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1. Introduction

The concept of quasi continuous functions was introduced by Marcus [44]. Popa [48] in-
troduced and investigated the notion of almost quasi continuous functions. Neubrunnovaá
[45] showed that quasi continuity is equivalent to semi-continuity due to Levine [42]. Popa
and Noiri [50] introduced the concept of almost quasi continuous multifunctions and inves-
tigated some characterizations of such multifunctions. Malghan and Hanchinamani [43]
introduced the notion of N-continuous functions. Noiri and Ergun [46] investigated some
characterizations of N-continuous functions. Viriyapong and Boonpok [68] investigated
some characterizations of (Λ, sp)-continuous functions by utilizing the notions of (Λ, sp)-
open sets and (Λ, sp)-closed sets due to Boonpok and Khampakdee [12]. Dungthaisong
et al. [35] introduced and studied the concept of g(m,n)-continuous functions. Duangphui

et al. [34] introduced and investigated the notion of (µ, µ′)(m,n)-continuous functions.
Srisarakham et al. [60] introduced and studied the concept of almost (Λ, p)-continuous
functions. Furthermore, several characterizations of strongly θ(Λ, p)-continuous func-
tions, almost strongly θ(Λ, p)-continuous functions, θ(Λ, p)-continuous functions, weakly
(Λ, b)-continuous functions, θ(⋆)-precontinuous functions, (Λ, p(⋆))-continuous functions,
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⋆-continuous functions, θ-I -continuous functions, almost (g,m)-continuous functions,
pairwise almost M -continuous functions, (τ1, τ2)-continuous functions, almost (τ1, τ2)-
continuous functions, weakly (τ1, τ2)-continuous functions, slightly (τ1, τ2)s-continuous
functions and δ(τ1, τ2)-continuous functions were presented in [63], [16], [52], [25], [11], [8],
[10], [4], [1], [2], [26], [23], [18], [57] and [51], respectively. Srisarakham et al. [61] intro-
duced and studied the concept of faintly (τ1, τ2)-continuous functions. Thongmoon et al.
[66] introduced and investigated the notion of rarely (τ1, τ2)-continuous functions. Chiang-
pradit et al. [32] introduced and studied the concept of weakly quasi (τ1, τ2)-continuous
functions. Kong-ied at al. [41] introduced and investigated the notion of almost quasi
(τ1, τ2)-continuous functions.

In 2003, Ekici [36] introduced and studied the concept of nearly continuous multifunc-
tions as a generalization of semi-continuous multifunctions and N-continuous functions.
Ekici [37] introduced and investigated the notion of almost nearly continuous multifunc-
tions as a generalization of nearly continuous multifunctions and almost continuous mul-
tifunctions [48]. Noiri and Popa [47] introduced and studied the notion of almost nearly
m-continuous multifunctions as multifunctions from a set satisfying some minimal condi-
tions into a topological spaces. Carpintero et al. [30] introduced and studied the notion
of nearly ω-continuous multifunctions as a weaker form of nearly continuous multifunc-
tions. Rosas et al. [58] introduced and studied upper and lower almost nearly continuous
multifunctions using notions of topological ideals. Moreover, several characterizations
of (τ1, τ2)δ-semicontinuous multifunctions, almost weakly (τ1, τ2)-continuous multifunc-
tions, weakly quasi (Λ, sp)-continuous multifunctions, ⋆-continuous multifunctions, β(⋆)-
continuous multifunctions, α-⋆-continuous multifunctions, almost α-⋆-continuous multi-
functions, almost quasi ⋆-continuous multifunctions, weakly α-⋆-continuous multifunc-
tions, sβ(⋆)-continuous multifunctions, weakly sβ(⋆)-continuous multifunctions, θ(⋆)-quasi
continuous multifunctions, almost ı⋆-continuous multifunctions, weakly (Λ, sp)-continuous
multifunctions, α(Λ, sp)-continuous multifunctions, almost α(Λ, sp)-continuous multifunc-
tions, weakly α(Λ, sp)-continuous multifunctions, almost β(Λ, sp)-continuous multifunc-
tions, slightly (Λ, sp)-continuous multifunctions, (τ1, τ2)-continuous multifunctions, al-
most (τ1, τ2)-continuous multifunctions, weakly (τ1, τ2)-continuous multifunctions, weakly
quasi (τ1, τ2)-continuous multifunctions, almost quasi (τ1, τ2)-continuous multifunctions,
c-(τ1, τ2)-continuous multifunctions, c-quasi (τ1, τ2)-continuous multifunctions, s-(τ1, τ2)p-
continuous multifunctions, slightly (τ1, τ2)-continuous multifunctions and slightly (τ1, τ2)p-
continuous multifunctions were established in [5], [28], [69], [3], [7], [17], [24], [6], [21], [20],
[15], [9], [19], [22], [38], [13], [27], [62], [14], [55], [40], [65], [56], [54], [39], [53], [73], [70]
and [71], respectively. Rychlewicz [59] introduced and studied the notion of nearly quasi-
continuous multifunctions as a generalization of almost nearly continuous multifunctions
and almost quasi continuous multifunctions [49]. In this paper, we introduce the con-
cept of almost nearly quasi (τ1, τ2)-continuous multifunctions. We also investigate several
characterizations of almost quasi (τ1, τ2)-continuous multifunctions.
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2. Preliminaries

Throughout the present paper, spaces (X, τ1, τ2) and (Y, σ1, σ2) (or simply X and
Y ) always mean bitopological spaces on which no separation axioms are assumed unless
explicitly stated. Let A be a subset of a bitopological space (X, τ1, τ2). The closure of A
and the interior of A with respect to τi are denoted by τi-Cl(A) and τi-Int(A), respectively,
for i = 1, 2. A subset A of a bitopological space (X, τ1, τ2) is called τ1τ2-closed [29] if
A = τ1-Cl(τ2-Cl(A)). The complement of a τ1τ2-closed set is called τ1τ2-open. Let A be
a subset of a bitopological space (X, τ1, τ2). The intersection of all τ1τ2-closed sets of X
containing A is called the τ1τ2-closure [29] of A and is denoted by τ1τ2-Cl(A). The union
of all τ1τ2-open sets of X contained in A is called the τ1τ2-interior [29] of A and is denoted
by τ1τ2-Int(A).

Lemma 1. [29] Let A and B be subsets of a bitopological space (X, τ1, τ2). For the τ1τ2-
closure, the following properties hold:

(1) A ⊆ τ1τ2-Cl(A) and τ1τ2-Cl(τ1τ2-Cl(A)) = τ1τ2-Cl(A).

(2) If A ⊆ B, then τ1τ2-Cl(A) ⊆ τ1τ2-Cl(B).

(3) τ1τ2-Cl(A) is τ1τ2-closed.

(4) A is τ1τ2-closed if and only if A = τ1τ2-Cl(A).

(5) τ1τ2-Cl(X −A) = X − τ1τ2-Int(A).

A subset A of a bitopological space (X, τ1, τ2) is said to be τ1τ2-clopen [29] if A is
both τ1τ2-open and τ1τ2-closed. A subset A of a bitopological space (X, τ1, τ2) is said
to be (τ1, τ2)r-open [67] (resp. (τ1, τ2)s-open [5], (τ1, τ2)p-open [5], (τ1, τ2)β-open [5]) if
A = τ1τ2-Int(τ1τ2-Cl(A)) (resp. A ⊆ τ1τ2-Cl(τ1τ2-Int(A)), A ⊆ τ1τ2-Int(τ1τ2-Cl(A)), A ⊆
τ1τ2-Cl(τ1τ2-Int(τ1τ2-Cl(A)))). The complement of a (τ1, τ2)r-open (resp. (τ1, τ2)s-open,
(τ1, τ2)p-open, (τ1, τ2)β-open) set is called (τ1, τ2)r-closed (resp. (τ1, τ2)s-closed, (τ1, τ2)p-
closed, (τ1, τ2)β-closed). A subset A of a bitopological space (X, τ1, τ2) is said to be
α(τ1, τ2)-open [72] if A ⊆ τ1τ2-Int(τ1τ2-Cl(τ1τ2-Int(A))). The complement of an α(τ1, τ2)-
open set is said to be α(τ1, τ2)-closed. A subset A of a bitopological space (X, τ1, τ2) is
said to be N (τ1, τ2)-closed [64] if every cover of A by (τ1, τ2)r-open sets of X has a finite
subcover.

Lemma 2. For a subset A of a bitopological space (X, τ1, τ2), the following properties
hold:

(1) (τ1, τ2)-sCl(A) = τ1τ2-Int(τ1τ2-Cl(A)) ∪A [5];

(2) (τ1, τ2)-sInt(A) = τ1τ2-Cl(τ1τ2-Int(A)) ∩A [54].

Lemma 3. [33] Let (X, τ1, τ2) be a bitopological space. If V is a τ1τ2-open set of X hav-
ing N (τ1, τ2)-closed complement, then τ1τ2-Int(τ1τ2-Cl(V )) is a (τ1, τ2)r-open set having
N (τ1, τ2)-closed complement.
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By a multifunction F : X → Y , we mean a point-to-set correspondence from X into
Y , and we always assume that F (x) ̸= ∅ for all x ∈ X. For a multifunction F : X → Y , we
shall denote the upper and lower inverse of a set B of Y by F+(B) and F−(B), respectively,
that is, F+(B) = {x ∈ X | F (x) ⊆ B} and F−(B) = {x ∈ X | F (x) ∩ B ̸= ∅}. In
particular, F−(y) = {x ∈ X | y ∈ F (x)} for each point y ∈ Y . For each A ⊆ X,
F (A) = ∪x∈AF (x).

3. Upper almost nearly quasi (τ1, τ2)-continuous multifunctions and
lower almost nearly quasi (τ1, τ2)-continuous multifunctions

In this section, we introduce the notions of upper almost nearly quasi (τ1, τ2)-continuous
multifunctions and lower almost nearly quasi (τ1, τ2)-continuous multifunctions. Further-
more, several characterizations of upper almost nearly quasi (τ1, τ2)-continuous multifunc-
tions and lower almost nearly quasi (τ1, τ2)-continuous multifunctions are discussed.

Definition 1. A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is said to be upper almost
nearly quasi (τ1, τ2)-continuous at a point x ∈ X if for each σ1σ2-open set V of Y having
N (σ1, σ2)-closed complement such that x ∈ F+(V ) and for every τ1τ2-open set U of
X containing x, there exists a nonempty τ1τ2-open set W such that W ⊆ U and W ⊆
F+(σ1σ2-Int(σ1σ2-Cl(V ))). A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is said to be
upper almost nearly quasi (τ1, τ2)-continuous if F is upper almost nearly quasi (τ1, τ2)-
continuous at each point x of X.

Theorem 1. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following properties are
equivalent:

(1) F is upper almost nearly quasi (τ1, τ2)-continuous;

(2) for each x ∈ X and for each (σ1, σ2)r-open set V of Y having N (σ1, σ2)-closed
complement such that x ∈ F+(V ) and for every τ1τ2-open set U of X containing x,
there exists a nonempty τ1τ2-open set W such that W ⊆ U and W ⊆ F+(V );

(3) for each x ∈ X and for every σ1σ2-closed and N (σ1, σ2)-closed set K of Y such that
x ∈ F+(Y −K) and for every τ1τ2-closed set H of X such that x ∈ X−H, there exists
a τ1τ2-closed set M such that H ⊆ M , M ̸= X and F−(σ1σ2-Cl(σ1σ2-Int(K))) ⊆ M ;

(4) for each x ∈ X and for every σ1σ2-open set V of Y having N (σ1, σ2)-closed com-
plement such that x ∈ F+(V ), there exists a (τ1, τ2)s-open set U of X containing x
such that U ⊆ F+(σ1σ2-Int(σ1σ2-Cl(V )));

(5) F+(V ) is (τ1, τ2)s-open in X for every (σ1, σ2)r-open set V of Y having N (σ1, σ2)-
closed complement;

(6) F−(K) is (τ1, τ2)s-closed in X for every (σ1, σ2)r-closed and N (σ1, σ2)-closed set
K of Y .



J. Khampakdee, A. Sama-Ae, C. Boonpok / Eur. J. Pure Appl. Math, 18 (1) (2025), 5720 5 of 15

Proof. (1) ⇒ (2): Let x ∈ X and V be any (σ1, σ2)r-open set of Y having N (σ1, σ2)-
closed complement such that F (x) ⊆ V and let U be any τ1τ2-open set of X containing
x. By (1), there exists a nonempty τ1τ2-open set W such that W ⊆ U and

W ⊆ F+(σ1σ2-Int(σ1σ2-Cl(V ))) = F+(V ).

(2) ⇒ (1): Let x ∈ X and V be any (σ1, σ2)r-open set of Y having N (σ1, σ2)-closed
complement such that F (x) ⊆ V and let U be any τ1τ2-open set of X containing x. By
Lemma 3, we have σ1σ2-Int(σ1σ2-Cl(V )) is (σ1, σ2)r-open and Y −σ1σ2-Int(σ1σ2-Cl(V )) is
N (σ1, σ2)-closed. Since F (x) ⊆ σ1σ2-Int(σ1σ2-Cl(V )), therefore there exists a nonempty
τ1τ2-open set W such that W ⊆ U and W ⊆ F+(σ1σ2-Int(σ1σ2-Cl(V ))).

(1) ⇒ (3): Let x ∈ X and K be any σ1σ2-closed N (σ1, σ2)-closed set of Y such that
x ∈ F+(Y −K). It is clear that Y −K is a σ1σ2-open set of Y having N (σ1, σ2)-closed com-
plement. Let H be a τ1τ2-closed set of X such that x ∈ X−H. By (1), there there exists a
nonempty τ1τ2-open setW such thatW ⊆ X−H andW ⊆ F+(σ1σ2-Int(σ1σ2-Cl(Y−K))).
Let us observe that

σ1σ2-Int(σ1σ2-Cl(Y −K)) = σ1σ2-Int(Y − σ1σ2-Int(K))

= Y − σ1σ2-Cl(σ1σ2-Int(K)).

It follows that W ⊆ F+(Y − σ1σ2-Cl(σ1σ2-Int(K))) = X − F−(σ1σ2-Cl(σ1σ2-Int(K))).
Let M = X −W , then X −M ⊆ X − F−(σ1σ2-Cl(σ1σ2-Int(K))) since

F−(σ1σ2-Cl(σ1σ2-Int(K))) ⊆ M.

It is evident that M is a τ1τ2-closed set and M ̸= X.
(3) ⇒ (1): Let x ∈ X and V be any σ1σ2-open set of Y having N (σ1, σ2)-closed

complement such that F (x) ⊆ V . Then, we have K = Y −V is (σ1, σ2)-closed N (σ1, σ2)-
closed set of Y and x ∈ F+(Y −K). Let U be a τ1τ2-open set of X containing x. Then,
H = X−U is a τ1τ2-closed set such that x ∈ X−H. By the hypothesis, there exists a τ1τ2-
closed set M such that H ⊆ M , M ̸= X and F−(σ1σ2-Cl(σ1σ2-Int(K))) ⊆ M . The last
inclusion implies that X −F+(σ1σ2-Int(σ1σ2-Cl(V ))) ⊆ M = X −W , where W = X −M
is a nonempty τ1τ2-open set. It was shown that W ⊆ F+(σ1σ2-Int(σ1σ2-Cl(V ))). It is
easy to see that W ⊆ U .

(1) ⇒ (4): Let x ∈ X and V be any σ1σ2-open set of Y having N (σ1, σ2)-closed com-
plement such that F (x) ⊆ V . Then, for any τ1τ2-open set U of X containing x, there exists
a nonempty τ1τ2-open set WU such that WU ⊆ U and WU ⊆ F+(σ1σ2-Int(σ1σ2-Cl(V ))).
Let G = {x} ∪ [∪{WU | U is a τ1τ2-open set containing x}]. Then, we have

G ⊆ τ1τ2-Cl(τ1τ2-Int(G))

and hence G is a (τ1, τ2)s-open set such that x ∈ G and G ⊆ F+(σ1σ2-Int(σ1σ2-Cl(V ))).
(4) ⇒ (1): Let x ∈ X and V be any σ1σ2-open set of Y having N (σ1, σ2)-closed com-

plement such that F (x) ⊆ V . Let U be a τ1τ2-open set of X containing x. By the hypothe-
sis, there exists a (τ1, τ2)s-open set G such that x ∈ G and G ⊆ F+(σ1σ2-Int(σ1σ2-Cl(V ))).
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Let W = τ1τ2-Int(G) ∩ U . Since U ∩ G ̸= ∅, we have W ̸= ∅. It is easy to check that
W ⊆ U and W ⊆ G. Thus, W ⊆ F+(σ1σ2-Int(σ1σ2-Cl(V ))).

(4) ⇒ (5): Let V be any (σ1, σ2)r-open set of Y having N (σ1, σ2)-closed complement
and x ∈ F+(V ). Then F (x) ⊆ V . Under the assumption, there exists a (τ1, τ2)s-open set
Gx such that x ∈ Gx and Gx ⊆ F+(V ) = F+(σ1σ2-Int(σ1σ2-Cl(V ))). It is easily seen that
the set G = ∪{Gx | x ∈ F+(V )} is (τ1, τ2)s-open and equal to the set F+(V ).

(5) ⇒ (4): Let x ∈ X and V be any σ1σ2-open set of Y having N (σ1, σ2)-closed
complement such that F (x) ⊆ V . Then by Lemma 3, σ1σ2-Int(σ1σ2-Cl(V )) is a (σ1, σ2)r-
open set having N (σ1, σ2)-closed complement. By (5), we have F+(σ1σ2-Int(σ1σ2-Cl(V )))
is (σ1, σ2)s-open in X. Of course, x ∈ F+(σ1σ2-Int(σ1σ2-Cl(V ))).

(5) ⇒ (6): Let K be any (σ1, σ2)r-closed N (σ1, σ2)-closed set of Y . Then, Y − K
is a (σ1, σ2)r-open set of Y having N (σ1, σ2)-closed complement. By (5), F+(Y −K) =
X − F−(K) is (τ1, τ2)s-open in X and hence F−(K) is (τ1, τ2)s-closed in X.

(6) ⇒ (5): The proof is similar to the above.

Definition 2. A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is said to be lower almost
nearly quasi (τ1, τ2)-continuous at a point x ∈ X if for each σ1σ2-open set V of Y having
N (σ1, σ2)-closed complement such that x ∈ F−(V ) and for every τ1τ2-open set of X
containing x, there exists a nonempty τ1τ2-open set W such that W ⊆ U and W ⊆
F−(σ1σ2-Int(σ1σ2-Cl(V ))). A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is said to be
lower almost nearly quasi (τ1, τ2)-continuous if F is lower almost nearly quasi (τ1, τ2)-
continuous at each point x of X.

Theorem 2. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following properties are
equivalent:

(1) F is lower almost nearly quasi (τ1, τ2)-continuous;

(2) for each x ∈ X and for each (σ1, σ2)r-open set V of Y having N (σ1, σ2)-closed
complement such that x ∈ F−(V ) and for every τ1τ2-open set U of X containing x,
there exists a nonempty τ1τ2-open set W such that W ⊆ U and W ⊆ F−(V );

(3) for each x ∈ X and for every σ1σ2-closed and N (σ1, σ2)-closed set K of Y such that
x ∈ F−(Y −K) and for every τ1τ2-closed set H of X such that x ∈ X−H, there exists
a τ1τ2-closed set M such that H ⊆ M , M ̸= X and F+(σ1σ2-Cl(σ1σ2-Int(K))) ⊆ M ;

(4) for each x ∈ X and for every σ1σ2-open set V of Y having N (σ1, σ2)-closed com-
plement such that x ∈ F−(V ), there exists a (τ1, τ2)s-open set U of X containing x
such that U ⊆ F−(σ1σ2-Int(σ1σ2-Cl(V )));

(5) F−(V ) is (τ1, τ2)s-open in X for every (σ1, σ2)r-open set V of Y having N (σ1, σ2)-
closed complement;

(6) F+(K) is (τ1, τ2)s-closed in X for every (σ1, σ2)r-closed and N (σ1, σ2)-closed set
K of Y .
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Proof. The proof is similar to that of Theorem 1.

For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), a multifunction

sClF⊛ : (X, τ1, τ2) → (Y, σ1, σ2)

is defined in [31] as follows: sClF⊛(x) = (σ1, σ2)-sCl(F (x)) for each x ∈ X.

Theorem 3. A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is upper almost nearly quasi
(τ1, τ2)-continuous if and only if sClF⊛ : (X, τ1, τ2) → (Y, σ1, σ2) is upper almost nearly
quasi (τ1, τ2)-continuous.

Proof. Suppose that F is upper almost nearly quasi (τ1, τ2)-continuous. Let x ∈ X
and V be any σ1σ2-open set of Y having N (σ1, σ2)-closed complement such that

x ∈ sClF+
⊛ (V ).

Then, we have sClF⊛(x) ⊆ V and hence F (x) ⊆ V . Since F is upper almost nearly quasi
(τ1, τ2)-continuous, by Theorem 1 there exists a (τ1, τ2)s-open set U of X containing x
such that U ⊆ F+(σ1σ2-Int(σ1σ2-Cl(V ))). Thus by Lemma 2, U ⊆ F+((σ1, σ2)-sCl(V )).
Therefore, F (U) ⊆ (σ1, σ2)-sCl(V ). For each u ∈ U , (σ1, σ2)-sCl(F (u)) ⊆ (σ1, σ2)-sCl(V )
and so (σ1, σ2)-sCl(F (U)) ⊆ (σ1, σ2)-sCl(V ). Thus, sClF⊛(U) ⊆ σ1σ2-Int(σ1σ2-Cl(V ))
and hence x ∈ sClF+

⊛ (σ1σ2-Int(σ1σ2-Cl(V ))). By Theorem 1, sClF⊛ is upper almost
nearly quasi (τ1, τ2)-continuous.

Theorem 4. A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is lower almost nearly quasi
(τ1, τ2)-continuous if and only if sClF⊛ : (X, τ1, τ2) → (Y, σ1, σ2) is lower almost nearly
quasi (τ1, τ2)-continuous.

Proof. The proof is similar to that of Theorem 3.

Recall that a subset A of a bitopological space (X, τ1, τ2) is said to be τ1τ2-clopen [29]
if A is both τ1τ2-open and τ1τ2-closed.

Definition 3. [29] A bitopological space (X, τ1, τ2) is said to be τ1τ2-connected if X cannot
be written as the union of two disjoint nonempty τ1τ2-open sets.

Definition 4. [33] A bitopological space (X, τ1, τ2) is said to be N (τ1, τ2)-connected if X
cannot be written as the union of two disjoint nonempty τ1τ2-open sets having N (τ1, τ2)-
closed complements.

Definition 5. A bitopological space (X, τ1, τ2) is said to be (τ1, τ2)s-connected if X cannot
be written as the union of two disjoint nonempty (τ1, τ2)s-open sets.

Theorem 5. If F : (X, τ1, τ2) → (Y, σ1, σ2) is an upper or lower almost nearly quasi
(τ1, τ2)-continuous surjective multifunction such that F (x) is σ1σ2-connected for every
x ∈ X and (X, τ1, τ2) is (τ1, τ2)s-connected, then (Y, σ1, σ2) is N (σ1, σ2)-connected.
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Proof. Suppose that (Y, σ1, σ2) is not N (σ1, σ2)-connected. There exist nonempty
σ1σ2-open sets U and V of Y having N (σ1, σ2)-closed complements such that U ∩ V = ∅
and U ∪ V = Y . Since F (x) is σ1σ2-connected for each x ∈ X, either F (x) ⊆ U or
F (x) ⊆ V . If x ∈ F+(U∪V ), then F (x) ⊆ U∪V and hence x ∈ F+(U)∪F+(V ). Moreover,
since F is surjective, there exist x and y in X such that F (x) ⊆ U and F (y) ⊆ V ; hence
x ∈ F+(U) and y ∈ F+(V ). Therefore, we obtain the following:

(1) F+(U) ∪ F+(V ) = F+(U ∪ V ) = X;

(2) F+(U) ∩ F+(V ) = F+(U ∩ V ) = ∅;

(3) F+(U) ̸= ∅ and F+(V ) ̸= ∅.

Next, we show that F+(U) and F+(V ) are (τ1, τ2)s-open in X. (i) Let F be upper almost
nearly quasi (τ1, τ2)-continuous. Since U and V are σ1σ2-clopen in Y ,

σ1σ2-Int(σ1σ2-Cl(U)) = U

and σ1σ2-Int(σ1σ2-Cl(V )) = V . Thus, U and V are (σ1, σ2)r-open sets having N (σ1, σ2)-
closed complements. Since F is upper almost nearly quasi (τ1, τ2)-continuous, by Theorem
1, F+(U) and F+(V ) are (τ1, τ2)s-open sets. (ii) Let F be lower almost nearly quasi
(τ1, τ2)-continuous. By Theorem 2, F+(U) is (τ1, τ2)s-closed inX because U is σ1σ2-clopen
in Y . Thus, F+(V ) is (τ1, τ2)s-open in X. Similarly, we have F+(U) is (τ1, τ2)-open in X.
Therefore, (X, τ1, τ2) is not (τ1, τ2)s-connected.

4. Almost nearly quasi (τ1, τ2)-continuous multifunctions

In this section, we introduce the concept of almost nearly quasi (τ1, τ2)-continuous
multifunctions. We also investigate some characterizations of almost nearly quasi (τ1, τ2)-
continuous multifunctions.

Definition 6. A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is said to be almost nearly
quasi (τ1, τ2)-continuous at a point x ∈ X if for each σ1σ2-open sets V1, V2 of Y having
N (σ1, σ2)-closed complements such that x ∈ F+(V1) ∩ F−(V2) and for every τ1τ2-open
set U of X containing x, there exists a nonempty τ1τ2-open set W such that W ⊆ U ,
F (W ) ⊆ (σ1, σ2)-sCl(V1) and (σ1, σ2)-sCl(V2)∩F (z) ̸= ∅ for every z ∈ W . A multifunction
F : (X, τ1, τ2) → (Y, σ1, σ2) is said to be almost nearly quasi (τ1, τ2)-continuous if F is
almost nearly quasi (τ1, τ2)-continuous at each point x of X.

Theorem 6. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following properties are
equivalent:

(1) F is almost nearly quasi (τ1, τ2)-continuous at a point x ∈ X;

(2) for every σ1σ2-open sets V1, V2 of Y having N (σ1, σ2)-closed complements such that
x ∈ F+(V1)∩F−(V2), there exists a (τ1, τ2)s-open set U of X containing x such that
F (U) ⊆ (σ1, σ2)-sCl(V1) and (σ1, σ2)-sCl(V2) ∩ F (z) ̸= ∅ for every z ∈ U ;
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(3) x ∈ (τ1, τ2)-sInt(F
+((σ1, σ2)-sCl(V1)) ∩ F−((σ1, σ2)-sCl(V2))) for every σ1σ2-open

sets V1, V2 of Y having N (σ1, σ2)-closed complements such that x ∈ F+(V1) ∩
F−(V2);

(4) x ∈ τ1τ2-Cl(τ1τ2-Int(F
+((σ1, σ2)-sCl(V1)) ∩ F−((σ1, σ2)-sCl(V2)))) for every σ1σ2-

open sets V1, V2 of Y having N (σ1, σ2)-closed complements such that

x ∈ F+(V1) ∩ F−(V2).

Proof. (1) ⇒ (2): Let U(x) be the family of all τ1τ2-open sets of X containing x.
Let V1, V2 be any σ1σ2-open sets of Y having N (σ1, σ2)-closed complements such that
x ∈ F+(V1) ∩ F−(V2). For each H ∈ U(x), there exists a nonempty τ1τ2-open set GH of
X such that GH ⊆ H, F (GH) ⊆ (σ1, σ2)-sCl(V1) and (σ1, σ2)-sCl(V2)∩F (z) ̸= ∅ for every
z ∈ GH . Let W = ∪{GH | H ∈ U(x)}. Then, W is τ1τ2-open in X, x ∈ τ1τ2-Cl(W ),
F (W ) ⊆ (σ1, σ2)-sCl(V1) and (σ1, σ2)-sCl(V2) ∩ F (w) ̸= ∅ for every w ∈ W . Put U =
W ∪ {x}. Then, W ⊆ U ⊆ τ1τ2-Cl(W ). Thus, U is a (τ1, τ2)s-open set of X containing x
such that F (U) ⊆ ((σ1, σ2)-sCl(V1)) and (σ1, σ2)-sCl(V2) ∩ F (z) ̸= ∅ for every z ∈ U .

(2) ⇒ (3): Let V1, V2 be any σ1σ2-open sets of Y having N (σ1, σ2)-closed complements
such that x ∈ F+(V1) ∩ F−(V2). Then, there exists a (τ1, τ2)s-open set of X containing x
such that F (U) ⊆ (σ1, σ2)-sCl(V1) and (σ1, σ2)-sCl(V2)∩ F (z) ̸= ∅ for every z ∈ U . Thus,
x ∈ U ⊆ F+((σ1, σ2)-sCl(V1)) ∩ F−((σ1, σ2)-sCl(V2)). Since U is (τ1, τ2)s-open, we have
x ∈ (τ1, τ2)-sInt(F

+((σ1, σ2)-sCl(V1)) ∩ F−((σ1, σ2)-sCl(V2))).
(3) ⇒ (4): Let V1, V2 be any σ1σ2-open sets of Y having N (σ1, σ2)-closed complements

such that x ∈ F+(V1) ∩ F−(V2). Now put

U = (τ1, τ2)-sInt(F
+((σ1, σ2)-sCl(V1)) ∩ F−((σ1, σ2)-sCl(V2))).

Then, U is (τ1, τ2)s-open in X and

x ∈ τ1τ2-Cl(τ1τ2-Int(F
+((σ1, σ2)-sCl(V1)) ∩ F−((σ1, σ2)-sCl(V2)))).

(4) ⇒ (1): Let U be any τ1τ2-open set of X containing x and V1, V2 be any σ1σ2-open
sets of Y having N (σ1, σ2)-closed complements such that x ∈ F+(V1) ∩ F−(V2). Then,
we have x ∈ τ1τ2-Cl(τ1τ2-Int(F

+((σ1, σ2)-sCl(V1)) ∩ F−((σ1, σ2)-sCl(V2)))). Put

W = τ1τ2-Int(F
+((σ1, σ2)-sCl(V1)) ∩ F−((σ1, σ2)-sCl(V2))) ∩ U.

Then, W is a nonempty τ1τ2-open set of X such that W ⊆ U , F (W ) ⊆ (σ1, σ2)-sCl(V1)
and (σ1, σ2)-sCl(V2) ∩ F (w) ̸= ∅ for every w ∈ W . This shows that F is almost nearly
quasi (τ1, τ2)-continuous at x.

Theorem 7. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following properties are
equivalent:

(1) F is almost nearly quasi (τ1, τ2)-continuous;
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(2) for each x ∈ X and for every σ1σ2-open sets V1, V2 of Y having N (σ1, σ2)-closed
complements such that x ∈ F+(V1) ∩ F−(V2), there exists a (τ1, τ2)s-open set U of
X containing x such that F (U) ⊆ (σ1, σ2)-sCl(V1) and (σ1, σ2)-sCl(V2) ∩ F (z) ̸= ∅
for every z ∈ U ;

(3) F+(V1) ∩ F−(V2) is (τ1, τ2)s-open in X for every (σ1, σ2)r-open sets V1, V2 of Y
having N (σ1, σ2)-closed complements;

(4) F+(V1) ∩ F−(V2) ⊆ (τ1, τ2)-sInt(F
+((σ1, σ2)-sCl(V1)) ∩ F−((σ1, σ2)-sCl(V2))) for

every σ1σ2-open sets V1, V2 of Y having N (σ1, σ2)-closed complements;

(5)

(τ1, τ2)-sCl(F
−(σ1σ2-Cl(σ1σ2-Int(σ1σ2-Cl(B1)))) ∪ F+(σ1σ2-Cl(σ1σ2-Int(σ1σ2-Cl(B2)))))

⊆ F−(σ1σ2-Cl(B1)) ∪ F+(σ1σ2-Cl(B2))

for every subsets B1, B2 of Y having the N (σ1, σ2)-closed σ1σ2-closure;

(6) F+(V1) ∩ F−(V2) ⊆ τ1τ2-Cl(τ1τ2-Int((F
+((σ1, σ2)-sCl(V1)) ∩ F−((σ1, σ2)-sCl(V2))))

for every σ1σ2-open sets V1, V2 of Y having N (σ1, σ2)-closed complements.

Proof. (1) ⇒ (2): The proof follows immediately from Theorem 6, since F is almost
nearly quasi (τ1, τ2)-continuous at each point of X.

(2) ⇒ (3): Let V1, V2 be any (σ1, σ2)r-open sets of Y having N (σ1, σ2)-closed comple-
ments and x ∈ F+(V1)∩F−(V2). Then, there exists a a (τ1, τ2)s-open set U of X contain-
ing x such that F (U) ⊆ (σ1, σ2)-sCl(V1) and (σ1, σ2)-sCl(V2) ∩ F (z) ̸= ∅ for every z ∈ U .
Thus, x ∈ U ⊆ F+(V1)∩F−(V2) and hence x ∈ (τ1, τ2)-sInt(F

+(V1)∩F−(V2)). Therefore,
F+(V1) ∩ F−(V2) ⊆ (τ1, τ2)-sInt(F

+(V1) ∩ F−(V2)). This shows that F+(V1) ∩ F−(V2) is
(τ1, τ2)s-open in X.

(3) ⇒ (4): Let V1, V2 be any σ1σ2-open sets of Y having N (σ1, σ2)-closed comple-
ments such that x ∈ F+(V1) ∩ F−(V2). Then, we have F (x) ⊆ V1 ⊆ (σ1, σ2)-sCl(V1)
and ∅ ≠ V2 ∩ F (x) ⊆ (σ1, σ2)-sCl(V2) ∩ F (x). Thus, x ∈ F+((σ1, σ2)-sCl(V1)) and
x ∈ F−((σ1, σ2)-sCl(V2)). By (3), we have F+((σ1, σ2)-sCl(V1)) ∩ F−((σ1, σ2)-sCl(V2))
is (τ1, τ2)s-open in X and x ∈ (τ1, τ2)s-Int(F

+((σ1, σ2)-sCl(V1)) ∩ F−((σ1, σ2)-sCl(V2))).
Therefore, F+(V1) ∩ F−(V2) ⊆ (τ1, τ2)-sInt(F

+((σ1, σ2)-sCl(V1)) ∩ F−((σ1, σ2)-sCl(V2))).
(4) ⇒ (5): Let B1, B2 be any subsets of Y having the N (σ1, σ2)-closed σ1σ2-closure.

Then, Y − σ1σ2-Cl(B1) and Y − σ1σ2-Cl(B2) are σ1σ2-open sets of Y having N (σ1, σ2)-
closed complements. Thus by (4), we have

X − (F−(σ1σ2-Cl(B1)) ∪ F+(σ1σ2-Cl(B2)))

= (X − F−(σ1σ2-Cl(B1))) ∩ (X − F+(σ1σ2-Cl(B2)))

= F+(Y − σ1σ2-Cl(B1)) ∩ F−(Y − σ1σ2-Cl(B2))

⊆ (τ1, τ2)-sInt(F
+((σ1, σ2)-sCl(Y − σ1σ2-Cl(B1))) ∩ F−((σ1, σ2)-sCl(Y − σ1σ2-Cl(B2))))

= X − (τ1, τ2)-sCl(F
−(σ1σ2-Cl(σ1σ2-Int(σ1σ2-Cl(B1)))) ∪ F+(σ1σ2-Cl(σ1σ2-Int(σ1σ2-Cl(B2)))))
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and hence

(τ1, τ2)-sCl(F
−(σ1σ2-Cl(σ1σ2-Int(σ1σ2-Cl(B1)))) ∪ F+(σ1σ2-Cl(σ1σ2-Int(σ1σ2-Cl(B2)))))

⊆ F−(σ1σ2-Cl(B1)) ∪ F+(σ1σ2-Cl(B2)).

(5) ⇒ (6): Let V1, V2 be any σ1σ2-open sets of Y having N (σ1, σ2)-closed comple-
ments. Then, Y − V1 and Y − V2 are N (σ1, σ2)-closed and σ1σ2-closed sets of Y . By (5)
and Lemma 2,

τ1τ2-Int(τ1τ2-Cl(F
−(σ1σ2-Cl(σ1σ2-Int(Y − V1))) ∪ F+(Y − σ1σ2-Cl(σ1σ2-Int(V2)))))

⊆ F−(Y − V1) ∪ F+(Y − V2)

= (X − F+(V1)) ∪ (X − F−(V2))

= X − (F+(V1) ∩ F−(V2)).

Moreover, we have

τ1τ2-Int(τ1τ2-Cl(F
−(σ1σ2-Cl(σ1σ2-Int(Y − V1))) ∪ F+(Y − σ1σ2-Cl(σ1σ2-Int(V2)))))

= τ1τ2-Int(τ1τ2-Cl(F
−(Y − σ1σ2-Int(σ1σ2-Cl(V1))) ∪ F+(Y − σ1σ2-Int(σ1σ2-Cl(V2)))))

= τ1τ2-Int(τ1τ2-Cl((X − F+((σ1, σ2)-sCl(V1))) ∪ (X − F−((σ1, σ2)-sCl(V2)))))

= τ1τ2-Int(τ1τ2-Cl(X − (F+((σ1, σ2)-sCl(V1)) ∩ F−((σ1, σ2)-sCl(V2)))))

= X − τ1τ2-Cl(τ1τ2-Int(F
+((σ1, σ2)-sCl(V1)) ∩ F−((σ1, σ2)-sCl(V2)))).

Thus, F+(V1)∩F−(V2) ⊆ τ1τ2-Cl(τ1τ2-Int((F
+((σ1, σ2)-sCl(V1))∩F−((σ1, σ2)-sCl(V2)))).

(6) ⇒ (1): Let x ∈ X and Let V1, V2 be any σ1σ2-open sets of Y having N (σ1, σ2)-
closed complements such that x ∈ F+(V1) ∩ F−(V2). By (6) and Lemma 2, we have

x ∈ F+(V1) ∩ F−(V2) ⊆ (τ1, τ2)-sInt(F
+((σ1, σ2)-sCl(V1)) ∩ F−((σ1, σ2)-sCl(V2))).

Put U = (τ1, τ2)-sInt(F
+((σ1, σ2)-sCl(V1))∩F−((σ1, σ2)-sCl(V2))). Then, U is a (τ1, τ2)s-

open set of X containing x, F (U) ⊆ (σ1, σ2)-sCl(V1) and (σ1, σ2)-sCl(V2) ∩ F (z) ̸= ∅ for
every z ∈ U . This shows that F is almost nearly quasi (τ1, τ2)-continuous.

Theorem 8. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following properties are
equivalent:

(1) F is almost nearly quasi (τ1, τ2)-continuous;

(2) (τ1, τ2)-sCl(F
−(V1)∪F+(V2)) ⊆ F−(σ1σ2-Cl(V1))∪F+(σ1σ2-Cl(V2)) for every (σ1, σ2)β-

open sets V1, V2 of Y having N (σ1, σ2)-closed complements;

(3) (τ1, τ2)-sCl(F
−(V1)∪F+(V2)) ⊆ F−(σ1σ2-Cl(V1))∪F+(σ1σ2-Cl(V2)) for every (σ1, σ2)s-

open sets V1, V2 of Y having N (σ1, σ2)-closed complements;

(4) F+(V1)∩F−(V2) ⊆ (τ1, τ2)-sInt(F
+(σ1σ2-Int(σ1σ2-Cl(V1)))∩F−(σ1σ2-Int(σ1σ2-Cl(V2))))

for every (σ1, σ2)p-open sets V1, V2 of Y having N (σ1, σ2)-closed complements.

Proof. The proof follows from Theorem 7 and is thus omitted.
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