EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

2025, Vol. 18, Issue 1, Article Number 5720 ISSN 1307-5543 – ejpam.com Published by New York Business Global

Almost Nearly Quasi (τ_1, τ_2) -continuous Multifunctions

Jeeranunt Khampakdee¹, Areeyuth Sama-Ae², Chawalit Boonpok^{1,*}

 ¹ Mathematics and Applied Mathematics Research Unit, Department of Mathematics, Faculty of Science, Mahasarakham University, Maha Sarakham, 44150, Thailand
 ² Department of Mathematics and Computer Science, Faculty of Science and Technology, Prince of Songkla University, Pattani Campus, Pattani, 94000, Thailand

Abstract. This paper deals with the concept of almost nearly quasi (τ_1, τ_2) -continuous multifunctions. Moreover, several characterizations and some properties concerning almost nearly quasi (τ_1, τ_2) -continuous multifunctions are considered.

2020 Mathematics Subject Classifications: 54C08, 54C60

Key Words and Phrases: Upper almost nearly quasi (τ_1, τ_2) -continuous multifunction, lower almost nearly quasi (τ_1, τ_2) -continuous multifunction, almost nearly quasi (τ_1, τ_2) -continuous multifunction

1. Introduction

The concept of quasi continuous functions was introduced by Marcus [44]. Popa [48] introduced and investigated the notion of almost quasi continuous functions. Neubrunnovaá [45] showed that quasi continuity is equivalent to semi-continuity due to Levine [42]. Popa and Noiri [50] introduced the concept of almost quasi continuous multifunctions and investigated some characterizations of such multifunctions. Malghan and Hanchinamani [43] introduced the notion of N-continuous functions. Noiri and Ergun [46] investigated some characterizations of N-continuous functions. Viriyapong and Boonpok [68] investigated some characterizations of (Λ, sp) -continuous functions by utilizing the notions of (Λ, sp) open sets and (Λ, sp) -closed sets due to Boonpok and Khampakdee [12]. Dungthaisong et al. [35] introduced and studied the concept of $g_{(m,n)}$ -continuous functions. Duangphui et al. [34] introduced and studied the notion of $(\mu, \mu')^{(m,n)}$ -continuous functions. Srisarakham et al. [60] introduced and studied the concept of almost (Λ, p) -continuous functions. Furthermore, several characterizations of strongly $\theta(\Lambda, p)$ -continuous functions, almost strongly $\theta(\Lambda, p)$ -continuous functions, $(\Lambda, p(\star))$ -continuous functions, weakly (Λ, b) -continuous functions, $\theta(\star)$ -precontinuous functions, $(\Lambda, p(\star))$ -continuous functions,

Email addresses: jeeranunt.k@msu.ac.th (J. Khampakdee),

areeyuth.sQpsu.ac.th (A. Sama-Ae), chawalit.bQmsu.ac.th (C. Boonpok)

1

https://www.ejpam.com

^{*}Corresponding author.

DOI: https://doi.org/10.29020/nybg.ejpam.v18i1.5720

Copyright: (c) 2025 The Author(s). (CC BY-NC 4.0)

*-continuous functions, θ - \mathscr{I} -continuous functions, almost (g, m)-continuous functions, pairwise almost M-continuous functions, (τ_1, τ_2) -continuous functions, almost (τ_1, τ_2) continuous functions, weakly (τ_1, τ_2) -continuous functions, slightly $(\tau_1, \tau_2)s$ -continuous functions and $\delta(\tau_1, \tau_2)$ -continuous functions were presented in [63], [16], [52], [25], [11], [8], [10], [4], [1], [2], [26], [23], [18], [57] and [51], respectively. Srisarakham et al. [61] introduced and studied the concept of faintly (τ_1, τ_2) -continuous functions. Thongmoon et al. [66] introduced and investigated the notion of rarely (τ_1, τ_2) -continuous functions. Chiangpradit et al. [32] introduced and studied the concept of weakly quasi (τ_1, τ_2) -continuous

functions. Kong-ied at al. [41] introduced and investigated the notion of almost quasi

2 of 15

 (τ_1, τ_2) -continuous functions. In 2003, Ekici [36] introduced and studied the concept of nearly continuous multifunctions as a generalization of semi-continuous multifunctions and N-continuous functions. Ekici [37] introduced and investigated the notion of almost nearly continuous multifunctions as a generalization of nearly continuous multifunctions and almost continuous multifunctions [48]. Noiri and Popa [47] introduced and studied the notion of almost nearly *m*-continuous multifunctions as multifunctions from a set satisfying some minimal conditions into a topological spaces. Carpintero et al. [30] introduced and studied the notion of nearly ω -continuous multifunctions as a weaker form of nearly continuous multifunctions. Rosas et al. [58] introduced and studied upper and lower almost nearly continuous multifunctions using notions of topological ideals. Moreover, several characterizations of $(\tau_1, \tau_2)\delta$ -semicontinuous multifunctions, almost weakly (τ_1, τ_2) -continuous multifunctions, weakly quasi (Λ , sp)-continuous multifunctions, \star -continuous multifunctions, $\beta(\star)$ continuous multifunctions, α -*-continuous multifunctions, almost α -*-continuous multifunctions, almost quasi \star -continuous multifunctions, weakly α - \star -continuous multifunctions, $s\beta(\star)$ -continuous multifunctions, weakly $s\beta(\star)$ -continuous multifunctions, $\theta(\star)$ -quasi continuous multifunctions, almost i^* -continuous multifunctions, weakly (Λ, sp) -continuous multifunctions, $\alpha(\Lambda, sp)$ -continuous multifunctions, almost $\alpha(\Lambda, sp)$ -continuous multifunctions, weakly $\alpha(\Lambda, sp)$ -continuous multifunctions, almost $\beta(\Lambda, sp)$ -continuous multifunctions, slightly (Λ, sp)-continuous multifunctions, (τ_1, τ_2)-continuous multifunctions, almost (τ_1, τ_2) -continuous multifunctions, weakly (τ_1, τ_2) -continuous multifunctions, weakly quasi (τ_1, τ_2) -continuous multifunctions, almost quasi (τ_1, τ_2) -continuous multifunctions, c- (τ_1, τ_2) -continuous multifunctions, c-quasi (τ_1, τ_2) -continuous multifunctions, s- $(\tau_1, \tau_2)p$ continuous multifunctions, slightly (τ_1, τ_2) -continuous multifunctions and slightly (τ_1, τ_2) continuous multifunctions were established in [5], [28], [69], [3], [7], [17], [24], [6], [21], [20], [15], [9], [19], [22], [38], [13], [27], [62], [14], [55], [40], [65], [56], [54], [39], [53], [73], [70]and [71], respectively. Rychlewicz [59] introduced and studied the notion of nearly quasicontinuous multifunctions as a generalization of almost nearly continuous multifunctions and almost quasi continuous multifunctions [49]. In this paper, we introduce the concept of almost nearly quasi (τ_1, τ_2) -continuous multifunctions. We also investigate several characterizations of almost quasi (τ_1, τ_2) -continuous multifunctions.

J. Khampakdee, A. Sama-Ae, C. Boonpok / Eur. J. Pure Appl. Math, 18 (1) (2025), 5720 3

2. Preliminaries

Throughout the present paper, spaces (X, τ_1, τ_2) and (Y, σ_1, σ_2) (or simply X and Y) always mean bitopological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a bitopological space (X, τ_1, τ_2) . The closure of A and the interior of A with respect to τ_i are denoted by τ_i -Cl(A) and τ_i -Int(A), respectively, for i = 1, 2. A subset A of a bitopological space (X, τ_1, τ_2) is called $\tau_1 \tau_2$ -closed [29] if $A = \tau_1$ -Cl(τ_2 -Cl(A)). The complement of a $\tau_1 \tau_2$ -closed set is called $\tau_1 \tau_2$ -open. Let A be a subset of a bitopological space (X, τ_1, τ_2) is called $\tau_1 \tau_2$ -closed sets of X containing A is called the $\tau_1 \tau_2$ -closure [29] of A and is denoted by $\tau_1 \tau_2$ -Cl(A). The union of all $\tau_1 \tau_2$ -open sets of X contained in A is called the $\tau_1 \tau_2$ -interior [29] of A and is denoted by $\tau_1 \tau_2$ -Int(A).

Lemma 1. [29] Let A and B be subsets of a bitopological space (X, τ_1, τ_2) . For the $\tau_1\tau_2$ closure, the following properties hold:

- (1) $A \subseteq \tau_1 \tau_2 Cl(A)$ and $\tau_1 \tau_2 Cl(\tau_1 \tau_2 Cl(A)) = \tau_1 \tau_2 Cl(A)$.
- (2) If $A \subseteq B$, then $\tau_1 \tau_2 Cl(A) \subseteq \tau_1 \tau_2 Cl(B)$.
- (3) $\tau_1\tau_2$ -Cl(A) is $\tau_1\tau_2$ -closed.
- (4) A is $\tau_1\tau_2$ -closed if and only if $A = \tau_1\tau_2$ -Cl(A).
- (5) $\tau_1 \tau_2 Cl(X A) = X \tau_1 \tau_2 Int(A).$

A subset A of a bitopological space (X, τ_1, τ_2) is said to be $\tau_1\tau_2$ -clopen [29] if A is both $\tau_1\tau_2$ -open and $\tau_1\tau_2$ -closed. A subset A of a bitopological space (X, τ_1, τ_2) is said to be $(\tau_1, \tau_2)r$ -open [67] (resp. $(\tau_1, \tau_2)s$ -open [5], $(\tau_1, \tau_2)p$ -open [5], $(\tau_1, \tau_2)\beta$ -open [5]) if $A = \tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl(A)) (resp. $A \subseteq \tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Int(A)), $A \subseteq \tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl(A)), $A \subseteq$ $\tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl(A)))). The complement of a $(\tau_1, \tau_2)r$ -open (resp. $(\tau_1, \tau_2)s$ -open, $(\tau_1, \tau_2)p$ -open, $(\tau_1, \tau_2)\beta$ -open) set is called $(\tau_1, \tau_2)r$ -closed (resp. $(\tau_1, \tau_2)s$ -closed, $(\tau_1, \tau_2)p$ closed, $(\tau_1, \tau_2)\beta$ -closed). A subset A of a bitopological space (X, τ_1, τ_2) is said to be $\alpha(\tau_1, \tau_2)$ -open [72] if $A \subseteq \tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Int(A))). The complement of an $\alpha(\tau_1, \tau_2)$ open set is said to be $\alpha(\tau_1, \tau_2)$ -closed. A subset A of a bitopological space (X, τ_1, τ_2) is said to be $\mathcal{N}(\tau_1, \tau_2)$ -closed [64] if every cover of A by $(\tau_1, \tau_2)r$ -open sets of X has a finite subcover.

Lemma 2. For a subset A of a bitopological space (X, τ_1, τ_2) , the following properties hold:

- (1) (τ_1, τ_2) -sCl(A) = $\tau_1 \tau_2$ -Int $(\tau_1 \tau_2$ -Cl(A)) \cup A [5];
- (2) (τ_1, τ_2) -sInt(A) = $\tau_1 \tau_2$ -Cl $(\tau_1 \tau_2$ -Int(A)) \cap A [54].

Lemma 3. [33] Let (X, τ_1, τ_2) be a bitopological space. If V is a $\tau_1\tau_2$ -open set of X having $\mathcal{N}(\tau_1, \tau_2)$ -closed complement, then $\tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl(V)) is a (τ_1, τ_2) r-open set having $\mathcal{N}(\tau_1, \tau_2)$ -closed complement.

3 of 15

By a multifunction $F: X \to Y$, we mean a point-to-set correspondence from X into Y, and we always assume that $F(x) \neq \emptyset$ for all $x \in X$. For a multifunction $F: X \to Y$, we shall denote the upper and lower inverse of a set B of Y by $F^+(B)$ and $F^-(B)$, respectively, that is, $F^+(B) = \{x \in X \mid F(x) \subseteq B\}$ and $F^-(B) = \{x \in X \mid F(x) \cap B \neq \emptyset\}$. In particular, $F^-(y) = \{x \in X \mid y \in F(x)\}$ for each point $y \in Y$. For each $A \subseteq X$, $F(A) = \bigcup_{x \in A} F(x)$.

3. Upper almost nearly quasi (τ_1, τ_2) -continuous multifunctions and lower almost nearly quasi (τ_1, τ_2) -continuous multifunctions

In this section, we introduce the notions of upper almost nearly quasi (τ_1, τ_2) -continuous multifunctions and lower almost nearly quasi (τ_1, τ_2) -continuous multifunctions. Furthermore, several characterizations of upper almost nearly quasi (τ_1, τ_2) -continuous multifunctions multifunctions and lower almost nearly quasi (τ_1, τ_2) -continuous multifunctions are discussed.

Definition 1. A multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be upper almost nearly quasi (τ_1, τ_2) -continuous at a point $x \in X$ if for each $\sigma_1 \sigma_2$ -open set V of Y having $\mathcal{N}(\sigma_1, \sigma_2)$ -closed complement such that $x \in F^+(V)$ and for every $\tau_1 \tau_2$ -open set U of X containing x, there exists a nonempty $\tau_1 \tau_2$ -open set W such that $W \subseteq U$ and $W \subseteq$ $F^+(\sigma_1 \sigma_2 \operatorname{-Int}(\sigma_1 \sigma_2 \operatorname{-Cl}(V)))$. A multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be upper almost nearly quasi (τ_1, τ_2) -continuous if F is upper almost nearly quasi (τ_1, τ_2) continuous at each point x of X.

Theorem 1. For a multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

- (1) F is upper almost nearly quasi (τ_1, τ_2) -continuous;
- (2) for each $x \in X$ and for each (σ_1, σ_2) r-open set V of Y having $\mathcal{N}(\sigma_1, \sigma_2)$ -closed complement such that $x \in F^+(V)$ and for every $\tau_1 \tau_2$ -open set U of X containing x, there exists a nonempty $\tau_1 \tau_2$ -open set W such that $W \subseteq U$ and $W \subseteq F^+(V)$;
- (3) for each $x \in X$ and for every $\sigma_1 \sigma_2$ -closed and $\mathcal{N}(\sigma_1, \sigma_2)$ -closed set K of Y such that $x \in F^+(Y-K)$ and for every $\tau_1 \tau_2$ -closed set H of X such that $x \in X-H$, there exists a $\tau_1 \tau_2$ -closed set M such that $H \subseteq M$, $M \neq X$ and $F^-(\sigma_1 \sigma_2 Cl(\sigma_1 \sigma_2 Int(K))) \subseteq M$;
- (4) for each $x \in X$ and for every $\sigma_1 \sigma_2$ -open set V of Y having $\mathcal{N}(\sigma_1, \sigma_2)$ -closed complement such that $x \in F^+(V)$, there exists a (τ_1, τ_2) s-open set U of X containing x such that $U \subseteq F^+(\sigma_1 \sigma_2 Int(\sigma_1 \sigma_2 Cl(V)));$
- (5) $F^+(V)$ is (τ_1, τ_2) s-open in X for every (σ_1, σ_2) r-open set V of Y having $\mathcal{N}(\sigma_1, \sigma_2)$ closed complement;
- (6) $F^{-}(K)$ is (τ_1, τ_2) s-closed in X for every (σ_1, σ_2) r-closed and $\mathcal{N}(\sigma_1, \sigma_2)$ -closed set K of Y.

Proof. (1) \Rightarrow (2): Let $x \in X$ and V be any $(\sigma_1, \sigma_2)r$ -open set of Y having $\mathscr{N}(\sigma_1, \sigma_2)$ closed complement such that $F(x) \subseteq V$ and let U be any $\tau_1\tau_2$ -open set of X containing x. By (1), there exists a nonempty $\tau_1\tau_2$ -open set W such that $W \subseteq U$ and

$$W \subseteq F^+(\sigma_1 \sigma_2 \operatorname{-Int}(\sigma_1 \sigma_2 \operatorname{-Cl}(V))) = F^+(V).$$

(2) \Rightarrow (1): Let $x \in X$ and V be any $(\sigma_1, \sigma_2)r$ -open set of Y having $\mathscr{N}(\sigma_1, \sigma_2)$ -closed complement such that $F(x) \subseteq V$ and let U be any $\tau_1\tau_2$ -open set of X containing x. By Lemma 3, we have $\sigma_1\sigma_2$ -Int $(\sigma_1\sigma_2$ -Cl(V)) is $(\sigma_1, \sigma_2)r$ -open and $Y - \sigma_1\sigma_2$ -Int $(\sigma_1\sigma_2$ -Cl(V)) is $\mathscr{N}(\sigma_1, \sigma_2)$ -closed. Since $F(x) \subseteq \sigma_1\sigma_2$ -Int $(\sigma_1\sigma_2$ -Cl(V)), therefore there exists a nonempty $\tau_1\tau_2$ -open set W such that $W \subseteq U$ and $W \subseteq F^+(\sigma_1\sigma_2$ -Int $(\sigma_1\sigma_2$ -Cl(V))).

 $(1) \Rightarrow (3)$: Let $x \in X$ and K be any $\sigma_1 \sigma_2$ -closed $\mathscr{N}(\sigma_1, \sigma_2)$ -closed set of Y such that $x \in F^+(Y-K)$. It is clear that Y-K is a $\sigma_1 \sigma_2$ -open set of Y having $\mathscr{N}(\sigma_1, \sigma_2)$ -closed complement. Let H be a $\tau_1 \tau_2$ -closed set of X such that $x \in X - H$. By (1), there there exists a nonempty $\tau_1 \tau_2$ -open set W such that $W \subseteq X - H$ and $W \subseteq F^+(\sigma_1 \sigma_2 - \operatorname{Cl}(Y-K)))$. Let us observe that

$$\sigma_1 \sigma_2 \operatorname{-Int}(\sigma_1 \sigma_2 \operatorname{-Cl}(Y - K)) = \sigma_1 \sigma_2 \operatorname{-Int}(Y - \sigma_1 \sigma_2 \operatorname{-Int}(K))$$
$$= Y - \sigma_1 \sigma_2 \operatorname{-Cl}(\sigma_1 \sigma_2 \operatorname{-Int}(K)).$$

It follows that $W \subseteq F^+(Y - \sigma_1\sigma_2 \operatorname{-Cl}(\sigma_1\sigma_2 \operatorname{-Int}(K))) = X - F^-(\sigma_1\sigma_2 \operatorname{-Cl}(\sigma_1\sigma_2 \operatorname{-Int}(K))).$ Let M = X - W, then $X - M \subseteq X - F^-(\sigma_1\sigma_2 \operatorname{-Cl}(\sigma_1\sigma_2 \operatorname{-Int}(K)))$ since

$$F^{-}(\sigma_1 \sigma_2 \operatorname{-Cl}(\sigma_1 \sigma_2 \operatorname{-Int}(K))) \subseteq M.$$

It is evident that M is a $\tau_1 \tau_2$ -closed set and $M \neq X$.

(3) \Rightarrow (1): Let $x \in X$ and V be any $\sigma_1 \sigma_2$ -open set of Y having $\mathscr{N}(\sigma_1, \sigma_2)$ -closed complement such that $F(x) \subseteq V$. Then, we have K = Y - V is (σ_1, σ_2) -closed $\mathscr{N}(\sigma_1, \sigma_2)$ closed set of Y and $x \in F^+(Y - K)$. Let U be a $\tau_1 \tau_2$ -open set of X containing x. Then, H = X - U is a $\tau_1 \tau_2$ -closed set such that $x \in X - H$. By the hypothesis, there exists a $\tau_1 \tau_2$ closed set M such that $H \subseteq M$, $M \neq X$ and $F^-(\sigma_1 \sigma_2 - \operatorname{Cl}(\sigma_1 \sigma_2 - \operatorname{Int}(K))) \subseteq M$. The last inclusion implies that $X - F^+(\sigma_1 \sigma_2 - \operatorname{Int}(\sigma_1 \sigma_2 - \operatorname{Cl}(V))) \subseteq M = X - W$, where W = X - Mis a nonempty $\tau_1 \tau_2$ -open set. It was shown that $W \subseteq F^+(\sigma_1 \sigma_2 - \operatorname{Int}(\sigma_1 \sigma_2 - \operatorname{Cl}(V)))$. It is easy to see that $W \subseteq U$.

 $(1) \Rightarrow (4)$: Let $x \in X$ and V be any $\sigma_1 \sigma_2$ -open set of Y having $\mathscr{N}(\sigma_1, \sigma_2)$ -closed complement such that $F(x) \subseteq V$. Then, for any $\tau_1 \tau_2$ -open set U of X containing x, there exists a nonempty $\tau_1 \tau_2$ -open set W_U such that $W_U \subseteq U$ and $W_U \subseteq F^+(\sigma_1 \sigma_2 \operatorname{-Int}(\sigma_1 \sigma_2 \operatorname{-Cl}(V)))$. Let $G = \{x\} \cup [\cup \{W_U \mid U \text{ is a } \tau_1 \tau_2 \text{-open set containing } x\}]$. Then, we have

$$G \subseteq \tau_1 \tau_2 \operatorname{-Cl}(\tau_1 \tau_2 \operatorname{-Int}(G))$$

and hence G is a $(\tau_1, \tau_2)s$ -open set such that $x \in G$ and $G \subseteq F^+(\sigma_1 \sigma_2 \operatorname{-Int}(\sigma_1 \sigma_2 \operatorname{-Cl}(V)))$.

(4) \Rightarrow (1): Let $x \in X$ and V be any $\sigma_1 \sigma_2$ -open set of Y having $\mathcal{N}(\sigma_1, \sigma_2)$ -closed complement such that $F(x) \subseteq V$. Let U be a $\tau_1 \tau_2$ -open set of X containing x. By the hypothesis, there exists a $(\tau_1, \tau_2)s$ -open set G such that $x \in G$ and $G \subseteq F^+(\sigma_1 \sigma_2 - \operatorname{Int}(\sigma_1 \sigma_2 - \operatorname{Cl}(V)))$.

Let $W = \tau_1 \tau_2$ -Int $(G) \cap U$. Since $U \cap G \neq \emptyset$, we have $W \neq \emptyset$. It is easy to check that $W \subseteq U$ and $W \subseteq G$. Thus, $W \subseteq F^+(\sigma_1 \sigma_2$ -Int $(\sigma_1 \sigma_2$ -Cl(V))).

 $(4) \Rightarrow (5)$: Let V be any (σ_1, σ_2) r-open set of Y having $\mathscr{N}(\sigma_1, \sigma_2)$ -closed complement and $x \in F^+(V)$. Then $F(x) \subseteq V$. Under the assumption, there exists a $(\tau_1, \tau_2)s$ -open set G_x such that $x \in G_x$ and $G_x \subseteq F^+(V) = F^+(\sigma_1\sigma_2\operatorname{-Int}(\sigma_1\sigma_2\operatorname{-Cl}(V)))$. It is easily seen that the set $G = \bigcup \{G_x \mid x \in F^+(V)\}$ is $(\tau_1, \tau_2)s$ -open and equal to the set $F^+(V)$.

(5) \Rightarrow (4): Let $x \in X$ and V be any $\sigma_1 \sigma_2$ -open set of Y having $\mathscr{N}(\sigma_1, \sigma_2)$ -closed complement such that $F(x) \subseteq V$. Then by Lemma 3, $\sigma_1 \sigma_2$ -Int $(\sigma_1 \sigma_2$ -Cl(V)) is a $(\sigma_1, \sigma_2)r$ open set having $\mathscr{N}(\sigma_1, \sigma_2)$ -closed complement. By (5), we have $F^+(\sigma_1 \sigma_2$ -Int $(\sigma_1 \sigma_2$ -Cl(V)))is $(\sigma_1, \sigma_2)s$ -open in X. Of course, $x \in F^+(\sigma_1 \sigma_2$ -Int $(\sigma_1 \sigma_2$ -Cl(V))).

(5) \Rightarrow (6): Let K be any $(\sigma_1, \sigma_2)r$ -closed $\mathscr{N}(\sigma_1, \sigma_2)$ -closed set of Y. Then, Y - Kis a $(\sigma_1, \sigma_2)r$ -open set of Y having $\mathscr{N}(\sigma_1, \sigma_2)$ -closed complement. By (5), $F^+(Y - K) = X - F^-(K)$ is $(\tau_1, \tau_2)s$ -open in X and hence $F^-(K)$ is $(\tau_1, \tau_2)s$ -closed in X.

 $(6) \Rightarrow (5)$: The proof is similar to the above.

Definition 2. A multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be lower almost nearly quasi (τ_1, τ_2) -continuous at a point $x \in X$ if for each $\sigma_1 \sigma_2$ -open set V of Y having $\mathcal{N}(\sigma_1, \sigma_2)$ -closed complement such that $x \in F^-(V)$ and for every $\tau_1 \tau_2$ -open set of Xcontaining x, there exists a nonempty $\tau_1 \tau_2$ -open set W such that $W \subseteq U$ and $W \subseteq$ $F^-(\sigma_1 \sigma_2 - Int(\sigma_1 \sigma_2 - Cl(V)))$. A multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be lower almost nearly quasi (τ_1, τ_2) -continuous if F is lower almost nearly quasi (τ_1, τ_2) continuous at each point x of X.

Theorem 2. For a multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

- (1) F is lower almost nearly quasi (τ_1, τ_2) -continuous;
- (2) for each $x \in X$ and for each (σ_1, σ_2) r-open set V of Y having $\mathcal{N}(\sigma_1, \sigma_2)$ -closed complement such that $x \in F^-(V)$ and for every $\tau_1 \tau_2$ -open set U of X containing x, there exists a nonempty $\tau_1 \tau_2$ -open set W such that $W \subseteq U$ and $W \subseteq F^-(V)$;
- (3) for each $x \in X$ and for every $\sigma_1 \sigma_2$ -closed and $\mathcal{N}(\sigma_1, \sigma_2)$ -closed set K of Y such that $x \in F^-(Y-K)$ and for every $\tau_1 \tau_2$ -closed set H of X such that $x \in X-H$, there exists a $\tau_1 \tau_2$ -closed set M such that $H \subseteq M$, $M \neq X$ and $F^+(\sigma_1 \sigma_2 Cl(\sigma_1 \sigma_2 Int(K))) \subseteq M$;
- (4) for each $x \in X$ and for every $\sigma_1 \sigma_2$ -open set V of Y having $\mathcal{N}(\sigma_1, \sigma_2)$ -closed complement such that $x \in F^-(V)$, there exists a (τ_1, τ_2) s-open set U of X containing x such that $U \subseteq F^-(\sigma_1 \sigma_2 Int(\sigma_1 \sigma_2 Cl(V)));$
- (5) $F^{-}(V)$ is (τ_1, τ_2) s-open in X for every (σ_1, σ_2) r-open set V of Y having $\mathcal{N}(\sigma_1, \sigma_2)$ closed complement;
- (6) $F^+(K)$ is (τ_1, τ_2) s-closed in X for every (σ_1, σ_2) r-closed and $\mathcal{N}(\sigma_1, \sigma_2)$ -closed set K of Y.

J. Khampakdee, A. Sama-Ae, C. Boonpok / Eur. J. Pure Appl. Math, 18 (1) (2025), 5720

Proof. The proof is similar to that of Theorem 1.

For a multifunction $F: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, a multifunction

$$\operatorname{sCl} F_{\circledast} : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$$

is defined in [31] as follows: $sClF_{\circledast}(x) = (\sigma_1, \sigma_2)$ -sCl(F(x)) for each $x \in X$.

Theorem 3. A multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is upper almost nearly quasi (τ_1, τ_2) -continuous if and only if $sClF_{\circledast} : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is upper almost nearly quasi (τ_1, τ_2) -continuous.

Proof. Suppose that F is upper almost nearly quasi (τ_1, τ_2) -continuous. Let $x \in X$ and V be any $\sigma_1 \sigma_2$ -open set of Y having $\mathcal{N}(\sigma_1, \sigma_2)$ -closed complement such that

$$x \in \mathrm{sCl}F^+_{\circledast}(V).$$

Then, we have $\operatorname{sCl} F_{\circledast}(x) \subseteq V$ and hence $F(x) \subseteq V$. Since F is upper almost nearly quasi (τ_1, τ_2) -continuous, by Theorem 1 there exists a $(\tau_1, \tau_2)s$ -open set U of X containing x such that $U \subseteq F^+(\sigma_1\sigma_2\operatorname{-Int}(\sigma_1\sigma_2\operatorname{-Cl}(V)))$. Thus by Lemma 2, $U \subseteq F^+((\sigma_1, \sigma_2)\operatorname{-sCl}(V))$. Therefore, $F(U) \subseteq (\sigma_1, \sigma_2)\operatorname{-sCl}(V)$. For each $u \in U$, $(\sigma_1, \sigma_2)\operatorname{-sCl}(F(u)) \subseteq (\sigma_1, \sigma_2)\operatorname{-sCl}(V)$ and so $(\sigma_1, \sigma_2)\operatorname{-sCl}(F(U)) \subseteq (\sigma_1, \sigma_2)\operatorname{-sCl}(V)$. Thus, $\operatorname{sCl} F_{\circledast}(U) \subseteq \sigma_1\sigma_2\operatorname{-Int}(\sigma_1\sigma_2\operatorname{-Cl}(V))$ and hence $x \in \operatorname{sCl} F_{\circledast}^+(\sigma_1\sigma_2\operatorname{-Int}(\sigma_1\sigma_2\operatorname{-Cl}(V)))$. By Theorem 1, $\operatorname{sCl} F_{\circledast}$ is upper almost nearly quasi (τ_1, τ_2) -continuous.

Theorem 4. A multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is lower almost nearly quasi (τ_1, τ_2) -continuous if and only if $sClF_{\circledast} : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is lower almost nearly quasi (τ_1, τ_2) -continuous.

Proof. The proof is similar to that of Theorem 3.

Recall that a subset A of a bitopological space (X, τ_1, τ_2) is said to be $\tau_1 \tau_2$ -clopen [29] if A is both $\tau_1 \tau_2$ -open and $\tau_1 \tau_2$ -closed.

Definition 3. [29] A bitopological space (X, τ_1, τ_2) is said to be $\tau_1\tau_2$ -connected if X cannot be written as the union of two disjoint nonempty $\tau_1\tau_2$ -open sets.

Definition 4. [33] A bitopological space (X, τ_1, τ_2) is said to be $\mathcal{N}(\tau_1, \tau_2)$ -connected if X cannot be written as the union of two disjoint nonempty $\tau_1\tau_2$ -open sets having $\mathcal{N}(\tau_1, \tau_2)$ -closed complements.

Definition 5. A bitopological space (X, τ_1, τ_2) is said to be $(\tau_1, \tau_2)s$ -connected if X cannot be written as the union of two disjoint nonempty $(\tau_1, \tau_2)s$ -open sets.

Theorem 5. If $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is an upper or lower almost nearly quasi (τ_1, τ_2) -continuous surjective multifunction such that F(x) is $\sigma_1\sigma_2$ -connected for every $x \in X$ and (X, τ_1, τ_2) is (τ_1, τ_2) s-connected, then (Y, σ_1, σ_2) is $\mathcal{N}(\sigma_1, \sigma_2)$ -connected.

7 of 15

Proof. Suppose that (Y, σ_1, σ_2) is not $\mathscr{N}(\sigma_1, \sigma_2)$ -connected. There exist nonempty $\sigma_1\sigma_2$ -open sets U and V of Y having $\mathscr{N}(\sigma_1, \sigma_2)$ -closed complements such that $U \cap V = \emptyset$ and $U \cup V = Y$. Since F(x) is $\sigma_1\sigma_2$ -connected for each $x \in X$, either $F(x) \subseteq U$ or $F(x) \subseteq V$. If $x \in F^+(U \cup V)$, then $F(x) \subseteq U \cup V$ and hence $x \in F^+(U) \cup F^+(V)$. Moreover, since F is surjective, there exist x and y in X such that $F(x) \subseteq U$ and $F(y) \subseteq V$; hence $x \in F^+(U)$ and $y \in F^+(V)$. Therefore, we obtain the following:

- (1) $F^+(U) \cup F^+(V) = F^+(U \cup V) = X;$
- (2) $F^+(U) \cap F^+(V) = F^+(U \cap V) = \emptyset;$
- (3) $F^+(U) \neq \emptyset$ and $F^+(V) \neq \emptyset$.

Next, we show that $F^+(U)$ and $F^+(V)$ are $(\tau_1, \tau_2)s$ -open in X. (i) Let F be upper almost nearly quasi (τ_1, τ_2) -continuous. Since U and V are $\sigma_1 \sigma_2$ -clopen in Y,

$$\sigma_1 \sigma_2$$
-Int $(\sigma_1 \sigma_2$ -Cl $(U)) = U$

and $\sigma_1 \sigma_2$ -Int $(\sigma_1 \sigma_2$ -Cl(V)) = V. Thus, U and V are $(\sigma_1, \sigma_2)r$ -open sets having $\mathscr{N}(\sigma_1, \sigma_2)$ closed complements. Since F is upper almost nearly quasi (τ_1, τ_2) -continuous, by Theorem 1, $F^+(U)$ and $F^+(V)$ are $(\tau_1, \tau_2)s$ -open sets. (ii) Let F be lower almost nearly quasi (τ_1, τ_2) -continuous. By Theorem 2, $F^+(U)$ is $(\tau_1, \tau_2)s$ -closed in X because U is $\sigma_1\sigma_2$ -clopen in Y. Thus, $F^+(V)$ is $(\tau_1, \tau_2)s$ -open in X. Similarly, we have $F^+(U)$ is (τ_1, τ_2) -open in X. Therefore, (X, τ_1, τ_2) is not $(\tau_1, \tau_2)s$ -connected.

4. Almost nearly quasi (τ_1, τ_2) -continuous multifunctions

In this section, we introduce the concept of almost nearly quasi (τ_1, τ_2) -continuous multifunctions. We also investigate some characterizations of almost nearly quasi (τ_1, τ_2) -continuous multifunctions.

Definition 6. A multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be almost nearly quasi (τ_1, τ_2) -continuous at a point $x \in X$ if for each $\sigma_1 \sigma_2$ -open sets V_1, V_2 of Y having $\mathcal{N}(\sigma_1, \sigma_2)$ -closed complements such that $x \in F^+(V_1) \cap F^-(V_2)$ and for every $\tau_1 \tau_2$ -open set U of X containing x, there exists a nonempty $\tau_1 \tau_2$ -open set W such that $W \subseteq U$, $F(W) \subseteq (\sigma_1, \sigma_2)$ -s $Cl(V_1)$ and (σ_1, σ_2) -s $Cl(V_2) \cap F(z) \neq \emptyset$ for every $z \in W$. A multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be almost nearly quasi (τ_1, τ_2) -continuous if F is almost nearly quasi (τ_1, τ_2) -continuous at each point x of X.

Theorem 6. For a multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

- (1) F is almost nearly quasi (τ_1, τ_2) -continuous at a point $x \in X$;
- (2) for every $\sigma_1 \sigma_2$ -open sets V_1, V_2 of Y having $\mathcal{N}(\sigma_1, \sigma_2)$ -closed complements such that $x \in F^+(V_1) \cap F^-(V_2)$, there exists a (τ_1, τ_2) s-open set U of X containing x such that $F(U) \subseteq (\sigma_1, \sigma_2)$ -s $Cl(V_1)$ and (σ_1, σ_2) -s $Cl(V_2) \cap F(z) \neq \emptyset$ for every $z \in U$;

- J. Khampakdee, A. Sama-Ae, C. Boonpok / Eur. J. Pure Appl. Math, 18 (1) (2025), 5720 9 of 15
 - (3) $x \in (\tau_1, \tau_2)$ -sInt $(F^+((\sigma_1, \sigma_2)$ -sCl $(V_1)) \cap F^-((\sigma_1, \sigma_2)$ -sCl $(V_2)))$ for every $\sigma_1 \sigma_2$ -open sets V_1, V_2 of Y having $\mathcal{N}(\sigma_1, \sigma_2)$ -closed complements such that $x \in F^+(V_1) \cap F^-(V_2)$;
 - (4) $x \in \tau_1 \tau_2$ -Cl $(\tau_1 \tau_2$ -Int $(F^+((\sigma_1, \sigma_2)$ -sCl $(V_1)) \cap F^-((\sigma_1, \sigma_2)$ -sCl $(V_2))))$ for every $\sigma_1 \sigma_2$ open sets V_1, V_2 of Y having $\mathcal{N}(\sigma_1, \sigma_2)$ -closed complements such that

$$x \in F^+(V_1) \cap F^-(V_2).$$

Proof. (1) \Rightarrow (2): Let $\mathcal{U}(x)$ be the family of all $\tau_1\tau_2$ -open sets of X containing x. Let V_1, V_2 be any $\sigma_1\sigma_2$ -open sets of Y having $\mathscr{N}(\sigma_1, \sigma_2)$ -closed complements such that $x \in F^+(V_1) \cap F^-(V_2)$. For each $H \in \mathcal{U}(x)$, there exists a nonempty $\tau_1\tau_2$ -open set G_H of X such that $G_H \subseteq H$, $F(G_H) \subseteq (\sigma_1, \sigma_2)$ -sCl (V_1) and (σ_1, σ_2) -sCl $(V_2) \cap F(z) \neq \emptyset$ for every $z \in G_H$. Let $W = \bigcup \{G_H \mid H \in \mathcal{U}(x)\}$. Then, W is $\tau_1\tau_2$ -open in $X, x \in \tau_1\tau_2$ -Cl(W), $F(W) \subseteq (\sigma_1, \sigma_2)$ -sCl (V_1) and (σ_1, σ_2) -sCl $(V_2) \cap F(w) \neq \emptyset$ for every $w \in W$. Put $U = W \cup \{x\}$. Then, $W \subseteq U \subseteq \tau_1\tau_2$ -Cl(W). Thus, U is a $(\tau_1, \tau_2)s$ -open set of X containing x such that $F(U) \subseteq ((\sigma_1, \sigma_2)$ -sCl $(V_1))$ and (σ_1, σ_2) -sCl $(V_2) \cap F(z) \neq \emptyset$ for every $z \in U$.

 $(2) \Rightarrow (3): \text{Let } V_1, V_2 \text{ be any } \sigma_1 \sigma_2 \text{-open sets of } Y \text{ having } \mathscr{N}(\sigma_1, \sigma_2) \text{-closed complements} \\ \text{such that } x \in F^+(V_1) \cap F^-(V_2). \text{ Then, there exists a } (\tau_1, \tau_2)s \text{-open set of } X \text{ containing } x \\ \text{such that } F(U) \subseteq (\sigma_1, \sigma_2) \text{-sCl}(V_1) \text{ and } (\sigma_1, \sigma_2) \text{-sCl}(V_2) \cap F(z) \neq \emptyset \text{ for every } z \in U. \text{ Thus,} \\ x \in U \subseteq F^+((\sigma_1, \sigma_2) \text{-sCl}(V_1)) \cap F^-((\sigma_1, \sigma_2) \text{-sCl}(V_2)). \text{ Since } U \text{ is } (\tau_1, \tau_2)s \text{-open, we have} \\ x \in (\tau_1, \tau_2) \text{-sInt}(F^+((\sigma_1, \sigma_2) \text{-sCl}(V_1)) \cap F^-((\sigma_1, \sigma_2) \text{-sCl}(V_2))). \end{aligned}$

 $(3) \Rightarrow (4)$: Let V_1, V_2 be any $\sigma_1 \sigma_2$ -open sets of Y having $\mathscr{N}(\sigma_1, \sigma_2)$ -closed complements such that $x \in F^+(V_1) \cap F^-(V_2)$. Now put

$$U = (\tau_1, \tau_2) - \operatorname{sInt}(F^+((\sigma_1, \sigma_2) - \operatorname{sCl}(V_1))) \cap F^-((\sigma_1, \sigma_2) - \operatorname{sCl}(V_2))).$$

Then, U is $(\tau_1, \tau_2)s$ -open in X and

$$x \in \tau_1 \tau_2 \operatorname{-Cl}(\tau_1 \tau_2 \operatorname{-Int}(F^+((\sigma_1, \sigma_2) \operatorname{-sCl}(V_1)) \cap F^-((\sigma_1, \sigma_2) \operatorname{-sCl}(V_2)))).$$

(4) \Rightarrow (1): Let U be any $\tau_1\tau_2$ -open set of X containing x and V_1, V_2 be any $\sigma_1\sigma_2$ -open sets of Y having $\mathscr{N}(\sigma_1, \sigma_2)$ -closed complements such that $x \in F^+(V_1) \cap F^-(V_2)$. Then, we have $x \in \tau_1\tau_2$ -Cl($\tau_1\tau_2$ -Int($F^+((\sigma_1, \sigma_2)$ -sCl($V_1)) \cap F^-((\sigma_1, \sigma_2)$ -sCl($V_2)))$). Put

$$W = \tau_1 \tau_2 \operatorname{-Int}(F^+((\sigma_1, \sigma_2) \operatorname{-sCl}(V_1)) \cap F^-((\sigma_1, \sigma_2) \operatorname{-sCl}(V_2))) \cap U.$$

Then, W is a nonempty $\tau_1\tau_2$ -open set of X such that $W \subseteq U$, $F(W) \subseteq (\sigma_1, \sigma_2)$ -sCl (V_1) and (σ_1, σ_2) -sCl $(V_2) \cap F(w) \neq \emptyset$ for every $w \in W$. This shows that F is almost nearly quasi (τ_1, τ_2) -continuous at x.

Theorem 7. For a multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

(1) F is almost nearly quasi (τ_1, τ_2) -continuous;

- J. Khampakdee, A. Sama-Ae, C. Boonpok / Eur. J. Pure Appl. Math, 18 (1) (2025), 5720 10 of 15
 - (2) for each $x \in X$ and for every $\sigma_1 \sigma_2$ -open sets V_1, V_2 of Y having $\mathscr{N}(\sigma_1, \sigma_2)$ -closed complements such that $x \in F^+(V_1) \cap F^-(V_2)$, there exists a (τ_1, τ_2) s-open set U of X containing x such that $F(U) \subseteq (\sigma_1, \sigma_2)$ -s $Cl(V_1)$ and (σ_1, σ_2) -s $Cl(V_2) \cap F(z) \neq \emptyset$ for every $z \in U$;
 - (3) $F^+(V_1) \cap F^-(V_2)$ is (τ_1, τ_2) s-open in X for every (σ_1, σ_2) r-open sets V_1, V_2 of Y having $\mathcal{N}(\sigma_1, \sigma_2)$ -closed complements;
 - (4) $F^+(V_1) \cap F^-(V_2) \subseteq (\tau_1, \tau_2)$ -sInt $(F^+((\sigma_1, \sigma_2)$ -sCl $(V_1)) \cap F^-((\sigma_1, \sigma_2)$ -sCl $(V_2)))$ for every $\sigma_1 \sigma_2$ -open sets V_1, V_2 of Y having $\mathcal{N}(\sigma_1, \sigma_2)$ -closed complements;
 - (5)
- $(\tau_1, \tau_2) sCl(F^-(\sigma_1\sigma_2 Cl(\sigma_1\sigma_2 Int(\sigma_1\sigma_2 Cl(B_1)))) \cup F^+(\sigma_1\sigma_2 Cl(\sigma_1\sigma_2 Int(\sigma_1\sigma_2 Cl(B_2)))))$ $\subseteq F^-(\sigma_1\sigma_2 - Cl(B_1)) \cup F^+(\sigma_1\sigma_2 - Cl(B_2))$

for every subsets B_1, B_2 of Y having the $\mathcal{N}(\sigma_1, \sigma_2)$ -closed $\sigma_1 \sigma_2$ -closure;

(6) $F^+(V_1) \cap F^-(V_2) \subseteq \tau_1 \tau_2 - Cl(\tau_1 \tau_2 - Int((F^+((\sigma_1, \sigma_2) - sCl(V_1))) \cap F^-((\sigma_1, \sigma_2) - sCl(V_2))))$ for every $\sigma_1 \sigma_2$ -open sets V_1, V_2 of Y having $\mathscr{N}(\sigma_1, \sigma_2)$ -closed complements.

Proof. (1) \Rightarrow (2): The proof follows immediately from Theorem 6, since F is almost nearly quasi (τ_1, τ_2) -continuous at each point of X.

 $(2) \Rightarrow (3)$: Let V_1, V_2 be any $(\sigma_1, \sigma_2)r$ -open sets of Y having $\mathscr{N}(\sigma_1, \sigma_2)$ -closed complements and $x \in F^+(V_1) \cap F^-(V_2)$. Then, there exists a a $(\tau_1, \tau_2)s$ -open set U of X containing x such that $F(U) \subseteq (\sigma_1, \sigma_2)$ -sCl (V_1) and (σ_1, σ_2) -sCl $(V_2) \cap F(z) \neq \emptyset$ for every $z \in U$. Thus, $x \in U \subseteq F^+(V_1) \cap F^-(V_2)$ and hence $x \in (\tau_1, \tau_2)$ -sInt $(F^+(V_1) \cap F^-(V_2))$. Therefore, $F^+(V_1) \cap F^-(V_2) \subseteq (\tau_1, \tau_2)$ -sInt $(F^+(V_1) \cap F^-(V_2))$. This shows that $F^+(V_1) \cap F^-(V_2)$ is $(\tau_1, \tau_2)s$ -open in X.

 $\begin{array}{l} (3) \Rightarrow (4): \text{ Let } V_1, V_2 \text{ be any } \sigma_1 \sigma_2 \text{-open sets of } Y \text{ having } \mathscr{N}(\sigma_1, \sigma_2) \text{-closed complements such that } x \in F^+(V_1) \cap F^-(V_2). \end{array} \\ \text{ Then, we have } F(x) \subseteq V_1 \subseteq (\sigma_1, \sigma_2) \text{-sCl}(V_1) \\ \text{ and } \emptyset \neq V_2 \cap F(x) \subseteq (\sigma_1, \sigma_2) \text{-sCl}(V_2) \cap F(x). \end{aligned} \\ \text{ Thus, } x \in F^+((\sigma_1, \sigma_2) \text{-sCl}(V_1)) \text{ and } \\ x \in F^-((\sigma_1, \sigma_2) \text{-sCl}(V_2)). \end{aligned} \\ \text{ By } (3), \text{ we have } F^+((\sigma_1, \sigma_2) \text{-sCl}(V_1)) \cap F^-((\sigma_1, \sigma_2) \text{-sCl}(V_2)) \\ \text{ is } (\tau_1, \tau_2) s \text{-open in } X \text{ and } x \in (\tau_1, \tau_2) s \text{-Int}(F^+((\sigma_1, \sigma_2) \text{-sCl}(V_1)) \cap F^-((\sigma_1, \sigma_2) \text{-sCl}(V_2))). \\ \text{ Therefore, } F^+(V_1) \cap F^-(V_2) \subseteq (\tau_1, \tau_2) \text{-sInt}(F^+((\sigma_1, \sigma_2) \text{-sCl}(V_1)) \cap F^-((\sigma_1, \sigma_2) \text{-sCl}(V_2))). \end{array}$

(4) \Rightarrow (5): Let B_1, B_2 be any subsets of Y having the $\mathcal{N}(\sigma_1, \sigma_2)$ -closed $\sigma_1 \sigma_2$ -closure. Then, $Y - \sigma_1 \sigma_2$ -Cl (B_1) and $Y - \sigma_1 \sigma_2$ -Cl (B_2) are $\sigma_1 \sigma_2$ -open sets of Y having $\mathcal{N}(\sigma_1, \sigma_2)$ closed complements. Thus by (4), we have

$$\begin{aligned} X &- (F^{-}(\sigma_{1}\sigma_{2}\text{-}\mathrm{Cl}(B_{1})) \cup F^{+}(\sigma_{1}\sigma_{2}\text{-}\mathrm{Cl}(B_{2}))) \\ &= (X - F^{-}(\sigma_{1}\sigma_{2}\text{-}\mathrm{Cl}(B_{1}))) \cap (X - F^{+}(\sigma_{1}\sigma_{2}\text{-}\mathrm{Cl}(B_{2}))) \\ &= F^{+}(Y - \sigma_{1}\sigma_{2}\text{-}\mathrm{Cl}(B_{1})) \cap F^{-}(Y - \sigma_{1}\sigma_{2}\text{-}\mathrm{Cl}(B_{2})) \\ &\subseteq (\tau_{1}, \tau_{2})\text{-}\mathrm{sInt}(F^{+}((\sigma_{1}, \sigma_{2})\text{-}\mathrm{sCl}(Y - \sigma_{1}\sigma_{2}\text{-}\mathrm{Cl}(B_{1}))) \cap F^{-}((\sigma_{1}, \sigma_{2})\text{-}\mathrm{sCl}(Y - \sigma_{1}\sigma_{2}\text{-}\mathrm{Cl}(B_{2})))) \\ &= X - (\tau_{1}, \tau_{2})\text{-}\mathrm{sCl}(F^{-}(\sigma_{1}\sigma_{2}\text{-}\mathrm{Cl}(\sigma_{1}\sigma_{2}\text{-}\mathrm{Cl}(B_{1})))) \cup F^{+}(\sigma_{1}\sigma_{2}\text{-}\mathrm{Cl}(\sigma_{1}\sigma_{2}\text{-}\mathrm{Cl}(B_{2}))))) \end{aligned}$$

J. Khampakdee, A. Sama-Ae, C. Boonpok / Eur. J. Pure Appl. Math, 18 (1) (2025), 5720 11 of 15

and hence

$$(\tau_1, \tau_2)\operatorname{-sCl}(F^-(\sigma_1\sigma_2\operatorname{-Cl}(\sigma_1\sigma_2\operatorname{-Cl}(B_1)))) \cup F^+(\sigma_1\sigma_2\operatorname{-Cl}(\sigma_1\sigma_2\operatorname{-Cl}(B_2))))) \subseteq F^-(\sigma_1\sigma_2\operatorname{-Cl}(B_1)) \cup F^+(\sigma_1\sigma_2\operatorname{-Cl}(B_2)).$$

(5) \Rightarrow (6): Let V_1, V_2 be any $\sigma_1 \sigma_2$ -open sets of Y having $\mathscr{N}(\sigma_1, \sigma_2)$ -closed complements. Then, $Y - V_1$ and $Y - V_2$ are $\mathscr{N}(\sigma_1, \sigma_2)$ -closed and $\sigma_1 \sigma_2$ -closed sets of Y. By (5) and Lemma 2,

 $\tau_{1}\tau_{2}\text{-Int}(\tau_{1}\tau_{2}\text{-}\mathrm{Cl}(F^{-}(\sigma_{1}\sigma_{2}\text{-}\mathrm{Cl}(\sigma_{1}\sigma_{2}\text{-}\mathrm{Int}(Y-V_{1}))) \cup F^{+}(Y-\sigma_{1}\sigma_{2}\text{-}\mathrm{Cl}(\sigma_{1}\sigma_{2}\text{-}\mathrm{Int}(V_{2}))))))$ $\subseteq F^{-}(Y-V_{1}) \cup F^{+}(Y-V_{2})$ $= (X-F^{+}(V_{1})) \cup (X-F^{-}(V_{2}))$ $= X-(F^{+}(V_{1}) \cap F^{-}(V_{2})).$

Moreover, we have

$$\begin{aligned} &\tau_{1}\tau_{2}\text{-}\mathrm{Int}(\tau_{1}\tau_{2}\text{-}\mathrm{Cl}(F^{-}(\sigma_{1}\sigma_{2}\text{-}\mathrm{Cl}(\sigma_{1}\sigma_{2}\text{-}\mathrm{Int}(Y-V_{1}))) \cup F^{+}(Y-\sigma_{1}\sigma_{2}\text{-}\mathrm{Cl}(\sigma_{1}\sigma_{2}\text{-}\mathrm{Int}(V_{2}))))) \\ &= \tau_{1}\tau_{2}\text{-}\mathrm{Int}(\tau_{1}\tau_{2}\text{-}\mathrm{Cl}(F^{-}(Y-\sigma_{1}\sigma_{2}\text{-}\mathrm{Int}(\sigma_{1}\sigma_{2}\text{-}\mathrm{Cl}(V_{1}))) \cup F^{+}(Y-\sigma_{1}\sigma_{2}\text{-}\mathrm{Int}(\sigma_{1}\sigma_{2}\text{-}\mathrm{Cl}(V_{2}))))) \\ &= \tau_{1}\tau_{2}\text{-}\mathrm{Int}(\tau_{1}\tau_{2}\text{-}\mathrm{Cl}((X-F^{+}((\sigma_{1},\sigma_{2})\text{-}\mathrm{sCl}(V_{1}))) \cup (X-F^{-}((\sigma_{1},\sigma_{2})\text{-}\mathrm{sCl}(V_{2}))))) \\ &= \tau_{1}\tau_{2}\text{-}\mathrm{Int}(\tau_{1}\tau_{2}\text{-}\mathrm{Cl}(X-(F^{+}((\sigma_{1},\sigma_{2})\text{-}\mathrm{sCl}(V_{1})) \cap F^{-}((\sigma_{1},\sigma_{2})\text{-}\mathrm{sCl}(V_{2}))))) \\ &= X-\tau_{1}\tau_{2}\text{-}\mathrm{Cl}(\tau_{1}\tau_{2}\text{-}\mathrm{Int}(F^{+}((\sigma_{1},\sigma_{2})\text{-}\mathrm{sCl}(V_{1})) \cap F^{-}((\sigma_{1},\sigma_{2})\text{-}\mathrm{sCl}(V_{2})))). \end{aligned}$$

Thus, $F^+(V_1) \cap F^-(V_2) \subseteq \tau_1 \tau_2$ -Cl $(\tau_1 \tau_2$ -Int $((F^+((\sigma_1, \sigma_2)$ -sCl $(V_1)) \cap F^-((\sigma_1, \sigma_2)$ -sCl $(V_2))))$. (6) \Rightarrow (1): Let $x \in X$ and Let V_1, V_2 be any $\sigma_1 \sigma_2$ -open sets of Y having $\mathscr{N}(\sigma_1, \sigma_2)$ -closed complements such that $x \in F^+(V_1) \cap F^-(V_2)$. By (6) and Lemma 2, we have

$$x \in F^+(V_1) \cap F^-(V_2) \subseteq (\tau_1, \tau_2) \text{-}\operatorname{sInt}(F^+((\sigma_1, \sigma_2) \text{-}\operatorname{sCl}(V_1)) \cap F^-((\sigma_1, \sigma_2) \text{-}\operatorname{sCl}(V_2))).$$

Put $U = (\tau_1, \tau_2)$ -sInt $(F^+((\sigma_1, \sigma_2)$ -sCl $(V_1)) \cap F^-((\sigma_1, \sigma_2)$ -sCl $(V_2)))$. Then, U is a (τ_1, τ_2) -sopen set of X containing $x, F(U) \subseteq (\sigma_1, \sigma_2)$ -sCl (V_1) and (σ_1, σ_2) -sCl $(V_2) \cap F(z) \neq \emptyset$ for every $z \in U$. This shows that F is almost nearly quasi (τ_1, τ_2) -continuous.

Theorem 8. For a multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

- (1) F is almost nearly quasi (τ_1, τ_2) -continuous;
- (2) (τ_1, τ_2) -sCl $(F^-(V_1) \cup F^+(V_2)) \subseteq F^-(\sigma_1 \sigma_2$ -Cl $(V_1)) \cup F^+(\sigma_1 \sigma_2$ -Cl $(V_2))$ for every $(\sigma_1, \sigma_2)\beta$ open sets V_1, V_2 of Y having $\mathcal{N}(\sigma_1, \sigma_2)$ -closed complements;
- (3) (τ_1, τ_2) -sCl $(F^-(V_1) \cup F^+(V_2)) \subseteq F^-(\sigma_1 \sigma_2$ -Cl $(V_1)) \cup F^+(\sigma_1 \sigma_2$ -Cl $(V_2))$ for every (σ_1, σ_2) -sopen sets V_1, V_2 of Y having $\mathscr{N}(\sigma_1, \sigma_2)$ -closed complements;
- (4) $F^+(V_1) \cap F^-(V_2) \subseteq (\tau_1, \tau_2)$ -sInt $(F^+(\sigma_1 \sigma_2 Int(\sigma_1 \sigma_2 Cl(V_1))) \cap F^-(\sigma_1 \sigma_2 Int(\sigma_1 \sigma_2 Cl(V_2))))$ for every (σ_1, σ_2) p-open sets V_1, V_2 of Y having $\mathcal{N}(\sigma_1, \sigma_2)$ -closed complements.

Proof. The proof follows from Theorem 7 and is thus omitted.

J. Khampakdee, A. Sama-Ae, C. Boonpok / Eur. J. Pure Appl. Math, 18 (1) (2025), 5720 12 of 15

Acknowledgements

This research project was financially supported by Mahasarakham University.

References

- C. Boonpok. Almost (g, m)-continuous functions. International Journal of Mathematical Analysis, 4(40):1957–1964, 2010.
- [2] C. Boonpok. M-continuous functions in biminimal structure spaces. Far East Journal of Mathematical Sciences, 43(1):41–58, 2010.
- [3] C. Boonpok. On continuous multifunctions in ideal topological spaces. Lobachevskii Journal of Mathematics, 40(1):24–35, 2019.
- [4] C. Boonpok. On characterizations of *-hyperconnected ideal topological spaces. Journal of Mathematics, 2020:9387601, 2020.
- [5] C. Boonpok. $(\tau_1, \tau_2)\delta$ -semicontinuous multifunctions. *Heliyon*, 6:e05367, 2020.
- [6] C. Boonpok. Weak quasi continuity for multifunctions in ideal topological spaces. Advances in Mathematics: Scientific Journal, 9(1):339–355, 2020.
- [7] C. Boonpok. Upper and lower $\beta(\star)$ -continuity. *Heliyon*, 7:e05986, 2021.
- [8] C. Boonpok. On some closed sets and low separation axioms via topological ideals. European Journal of Pure and Applied Mathematics, 15(3):1023–1046, 2022.
- [9] C. Boonpok. $\theta(\star)$ -quasi continuity for multifunctions. WSEAS Transactions on Mathematics, 21:245–251, 2022.
- [10] C. Boonpok. On some spaces via topological ideals. Open Mathematics, 21:20230118, 2023.
- [11] C. Boonpok. $\theta(\star)$ -precontinuity. *Mathematica*, 65(1):31–42, 2023.
- [12] C. Boonpok and J. Khampakdee. (Λ, sp) -open sets in topological spaces. European Journal of Pure and Applied Mathematics, 15(2):572–588, 2022.
- [13] C. Boonpok and J. Khampakdee. On almost $\alpha(\Lambda, sp)$ -continuous multifunctions. European Journal of Pure and Applied Mathematics, 15(2):626–634, 2022.
- [14] C. Boonpok and J. Khampakdee. Slight (Λ, sp) -continuity and Λ_{sp} -extremally disconnectedness. European Journal of Pure and Applied Mathematics, 15(3):1180–1188, 2022.
- [15] C. Boonpok and J. Khampakdee. Upper and lower weak $s\beta(\star)$ -continuity. European Journal of Pure and Applied Mathematics, 16(4):2544–2556, 2023.
- [16] C. Boonpok and J. Khampakdee. Almost strong $\theta(\Lambda, p)$ -continuity for functions. European Journal of Pure and Applied Mathematics, 17(1):300–309, 2024.
- [17] C. Boonpok and J. Khampakdee. Upper and lower α-*-continuity. European Journal of Pure and Applied Mathematics, 17(1):201–211, 2024.
- [18] C. Boonpok and C. Klanarong. On weakly (τ_1, τ_2) -continuous functions. European Journal of Pure and Applied Mathematics, 17(1):416–425, 2024.
- [19] C. Boonpok and P. Pue-on. Continuity for multifunctions in ideal topological spaces. WSEAS Transactions on Mathematics, 19:624–631, 2020.

J. Khampakdee, A. Sama-Ae, C. Boonpok / Eur. J. Pure Appl. Math, 18 (1) (2025), 5720 13 of 15

- [20] C. Boonpok and P. Pue-on. Upper and lower sβ(*)-continuous multifunctions. European Journal of Pure and Applied Mathematics, 16(3):1634–1646, 2023.
- [21] C. Boonpok and P. Pue-on. Upper and lower weakly α-*-continuous multifunctions. International Journal of Analysis and Applications, 21:90, 2023.
- [22] C. Boonpok and P. Pue-on. Upper and lower weakly (Λ, sp)-continuous multifunctions. European Journal of Pure and Applied Mathematics, 16(2):1047–1058, 2023.
- [23] C. Boonpok and P. Pue-on. Characterizations of almost (τ_1, τ_2) -continuous functions. International Journal of Analysis and Applications, 22:33, 2024.
- [24] C. Boonpok and N. Srisarakham. Almost α-*-continuity for multifunctions. International Journal of Analysis and Applications, 21:107, 2023.
- [25] C. Boonpok and N. Srisarakham. Weak forms of (Λ, b) -open sets and weak (Λ, b) continuity. European Journal of Pure and Applied Mathematics, 16(1):29–43, 2023.
- [26] C. Boonpok and N. Srisarakham. (τ_1, τ_2) -continuity for functions. Asia Pacific Journal of Mathematics, 11:21, 2024.
- [27] C. Boonpok and M. Thongmoon. Weak $\alpha(\Lambda, sp)$ -continuity for multifunctions. European Journal of Pure and Applied Mathematics, 16(1):465–478, 2023.
- [28] C. Boonpok and C. Viriyapong. Upper and lower almost weak (τ_1, τ_2) -continuity. European Journal of Pure and Applied Mathematics, 14(4):1212–1225, 2021.
- [29] C. Boonpok, C. Viriyapong, and M. Thongmoon. On upper and lower (τ_1, τ_2) -precontinuous multifunctions. Journal of Mathematics and Computer Science, 18:282–293, 2018.
- [30] C. Carpintero, J. Pacheco, N. Rajesh, E. Rosas, and S. Saranyasri. Properties of nearly ω-continuous multifunctions. Acta Universitatis Sapientiae, Mathematica, 9(1):13–25, 2017.
- [31] M. Chiangpradit, A. Sama-Ae, and C. Boonpok. Almost nearly quasi (τ_1, τ_2) continuous multifunctions. (accepted).
- [32] M. Chiangpradit, S. Sompong, and C. Boonpok. Weakly quasi (τ_1, τ_2) -continuous functions. International Journal of Analysis and Applications, 22:125, 2024.
- [33] N. Chutiman, A. Sama-Ae, and C. Boonpok. Almost near (τ_1, τ_2) -continuity for multifunctions. (accepted).
- [34] T. Duangphui, C. Boonpok, and C. Viriyapong. Continuous functions on bigeneralized topological spaces. *International Journal of Mathematical Analysis*, 5(24):1165– 1174, 2011.
- [35] T. Dungthaisong, C. Boonpok, and C. Viriyapong. Generalized closed sets in bigeneralized topological spaces. *International Journal of Mathematical Analysis*, 5(24):1175–1184, 2011.
- [36] E. Ekici. Nearly continuous multifunctions. Acta Mathematica Universitatis Comenianae, 72:229–235, 2003.
- [37] E. Ekici. Almost nearly continuous multifunctions. Acta Mathematica Universitatis Comenianae, 73:175–186, 2004.
- [38] J. Khampakdee and C. Boonpok. Upper and lower $\alpha(\Lambda, sp)$ -continuous multifunctions. WSEAS Transactions on Mathematics, 21:684–690, 2022.
- [39] J. Khampakdee, S. Sompong, and C. Boonpok. c- (τ_1, τ_2) -continuity for multifunc-

J. Khampakdee, A. Sama-Ae, C. Boonpok / Eur. J. Pure Appl. Math, **18** (1) (2025), 5720 14 of 15

tions. European Journal of Pure and Applied Mathematics, 17(3):2289–2299, 2024.

- [40] C. Klanarong, S. Sompong, and C. Boonpok. Upper and lower almost (τ_1, τ_2) continuous multifunctions. European Journal of Pure and Applied Mathematics, 17(2):1244–1253, 2024.
- [41] B. Kong-ied, S. Sompong, and C. Boonpok. Almost quasi (τ_1, τ_2) -continuous functions. Asia Pacific Journal of Mathematics, 11:64, 2024.
- [42] N. Levine. Semi-open sets and semi-continuity in topological spaces. The American Mathematical Monthly, 70:36–41, 1963.
- [43] S. R. Malghan and V. V. Hanchinamani. N-continuous functions. Annales de la Société Scientifique de Bruxelles, 98:69–79, 1984.
- [44] S. Marcus. Sur les fonctions quasicontinues au sens de S. Kempisty. Colloquium Mathematicum, 8:47–53, 1961.
- [45] A. Neubrunnová. On certain generalizations of the notion of continuity. Matematický Časopis, 23:374–380, 1973.
- [46] T. Noiri and N. Ergun. Notes on N-continuous functions. Research Reports of Yatsushiro National College of Technology, 11:65–68, 1989.
- [47] T. Noiri and V. Popa. A unified theory of upper and lower almost nearly continuous multifunctions. *Mathematica Balkanica*, 23:51–72, 2009.
- [48] V. Popa. Almost continuous multifunctions. Matematički Vesnik, 34:75–84, 1982.
- [49] V. Popa and Noiri. On upper and lower almost quasi continuous multifunctions. Bulletin of the Institute of Mathematics Academia Sinica, 21:337–349, 1993.
- [50] V. Popa and T. Noiri. Almost quasi continuous multifunctions. Tatra Mountains Mathematical Publications, 14:81–90, 1998.
- [51] C. Prachanpol, C. Boonpok, and C. Viriyapong. $\delta(\tau_1, \tau_2)$ -continuous functions. European Journal of Pure and Applied Mathematics, 17(4):3730–3742, 2024.
- [52] P. Pue-on and C. Boonpok. $\theta(\Lambda, p)$ -continuity for functions. International Journal of Mathematics and Computer Science, 19(2):491–495, 2024.
- [53] P. Pue-on, A. Sama-Ae, and C. Boonpok. *c*-quasi (τ_1, τ_2) -continuous multifunctions. European Journal of Pure and Applied Mathematics, 17(4):3242–3253, 2024.
- [54] P. Pue-on, S. Sompong, and C. Boonpok. Almost quasi (τ_1, τ_2) -continuity for multifunctions. International Journal of Analysis and Applications, 22:97, 2024.
- [55] P. Pue-on, S. Sompong, and C. Boonpok. Upper and lower (τ_1, τ_2) -continuous mulfunctions. International Journal of Mathematics and Computer Science, 19(4):1305– 1310, 2024.
- [56] P. Pue-on, S. Sompong, and C. Boonpok. Weakly quasi (τ_1, τ_2) -continuous multifunctions. European Journal of Pure and Applied Mathematics, 17(3):1553–1564, 2024.
- [57] P. Pue-on, S. Sompong, and C. Boonpok. Slightly (τ_1, τ_2) s-continuous functions. International Journal of Mathematics and Computer Science, 20(1):217–221, 2025.
- [58] E. Rosas, C. Carpintero, and J. Moreno. More on upper and lower almost nearly Icontinuous multifunctions. *International Journal of Pure and Applied Mathematics*, 117(3):521–537, 2017.
- [59] A. Rychlewicz. On almost nearly continuous functions with reference to multifunctions. Tatra Mountains Mathematical Publications, 42:61–72, 2009.

J. Khampakdee, A. Sama-Ae, C. Boonpok / Eur. J. Pure Appl. Math, 18 (1) (2025), 5720 15 of 15

- [60] N. Srisarakham and C. Boonpok. Almost (Λ, p) -continuous functions. International Journal of Mathematics and Computer Science, 18(2):255–259, 2023.
- [61] N. Srisarakham, A. Sama-Ae, and C. Boonpok. Characterizations of faintly (τ_1, τ_2) -continuous functions. European Journal of Pure and Applied Mathematics, 17(4):2753-2762, 2024.
- [62] M. Thongmoon and C. Boonpok. Upper and lower almost $\beta(\Lambda, sp)$ -continuous multifunctions. WSEAS Transactions on Mathematics, 21:844–853, 2022.
- [63] M. Thongmoon and C. Boonpok. Strongly $\theta(\Lambda, p)$ -continuous functions. International Journal of Mathematics and Computer Science, 19(2):475–479, 2024.
- [64] M. Thongmoon, A. Sama-Ae, and C. Boonpok. Upper and lower near (τ_1, τ_2) continuity. (accepted).
- [65] M. Thongmoon, S. Sompong, and C. Boonpok. Upper and lower weak (τ_1, τ_2) continuity. European Journal of Pure and Applied Mathematics, 17(3):1705–1716,
 2024.
- [66] M. Thongmoon, S. Sompong, and C. Boonpok. Rarely (τ_1, τ_2) -continuous functions. International Journal of Mathematics and Computer Science, 20(1):423–427, 2025.
- [67] C. Viriyapong and C. Boonpok. $(\tau_1, \tau_2)\alpha$ -continuity for multifunctions. Journal of Mathematics, 2020:6285763, 2020.
- [68] C. Viriyapong and C. Boonpok. (Λ, sp)-continuous functions. WSEAS Transactions on Mathematics, 21:380–385, 2022.
- [69] C. Viriyapong and C. Boonpok. Weak quasi (Λ, sp) -continuity for multifunctions. International Journal of Mathematics and Computer Science, 17(3):1201–1209, 2022.
- [70] C. Viriyapong, S. Sompong, and C. Boonpok. Upper and lower slight (τ_1, τ_2) continuity. European Journal of Pure and Applied Mathematics, 17(3):2142–2154,
 2024.
- [71] N. Viriyapong, S. Sompong, and C. Boonpok. Slightly $(\tau_1, \tau_2)p$ -continuous multifunctions. International Journal of Analysis and Applications, 22:152, 2024.
- [72] N. Viriyapong, S. Sompong, and C. Boonpok. (τ_1, τ_2) -extremal disconnectedness in bitopological spaces. International Journal of Mathematics and Computer Science, 19(3):855–860, 2024.
- [73] N. Viriyapong, S. Sompong, and C. Boonpok. Upper and lower s- $(\tau_1, \tau_2)p$ -continuous multifunctions. European Journal of Pure and Applied Mathematics, 17(3):2210–2220, 2024.