ⊆ V . A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is said to be upper s-(τ1, τ2)-
continuous if F has this property at each point x of X.

Lemma 5. [64] For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following properties
are equivalent:

(1) F is upper s-(τ1, τ2)-continuous;

(2) F+(V ) is τ1τ2-open in X for every σ1σ2-open set V of Y having σ1σ2-connected
complement;

(3) F−(K) is τ1τ2-closed in X for every σ1σ2-connected σ1σ2-closed set K of Y ;

(4) τ1τ2-Cl(F
−(B)) ⊆ F−(σ1σ2-Cl(B)) for every subset B of Y having the σ1σ2-connected

σ1σ2-closure;

(5) F+(σ1σ2-Int(B)) ⊆ τ1τ2-Int(F
+(B)) for every subset B of Y such that Y−σ1σ2-Int(B)

is σ1σ2-connected.

Theorem 13. If F : (X, τ1, τ2) → (Y, σ1, σ2) is upper weakly s-(τ1, τ2)-continuous and
satisfies F+(σ1σ2-Cl(V )) ⊆ F+(V ) for every σ1σ2-open set V of Y having σ1σ2-connected
complement, then F is upper s-(τ1, τ2)-continuous.
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Proof. Let V be any σ1σ2-open set of Y having σ1σ2-connected complement. Since F
is upper weakly s-(τ1, τ2)-continuous, by Theorem 1 we have

F+(V ) ⊆ τ1τ2-Int(F
+(σ1σ2-Cl(V ))) ⊆ τ1τ2-Int(F

+(V ))

and hence F+(V ) is τ1τ2-open in X. By Lemma 5, F is upper s-(τ1, τ2)-continuous.

Definition 9. A bitopological space (X, τ1, τ2) is said to be s-(τ1, τ2)-normal if for each
disjoint τ1τ2-closed sets F and K of X, there exist τ1τ2-open sets U and V having τ1τ2-
connected complements such that F ⊆ U , K ⊆ V and U ∩ V = ∅.

Theorem 14. Let F : (X, τ1, τ2) → (Y, σ1, σ2) be a multifunction such that F (x) is σ1σ2-
closed in Y for each x ∈ X and (Y, σ1, σ2) is s-(σ1, σ2)-normal. Then, F is upper weakly
s-(τ1, τ2)-continuous if and only if F is upper s-(τ1, τ2)-continuous.

Proof. Suppose that F is upper weakly s-(τ1, τ2)-continuous. Let x ∈ X and G be
any σ1σ2-open set of Y containing F (x) and having σ1σ2-connected complement. Since
F (x) is σ1σ2-closed in Y , by the s-(σ1, σ2)-normality of (Y, σ1, σ2) there exist σ1σ2-open
sets V and W having σ1σ2-connected complements such that F (x) ⊆ V , Y −G ⊆ W and
V ∩W = ∅. Thus, F (x) ⊆ V ⊆ σ1σ2-Cl(V ) ⊆ σ1σ2-Cl(Y −W ) = Y −W . Since F is upper
weakly s-(τ1, τ2)-continuous, there exists a τ1τ2-open set U of X containing x such that
F (U) ⊆ σ1σ2-Cl(V ) ⊆ G. This shows that F is upper s-(τ1, τ2)-continuous. The converse
is obvious.

Definition 10. [64] A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is said to be lower s-
(τ1, τ2)-continuous at x ∈ X if for each σ1σ2-open set V of Y such that F (x)∩ V ̸= ∅ and
having σ1σ2-connected complement, there exists a τ1τ2-open set U of X containing x such
that F (z) ∩ V ̸= ∅ for each z ∈ U . A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is said to
be lower s-(τ1, τ2)-continuous if F has this property at each point x of X.

Theorem 15. Let F : (X, τ1, τ2) → (Y, σ1, σ2) be a multifunction such that F (x) is σ1σ2-
open in Y for each x ∈ X. Then, F is lower weakly s-(τ1, τ2)-continuous if and only if F
is lower s-(τ1, τ2)-continuous.

Proof. Suppose that F is lower weakly s-(τ1, τ2)-continuous. Let x ∈ X and V be any
σ1σ2-open set of Y such that F (x)∩V ̸= ∅ and having σ1σ2-connected complement. Since
F is lower weakly s-(τ1, τ2)-continuous, there exists a τ1τ2-open set U of X containing x
such that σ1σ2-Cl(V ) ∩ F (z) ̸= ∅ for each z ∈ U . Since F (z) is σ1σ2-open, F (z) ∩ V ̸= ∅
for each z ∈ U and hence F is lower s-(τ1, τ2)-continuous. The converse is obvious.
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