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Abstract. This paper aims to put forward and design a four-step semi-implicit approximation
scheme to work out the fixed point of a contractive mapping. Convergence analysis and stability
of the proposed scheme is incorporated under some mild assumptions. Finally, the significance
and applications of the proposed scheme and theoretical findings are proven by exploring a general
quasi-variational inequality and a nonlinear fractional differential equation.
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1. Introduction

Throughout this paper, we presume that Ω ̸= ϕ is a subset of a Banach space X,R
signifies the set of real numbers and Ξ(Ψ) = {ϱ ∈ Ω : Ψϱ = ϱ}, the set of fixed points
of the mapping Ψ. A mapping Ψ : Ω → Ω is referred to as contraction if ∃κ ∈ [0, 1)
such that ∥Ψϱ − Ψς∥ ≤ κ∥ϱ − ς∥,∀ϱ, ς ∈ Ω and non-expansive for κ = 1. Non-expansive
mappings are crucial generalized notion of contraction mappings and fundamental tools
in the theory of fixed points, see, [48]. Clearly, Ξ(Ψ) for a non-expansive self mapping Ψ
on a bounded, closed and convex subset Ω is non-empty, see, [10]. Detailed information
on non-expansive mappings and related results can be found in [16, 38].

Non-expansive mappings play vital role in the journey of nonlinear analysis and have
been employed to deal various problems of nonlinear analysis such as variational inequality,
optimization, equilibrium and initial value problems. In fact, a non-expansive self-mapping
on a complete metric space not necessarily owns a fixed point.

Example 1. [37] Consider a closed and bounded subset Ω = {ϱ = (ϱ1, ϱ2, · · · ) : ϱk ≥
0, ∀k,

∞∑
k=1

ϱk = 1} of a Banach space X of all real absolutely summable sequences (l1, ∥ ·∥1).

Then the non-expansive mapping Ψ : Ω → Ω described by Ψ(ϱ) = (0, ϱ1, ϱ2, ·) does not
admit a fixed point.
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Also, unlike the contraction mappings, the Picard sequence may not converge to a
fixed point of a non-expansive mapping. These facts motivated the researchers to explore
the mappings which own fixed points over such spaces. A class of weak contractions also
known as almost contraction mappings (ACM) was brought into existence by Berinde [8]
which is defined below:

Definition 1. A mapping Ψ : Ω → Ω is called ACM if for some κ ≥ 0,∃τ ∈ (0, 1) so that

∥Ψ(ϱ)−Ψ(ς)∥ ≤ τ∥ϱ− ς∥+ κ∥ϱ−Ψ(ϱ)∥,∀ϱ, ς ∈ Ω. (1)

Osilike obtained contractive condition (1) by extending the work of Rhoades [39] and the
author proved numerous stability results for (1). If κ = 2δ, τ = δ, then ACM coincides
with Zamfirescu contraction [7, 19], where

δ = max
{
α,

β

1− β
,

γ

1− γ

}
, α ∈ [0, 1), β, γ ∈ [0, 0.5].

Further, Imoru and Olantiwo [22] generalized the mapping defined in (1) by involving
monotonic increasing function and defined as under:

Definition 2. A mapping Ψ : Ω → Ω is referred to as contractive-like if there exists a
strictly increasing continuous function g : [0,∞) → [0,∞) with g(0) = 0 and τ ∈ [0, 1) so
that

∥Ψ(ϱ)−Ψ(ς)∥ ≤ g(∥ϱ−Ψ(ϱ)∥) + τ∥ϱ− ς∥,∀ϱ, ς ∈ Ω. (2)

The contractive condition in (2) is much broader which include several contractive
conditions, see, [7, 19, 35, 39, 40]. If gu = κu, where κ ≥ 0 then (2) coincides with (1).
Further, for κ = mτ,m = (1 − τ)−1, 0 ≤ τ < 1, we acquire the contractive condition due
to Rhoades [40]. Further, if κu = 0, then (2) becomes

∥Ψ(ϱ)−Ψ(ς)∥ ≤ τ∥ϱ− ς∥, τ ∈ [0, 1),∀ϱ, ς ∈ Ω, (3)

which is considered by Berinde [7], and Harder and Hicks [19].
In past few years, a tremendous interest has been shown to the fixed point theory

which has become most versatile and applicable area of research. Several problems which
we encounter in real-world including zeros of monotone operators, ODEs, PDEs, integral
equations, VIs, etc., can be reformulated as a fixed point problem. Owing to the sig-
nificance of fixed point theory, numerous approaches have been carried out to deal with
fixed point problems. Among these approaches, iterative approximation is one of the most
handy and applicable tools for exploring nonlinear problems. In recent time, several new
iterative schemes have been designed and employed. One of the most common schemes
for investigating fixed points is named as Mann iterative scheme [28]:{

ϱ0 ∈ Ω,

ϱk+1 = (1− αk)ϱk + αkΨ(ϱk), k ∈ N,
(4)
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where {αk} ∈ [0, 1] and Ψ : Ω → Ω is a non-expansive mapping. In 1974, Ishikawa [23]
approximated the fixed points by designing the scheme as under:

ϱ0 ∈ Ω,

σk = (1− βk)ϱk + βkΨ(ϱk),

ϱk+1 = (1− αk)ϱk + αkΨ(σk), k ∈ N,
(5)

where {αk}, {βk} ∈ [0, 1]. Further, Noor[33] posed a three-step scheme which comprises
Mann [28] and Ishikawa [23] schemes and expressed as under:

ϱ0 ∈ Ω,

ρk = (1− γk)ϱk + γkΨ(ϱk),

σk = (1− βk)ϱk + βkΨ(ρk),

ϱk+1 = (1− αk)ϱk + αkΨ(σk), k ∈ N,

(6)

where {αk}, {βk}, {γk} ∈ [0, 1]. Among the numerous iterative methods posed so far, a few
common and intensively used schemes include S-iteration [41], M -iteration [49], Normal-S
[43], Picard-Ishikawa scheme [34], etc.. Recently, Okeke et al. [15] contrived an efficient
four step iterative scheme:

ϱ0 ∈ Ω,

ϱk+1 = Ψ(ςk),

ςk = Ψ[(1− αk)ϑk + αkΨ(ϑk)],

ϑk = (1− βk)Ψ(ϱk) + βkΨ(εk),

εk = (1− γk)ϱk + γkΨ(ϱk), k ∈ N,

(7)

where {αk}, {βk}, {γk} ⊂ [0, 1]. The authors approximated the fixed point of a contrac-
tion mapping in a uniformly convex Banach space and proved the stability of the proposed
scheme. Additionally, the weak convergence for Suzuki’s generalized non-expansive map-
ping was analyzed. The efficiency of the scheme was demonstrated by illustrative example
and comparing some known schemes.

A mapping Ψ in a Banach space X with domain D(Ψ) and range R(Ψ) is referred to
as accretive, if

⟨Ψϱ−Ψς, J(ϱ− ς)⟩ ≥ 0, ∀ϱ, ς ∈ D(Ψ),

where J : X → X ∗ is the duality mapping and Ψ is referred to as monotone, if

⟨Ψϱ−Ψς, ϱ− ς⟩ ≥ 0,∀ϱ, ς ∈ D(Ψ).

If X = H , a Hilbert space, then both the concepts are identical in the sense of Minty
[30] and Browder [10]. On the contrary, number of real-life problems appearing in science
and engineering can be studied by formulating as a model of the following initial-value
problem (IVP):

dϱ

dt
= Ψ(ϱ); ϱ(0) = ϱ0. (8)
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Since the accretive and monotone mappings are connected to the evolution model (8) and
this relation makes these mappings quite fruitful and applicable. A fundamental result
documented by [10] affirms that (8) admits a solution when Ψ is locally Lipshitzian and
accretive on X . Additionally, estimating a zero of nonlinear mapping Ψ, i.e., 0 ∈ Ψϱ
is a significant and powerful tool in approximation theory because solutions of elliptic
differential equations, optimization problems, inclusion problems, fixed point problems can
be obtained as a model of inclusion problem 0 ∈ Ψϱ which is identical to the equilibrium
state: dϱ

dt = 0,Ψ(ϱ) = 0, see, [10, 11].
To obtain a numerical solution is challenging task when the involved mapping Ψ is

not continuous. Several researchers obtained numerical solutions of (8) by approximation
approaches, see, Mustafa [47], Duffull and Hegarty [13], Khorasani and Adibi [25]. One of
the fundamental and impressive techniques is implicit midpoint rule (IMR):

1

µ
(ϱk+1 − ϱk) = Ψ

(ϱk+1 + ϱk
2

)
, (9)

where µ > 0 is a step-size. The sequence {ϱk} induced by (9) converges to the exact
solution of (8) under modest assumptions, see, [3, 5]. If Ψ is expressed as Ψ(ϱ) := Γ(ϱ)−ϱ,
then the IVP (8) transformed into

ϱ
′
= ϱ− Γ(ϱ), ϱ(0) = ϱ0 (10)

and the IMR (9) becomes:

1

µ
(ϱk+1 − ϱk) =

[ϱk+1 + ϱk
2

− Γ
(ϱk+1 + ϱk

2

)]
, (11)

In [26], the authors deployed the fact that equilibrium associated to (10) is identical to
the fixed point ϱ = Γ(ϱ), which compelled the authors to design the following fixed point
implicit iterative scheme:

ϱk+1 = (1− αk)ϱk + αkΓ
(ϱk+1 + ϱk

2

)
, (12)

where {αk} ⊂ (0, 1) and Γ : H → H is nonexpansive. The authors carried out weak
convergence results by taking some modest assumptions into consideration. Same fact
motivated, Xu et al. [20] to design the following implicit midpoint method using viscosity
technique for non-expansive mapping:

ϱk+1 = αkψ(ϱk) + (1− αk)Γ
(ϱk+1 + ϱk

2

)
, (13)

where, Γ is non-expansive and ψ is contraction mapping. More precisely, following result
was proved.

Theorem 1. Let Ω ̸= ∅ be a closed convex set in a Hilbert space H . Suppose that
Γ : Ω → Ω is a non-expansive and ψ : Ω → Ω is a contraction mapping. If {αk} complies
with the following preassumptions:
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(P1) lim
k→∞

αk = 0; (P2)
∞∑
k=0

αk = ∞; (P3)
∞∑
k=0

|αk+1 − αk| <∞.

Then {ϱk}∞k=1 produced by (13) converges to ϱ ∈ Fix(Γ) and ϱ solves the following varia-
tional inequality:

⟨(I − τ)ψ, ϱ− τ⟩ ≥ 0, ∀ϱ ∈ Fix(Γ).

Luo et al. [36] obtained the results of Xu et al. [20] in uniformly smooth Banach space.
For more details on implicit schemes, we refer, [12, 21, 31, 51].

Motivated and encouraged by the earlier revealed results and iterative process (7), we
propose and design a four-step semi-implicit approximation scheme (14) to work out the
fixed point of a contractive mapping. The accomplishment of the task is performed as
mentioned herein: Second section begins with the designing of a semi-implicit mid point
scheme followed by some basic results. Convergence of the planned is analyzed to explore
a fixed point of a contractive mapping and the uniqueness of the solution is established.
Further, the stability of the designed scheme is discussed. In the third section, we discuss
the significance and applicability of our designed scheme. A general quasi-variational
inequality and a fractional differential equation are investigated by employing our designed
scheme. The concluding comments and expected future research plans are outlined in the
last section.

2. Iterative Scheme and Convergence

Let ∅ ̸= Ω be a closed convex subset of a Banach space X equipped with norm ∥ · ∥.
Suppose the mapping Ψ : Ω → Ω satisfies contractive condition (2). Based on the iterative
scheme (7), we are interested to suggest and analyze the following semi-implicit midpoint
scheme (SIMPS) as under:

ϱk+1 = Ψ(σk),

σk = Ψ
[
(1− αk)

(σk + ϑk
2

)
+ αkΨ

(σk + ϑk
2

)]
,

ϑk = (1− βk)Ψ
(ϑk + ϱk

2

)
+ βkΨ

(ϑk + θk
2

)
,

θk = (1− γk)
(ϱk + θk

2

)
+ γkΨ

(ϱk + θk
2

)]
,

(14)

where {αk}, {βk}, {γk} ⊆ (0, 1).

Definition 3. [9] Let {φk} ⊂ Ω be an arbitrary sequence. An iterative scheme ϱk+1 =
Λ(Ψ, ϱk) so as {ϱk} → ϱ ∈ Ξ(Ψ) is said to be Ψ-stable. If for µk = ∥φk+1 − Λ(Ψ, φk)∥,
lim
k→∞

µk = 0 if and only if lim
k→∞

φk = ϱ.

Lemma 1. [50] Suppose the nonnegative real sequences {ϱk}∞k=1 and {ςk}∞k=1 satisfy

ϱk+1 ≤ (1− pk)ϱk + ςk,

where pk ∈ (0, 1),
∞∑
k=1

pk = ∞ and lim
k→∞

ςk
pk

= 0. Then lim
k→∞

ϱk = 0.
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Theorem 2. Let ∅ ≠ Ω ⊆ X be a closed convex bounded set and Ψ : Ω → Ω satisfies (2).
If Ξ(Ψ) ̸= ∅, then {ϱk}∞k=1 initiated by SIMPS (14) converges strongly to ϱ ∈ Ξ(Ψ).

Proof. Suppose that ϱ ∈ Ξ(Ψ). Then, it results from the last formulation of (14) that

∥θk − ϱ∥ =
∥∥∥(1− γk)

(ϱk + θk
2

)
+ γkΨ

(ϱk + θk
2

)]
− ϱ

∥∥∥
≤ (1− γk)

∥∥∥ϱk + θk
2

− ϱ
∥∥∥+ γk

∥∥∥Ψ(ϱk + θk
2

)
− ϱ

∥∥∥
= (1− γk)

∥∥∥ϱk + θk
2

− ϱ
∥∥∥+ γk

∥∥∥Ψ(ϱ)−Ψ
(ϱk + θk

2

)∥∥∥
≤ (1− γk)

∥∥∥ϱk + θk
2

− ϱ
∥∥∥+ γk

[
g(∥ϱ−Ψ(ϱ)∥) + τ

∥∥∥(ϱk + θk
2

)
− ϱ

∥∥∥]
≤ εk

2
(∥ϱk − ϱ∥+ ∥θk − ϱ∥),

where εk = (1− γk + τγk), which turns after simplification into

∥θk − ϱ∥ ≤ εk
(2− εk)

∥ϱk − ϱ∥. (15)

Again it yields from scheme (14) that

∥ϑk − ϱ∥ =
∥∥∥(1− βk)Ψ

(ϑk + ϱk
2

)
+ βkΨ

(ϑk + θk
2

)
− ϱ

∥∥∥
≤ (1− βk)

∥∥∥Ψ(ϑk + ϱk
2

)
− ϱ

∥∥∥+ βk

∥∥∥Ψ(ϑk + θk
2

)
− ϱ

∥∥∥
≤ (1− βk)

∥∥∥Ψ(ϱ)−Ψ
(ϑk + ϱk

2

)∥∥∥+ βk

∥∥∥Ψ(ϱ)−Ψ
(ϑk + θk

2

)∥∥∥
≤ (1− βk)

[
g(∥ϱ−Ψ(ϱ)∥) + τ

∥∥∥(ϑk + ϱk
2

)
− ϱ

∥∥∥]
+ βk

[
g(∥ϱ−Ψ(ϱ)∥) + τ

∥∥∥(ϑk + θk
2

)
− ϱ

∥∥∥]
≤ (1− βk)τ

∥∥∥(ϑk + ϱk
2

)
− ϱ

∥∥∥+ βkτ
∥∥∥(ϑk + θk

2

)
− ϱ

∥∥∥
≤ τ

2
∥ϑk − ϱ∥+ τ

2
[(1− βk)∥ϱk − ϱ∥+ βk∥θk − ϱ∥],

which yields into

∥ϑk − ϱ∥ ≤ τ

(2− τ)
[(1− βk)∥ϱk − ϱ∥+ βk∥θk − ϱ∥]. (16)

Combining (15) and (16), one gets

∥ϑk − ϱ∥ ≤ τ

(2− τ)

[
1− βk

(
1− εk

(2− εk)

)]
∥ϱk − ϱ∥. (17)
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Further, the second formulation of SIMPS (14) yields

∥σk − ϱ∥ =
∥∥∥Ψ[

(1− αk)
(σk + ϑk

2

)
+ αkΨ

(σk + ϑk
2

)]
− ϱ

∥∥∥
=

∥∥∥Ψ(ϱ)−Ψ
[
(1− αk)

(σk + ϑk
2

)
+ αkΨ

(σk + ϑk
2

)]∥∥∥
≤ g(∥ϱ−Ψ(ϱ)∥) + τ

∥∥∥[(1− αk)
(σk + ϑk

2

)
+ αkΨ

(σk + ϑk
2

)]
− ϱ

∥∥∥
≤ τ(1− αk)

∥∥∥(σk + ϑk
2

)
− ϱ

∥∥∥+ ταk

∥∥∥Ψ(ϱ)−Ψ
(σk + ϑk

2

)∥∥∥
≤ τ [1− αk(1− τ)]

∥∥∥(σk + ϑk
2

)
− ϱ

∥∥∥
=
πk
2
[∥σk − ϱ∥+ ∥ϑk − ϱ∥].

Thus, we acquire

∥σk − ϱ∥ ≤ πk
(2− πk)

∥ϑk − ϱ∥, (18)

where πk = τ [1−αk(1− τ)]. The straightforward calculation after taking the assumptions
{αk}∞k=1 ∈ (0, 1), τ ∈ [0, 1) and (17) into play leads εk ∈ [0, 1). Thus, we acquire 1 −
βk

(
1− εk

2− εk

)
≤ 1 and hence,

∥σk − ϱ∥ ≤ πk
(2− πk)

τ

(2− τ)
∥ϱk − ϱ∥. (19)

Finally, the first formulation of SIMPS (14) along with (19) turns into

∥ϱk+1 − ϱ∥ = ∥Ψ(σk)− ϱ∥
= ∥Ψ(ϱ)−Ψ(σk)∥
≤ g(∥ϱ−Ψ(ϱ)∥) + τ∥σk − ϱ∥
≤ (1− ℓ̂k)∥ϱk − ϱ∥,

(20)

where,

ℓ̂k =
(2− τ)(2− πk)− τ2πk

(2− τ)(2− πk)
. (21)

Since πk = τ(1−αk+ ταk), τ ∈ [0, 1) and {αk}∞k=1 ⊆ (0, 1) yields πk ≤ τ . Thus, we obtain

ℓ̂k ≥ 1

4
[(2− τ)(2− πk)− τ2πk]

≥ 1

4
[1 + (1− τ)][1 + (1− τ)]− τ3

> 0.

Further, 1 − ℓ̂k =
τ2πk

(2− τ)(2− πk)
≥ 0 and

∞∑
k=0

ℓ̂k = ∞. Utilizing Lemma 1, it follows

from (20) that lim
k→∞

∥ϱk − ϱ∥ = 0. Next, we manifest the uniqueness of ϱ, suppose that
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ϱ1, ϱ2 ∈ Ω so that ϱ1 ̸= ϱ2 and ϱ1, ϱ2 ∈ Ξ(Ψ). Then

∥ϱ1 − ϱ2∥ = ∥Ψ(ϱ1)−Ψ(ϱ2)∥
≤ g(∥ϱ1 −Ψ(ϱ1)∥) + τ∥ϱ1 − ϱ2∥
= τ∥ϱ1 − ϱ2∥.

(22)

Since τ ∈ [0, 1), then (22) gives ∥ϱ1 − ϱ2∥ = 0 and consequently ϱ1 = ϱ2.

Theorem 3. Suppose that ∅ ≠ Ω ⊆ X is a closed convex bounded set and the mapping
Ψ : Ω → Ω satisfies (2). If ϱ ∈ Ξ(Ψ), then {ϱk}∞k=1 initiated by SIMPS (14) is Ψ-stable.

Proof. Let {φk} ⊂ Ω be an arbitrary sequence and {ϱk}∞k=1 initiated by SIMPS (14)
is ϱk+1 = Λ(Ψ, ϱk) such as {ϱk} → ϱ ∈ Ξ(Ψ). Suppose that µk = ∥φk+1 − Λ(Ψ, φk)∥,
where {φk} is initiated as under:

φk+1 = Ψ(ζk),

ζk = Ψ
[
(1− αk)

(ζk + ξk
2

)
+ αkΨ

(ζk + ξk
2

)]
,

ξk = (1− βk)Ψ
(ξk + φk

2

)
+ βkΨ

(ξk + ωk

2

)
,

ωk = (1− γk)
(φk + ωk

2

)
+ γkΨ

(φk + ωk

2

)]
.

(23)

To establish the Ψ-stability of the scheme (14), we corroborate lim
k→∞

µk = 0 if and only

if lim
k→∞

φk = ϱ. Assume that lim
k→∞

µk = 0. By utilizing the triangle inequality, we acquire

∥φk+1 − ϱ∥ = ∥φk+1 − Λ(Ψ, φk) + Λ(Ψ, φk)− ϱ∥
≤ ∥φk+1 − Λ(Ψ, φk)∥+ ∥Λ(Ψ, φk)− ϱ∥
≤ µk + ∥φk+1 − ϱ∥
= µk + ∥Ψ(ζk)− ϱ∥
≤ µk + g(∥ϱ−Ψ(ϱ)∥) + τ∥ζk − ϱ∥
= µk + τ∥ζk − ϱ∥.

(24)
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Again, from second equation of (23), we estimate

∥ζk − ϱ∥ =
∥∥∥Ψ[

(1− αk)
(ζk + ξk

2

)
+ αkΨ

(ζk + ξk
2

)]
− ϱ

∥∥∥
=

∥∥∥Φ(ϱ)−Ψ
[
(1− αk)

(ζk + ξk
2

)
+ αkΨ

(ζk + ξk
2

)]∥∥∥
≤ g(∥ϱ−Ψ(ϱ)∥) + τ

∥∥∥(1− αk)
(ζk + ξk

2

)
+ αkΨ

(ζk + ξk
2

)
− ϱ

∥∥∥
≤ τ(1− αk)

∥∥∥(ζk + ξk
2

)
− ϱ

∥∥∥+ ταk

∥∥∥Ψ(ζk + ξk
2

)
− ϱ

∥∥∥
≤ τ(1− αk)

∥∥∥(ζk + ξk
2

)
− ϱ

∥∥∥+ ταk

[
g(∥ϱ−Ψ(ϱ)∥) + τ

∥∥∥(ζk + ξk
2

)
− ϱ

∥∥∥]
≤ τ

2
[1− αk(1− τ)][∥ζk − ϱ∥+ ∥ξk − ϱ∥]

=
πk
2
[∥ζk − ϱ∥+ ∥ξk − ϱ∥]

which turns into
∥ζk − ϱ∥ ≤ πk

(2− πk)
∥ξk − ϱ∥. (25)

∥ξk − ϱ∥ =
∥∥∥(1− βk)Ψ

(ξk + φk

2

)
+ βkΨ

(ξk + ωk

2

)
− ϱ

∥∥∥
≤ (1− βk)

∥∥∥Ψ(ξk + φk

2

)
− ϱ

∥∥∥+ βk

∥∥∥Ψ(ξk + ωk

2

)
− ϱ

∥∥∥
≤ (1− βk)

[
g(∥ϱ−Ψ(ϱ)∥) + τ

∥∥∥(ξk + φk

2

)
− ϱ

∥∥∥]
+ βk

[
g(∥ϱ−Ψ(ϱ)∥) + τ

∥∥∥(ξk + ωk

2

)
− ϱ

∥∥∥]
≤ τ

2
∥ξk − ρ∥+ τ

2
[(1− βk)∥φk − ϱ∥+ βk∥ωk − ϱ∥]

which turns into

∥ξk − ϱ∥ ≤ τ

(2− τ)
[(1− βk)∥φk − ϱ∥+ βk∥ωk − ϱ∥], (26)

and

∥ωk − ϱ∥ =
∥∥∥(1− γk)

(φk + ωk

2

)
+ γkΨ

(φk + ωk

2

)
− ϱ

∥∥∥
≤ (1− γk)

∥∥∥(φk + ωk

2

)
− ϱ

∥∥∥+ γk

∥∥∥Ψ(φk + ωk

2

)
− ϱ

∥∥∥
≤ (1− γk)

∥∥∥(φk + ωk

2

)
− ϱ

∥∥∥+ γk

[
g(∥ϱ−Ψ(ϱ)∥) + τ

∥∥∥(φk + ωk

2

)
− ϱ

∥∥∥]
≤ εk

2
[∥φk − ϱ∥+ ∥ωk − ϱ∥]

which turns into
∥ωk − ϱ∥ ≤ εk

(2− εk)
∥φk − ϱ∥, (27)
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where εk = (1−γk+τγk). By implementing back substitution from (25)-(27), (24) becomes

∥φk+1 − ϱ∥ ≤ µk + (1− ℓ̂k)∥φk − ϱ∥, (28)

where ℓ̂k is identical as given in (21). By availing the assumption lim
k→∞

µk = 0, Lemma 1

yeilds ∥φk − ϱ∥ → 0 as k → ∞, i.e., lim
k→∞

φk = ϱ. Conversely, assume that lim
k→∞

φk = ϱ,

and following the same procedure, we achieve

µk = ∥φk+1 − Λ(Ψ, φk)∥
= ∥φk+1 − ϱ+ ϱ− Λ(Ψ, φk)∥
≤ ∥φk+1 − ϱ∥+ ∥Λ(Ψ, φk)− ϱ∥
≤ ∥φk+1 − ϱ∥+ (1− ℓ̂k)∥φk − ϱ∥.

Appealing to the assumption lim
k→∞

φk = ϱ, it follows that lim
k→∞

µk = 0. Hence, SIMPS

(14) is Ψ-stable.

3. Applications

In this section, we shall explore and examine a general quasi-variational inequality
and a nonlinear fractional differential equation by employing our outlined semi-implicit
midpoint scheme.

3.1. General quasi-variational inequality

Let H be a Hilbert space over R and C(H ), the collection of non empty closed convex
subsets of H . We contemplate the problem to observe an element ϱ ∈ H : ψ(ϱ) ∈ C(ϱ)
so that

⟨Ψ(ϱ), ψ(ς)− ψ(ϱ)⟩ ≥ 0,∀ς ∈ H , ψ(ς) ∈ C(ϱ), (29)

where Ψ, ψ : H → H be (not necessarily) linear mappings, and the set-valued mapping
C : H → 2H assigns each element ϱ ∈ H , a closed convex subset C(ϱ) of H . The
inequality (29) is called the generalized quasi variational inequality (GQV I) and we signify
its solution set by ✠(C(ϱ),Ψ, ψ). In fact, a quasi-variational inequality (QV I) is a kind
of modified variational inequality in which the constraint set varies with the variable.
Numerous economic and engineering problems, such as Nash equilibrium problems, control
and optimization, operations research, etc., are recognized to be well suited for modeling
and analysis using QV Is. GQV I (29) can be seen as a unified problem and consists several
considerably significant problems as special cases which are listed as under.

(i) For C(ϱ) = C, GQV I (29) is identical to the following general variational inequality
which was set forth by Noor [32].

⟨Ψ(ϱ), ψ(ς)− ψ(ϱ)⟩ ≥ 0,∀ς ∈ H , ψ(ς) ∈ C. (30)
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(ii) Further for ψ = I, Problem (30) becomes the classical variational inequality intro-
duced by Stampacchia[45].

(iii) If ψ = I, GQVI (29) turns into the following classical quasi-variational inequality
introduced in [6]:

⟨Ψ(ϱ), ς − ϱ⟩ ≥ 0, ∀ς ∈ C(ϱ). (31)

(iv) For ϱ0 ∈ H , the dual cone of C(ϱ0) ⊂ H is described by

C̄(ϱ0) = {ϱ ∈ H : ⟨ϱ, ς⟩ ≥ 0, ∀ς ∈ C(ϱ0)}.

Then problem (30) turns into a general complementarity problem of discerning an
element ϱ ∈ H so that

⟨Ψ(ϱ), ψ(ϱ)⟩ ≥ 0, ψ(ϱ) ∈ C(ϱ) and Ψ(ϱ) ∈ C̄(ϱ). (32)

Now, to bring off the required goal, we accumulate a few supplementary results and
definitions below.

Lemma 2. [4] If for any ς ∈ H , ϱ ∈ C(ϱ), the implicit projection PC(ϱ) : H → C(ϱ) ⊂ H
obeys the inequality ⟨κ− ω,ϖ − κ⟩ ≥ 0 if and only if PC(ϱ)(ω) = κ,∀ϖ ∈ C(ϱ).

Next, we shall design the following fixed point problem associated to GQV I (29) by
imposing the Lemma 2.

Lemma 3. An element ϱ ∈ H : ψ(ϱ) ∈ C(ϱ) solves GQVI (29) if and only if ϱ ∈ Ξ(Π),
where Π(ϱ) = ϱ− ψ(ϱ) + PC(ϱ)[ψ(ϱ)− λΨ(ϱ)] and λ > 0 is a constant.

Proof. Assume that ϱ ∈ ✠(C(ϱ),Ψ, ψ) then ⟨Ψ(ϱ), ψ(ς) − ψ(ϱ)⟩ ≥ 0, ∀ς ∈ H : ψ(ς) ∈
C(ϱ). By making use of Lemma 2, we acquire ΠC(ϱ)[ψ(ϱ)− λΨ(ϱ)] = ψ(ϱ). So, ϱ ∈ Ξ(Π).
On the other side, assume that ϱ ∈ Ξ(Π) then for all ϱ ∈ H : ψ(ϱ) ∈ C(ϱ), we obtain
Π(ϱ) = ϱ, thus, one can write ψ(ϱ) = ΠC(ϱ)[ψ(ϱ)−λΨ(ϱ)]. Again, by the virtue of Lemma
2, we get ⟨Ψ(ϱ), ψ(ς)− ψ(ϱ)⟩ ≥ 0, ∀ς ∈ H : ψ(ς) ∈ C(ϱ), i.e., ϱ ∈ ✠(C(ϱ),Ψ, ψ).

Now, we take the following assumption into account to accomplish the required goal.
Assumption A: For given elements ϱ, τ, ς ∈ H and κ > 0, PC obeys the following
inequality

∥PC(τ)(ς)− PC(ϱ)(ς)∥ ≤ κ∥τ − ϱ∥.

Definition 4. A mapping Ψ : H → H is called
• ρ1-strongly monotone if ∃ρ1 > 0 so that

⟨Ψ(ϱ)−Ψ(ς), ϱ− ς⟩ ≥ ρ1∥ϱ− ς∥2,∀ϱ, ς ∈ H ;

• relaxed (u, v)-cocoercive, if ∃u, v > 0 so that

⟨Ψ(ϱ)−Ψ(ς), ϱ− ς⟩ ≥ (−u)∥Ψ(ϱ)−Ψ(ς)∥2 + v∥ϱ− ς∥2, ∀ϱ, ς ∈ H ;

• ρ2-Lipschitz continuous, if ∃ρ2 > 0 so that

∥Ψ(ϱ)−Ψ(ς)∥ ≤ ρ2∥ϱ− ς∥,∀ϱ, ς ∈ H .
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Now, as an application of SIMPS (14), we shall re-structure the following semi-
implicit midpoint scheme to find the common solution of GQV I (29) and fixed point of
the mapping defined in (2).

Algorithm 1. For given initial point ϱ0, estimate the sequence {ϱk}∞k=1 by the following
implicit iterative scheme:

ϱk+1 = Ψ[σk − ψ(σk) + PC(σk)[ψ(σk)− λΨ(σk)]],

σk = Ψ
[
(1− αk)

(σk + ϑk
2

)
+ αkΨ

(σk + ϑk
2

)]
,

ϑk = (1− βk)Ψ
(ϑk + ϱk

2

)
+ βkΨ

(ϑk + θk
2

)
,

θk = (1− γk)
(ϱk + θk

2

)
+ γkΨ

(ϱk + θk
2

)]
,

(33)

where {αk}, {βk}, {γk} ⊆ (0, 1).

Theorem 4. Let PC(ϱ) : H → C(ϱ) be a projection mapping and Ψ, ψ : H → H be
non-linear mappings so that Ψ satisfies (2) and Ξ(Ψ) ∩ ✠(C(ϱ),Ψ, ψ) ̸= ∅. Assume that
the assumption A and the following relations hold:

(R1) Ψ is l-Lipschitz continuous and relaxed (u, v)-cocoercive and ψ is t-Lipschitz contin-
uous and r-strongly monotone.

(R2) The constant λ > 0 obeys the following relation:

λl2 ≤ 2λv +∆(∆− 2)

λ+ 2u
,∆ = 2

√
1− 2r + t2 + κ. (34)

Then {ϱk}∞k=1 approximated by (33) converges strongly to ϱ ∈ Ξ(Ψ) ∩✠(C(ϱ),Ψ, ψ).

Proof. Invoking the l-Lipschitz continuity and relaxed (u, v)-cocoercivity of Ψ yields

∥(σk − ϱ)− λ[Ψ(σk)−Ψ(ϱ)]∥2

= ∥σk − ϱ∥2 − 2λ⟨Ψ(σk)−Ψ(ϱ), σk − ϱ⟩+ λ2∥Ψ(σk)−Ψ(ϱ)∥2

≤ ∥σk − ϱ∥2 + 2λu∥Ψ(σk)−Ψ(ϱ)∥2 − 2λv∥σk − ϱ∥2 + λ2l2∥σk − ϱ∥2

≤ ∥σk − ϱ∥2 + 2λul2∥σk − ϱ∥2 − 2λv∥σk − ϱ∥2 + λ2l2∥σk − ϱ∥2

= [1− 2λ(v − ul2) + λ2l2]∥σk − ϱ∥2 = B2∥σk − ϱ∥2.

(35)

Employing the t-Lipschitz continuity and r-strongly monotone property of ψ provide with
the relation

∥σk − ϱ− [ψ(σk)− ψ(ϱ)]∥2

= ∥σk − ϱ∥2 − 2⟨ψ(σk)− ψ(ϱ), σk − ϱ⟩+ ∥ψ(σk)− ψ(ϱ)∥2

≤ ∥σk − ϱ∥2 − 2r∥σk − ϱ∥2 + t2∥σk − ϱ∥2

= (1− 2r + t2)∥σk − ϱ∥2 = A2∥σk − ϱ∥2.

(36)
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∥ϱk+1 − ϱ∥ = ∥Ψ[σk − ψ(σk) + PC(σk)[ψ(σk)− λΨ(σk)]]− ϱ∥
= ∥Ψ(ϱ)−Ψ[σk − ψ(σk) + PC(σk)[ψ(σk)− λΨ(σk)]]∥
≤ g(∥ϱ−Ψ(ϱ)∥) + τ∥σk − ψ(σk) + PC(σk)[ψ(σk)− λΨ(σk)]− ϱ∥
= τ∥σk − ψ(σk) + PC(σk)[ψ(σk)− λΨ(σk)]− [ϱ− ψ(ϱ) + PC(ϱ)[ψ(ϱ)− λΨ(ϱ)]∥

≤ τ
(
∥σk − ϱ− [ψ(σk)− ψ(ϱ)]∥+ ∥ψ(σk)− ψ(ϱ)− λ[Ψ(σk)−Ψ(ϱ)]∥+ κ∥σk − ϱ∥

)
≤ 2τ∥σk − ϱ− [ψ(σk)− ψ(ϱ)]∥+ τ∥(σk − ϱ)− λ[Ψ(σk)−Ψ(ϱ)]∥+ τκ∥σk − ϱ∥
≤ τ(2A+ B+ κ)∥σk − ϱ∥.

(37)

Replicating the process as from (15)-(19) and combining with (37) yields

∥ϱk+1 − ϱ∥ ≤ (1− ℓ̂n)(2A+ B+ κ)∥ϱk − ϱ∥, (38)

where ℓ̂k is described in (21). Evidently, (2A + B + κ) < 1 from the assumption (R2).
Then (38) turns into

∥ϱk+1 − ϱ∥ ≤ (1− ℓ̂n)∥ϱk − ϱ∥. (39)

Thus, from (39) and implementing Lemma 1, we acquire lim
k→∞

∥ϱk − ϱ∥ = 0.

By taking C(ϱ) =: C, we deduce the following corollary to estimate the common solution
of the GV I (30) and the contractive mapping (2).

Corollary 1. Let PC : H → C be a projection mapping and Ψ, ψ : H → H be non-linear
mappings so that Ψ satisfies (2) and Ξ(Ψ)∩✠(C,Ψ, ψ) ̸= ∅, where ✠(C,Ψ, ψ) signifies the
solution set of the GV I (30). Assume that the following relations hold:

(v1) Ψ is l-Lipschitz continuous and relaxed (u, v)-cocoercive and ψ is t-Lipschitz contin-
uous and r-strongly monotone.

(v2) The constant λ > 0 obeys the following relation:

λl2 ≤ 2λv +∆(∆− 2)

λ+ 2u
,∆ = 2

√
1− 2r + t2. (40)

Then {ϱk}∞k=1 approximated by (33) converges strongly to ϱ ∈ Ξ(Ψ) ∩✠(C,Ψ, ψ).

Example 2. Let l2 = {ϱ = (ϱ0, ϱ1, ϱ2, · · · ) :
∑∞

k=0 |ϱ2k| < ∞, ϱk ∈ R, ∀n = 0, 1, 2, · · · } be

a Hilbert space with norm ∥ϱ∥2 =
√∑∞

k=0 |ϱ2k|. Define Ψ, ψ : l2 → l2 by

Ψ(ϱ) =
(ϱ0
3
, 0, 0, · · ·

)
, and ψ(ϱ) =

(3ϱ0
4
, 0, 0, · · ·

)
,∀ϱ ∈ l2.

Then, for all ϱ, ω ∈ l2, we calculate

⟨Ψ(ϱ)−Ψ(ω), ϱ− ω⟩ =
〈(ϱ0

3
− ω0

3
, 0, 0, · · ·

)
, (ϱ0 − ω0, ϱ1 − ω1, ϱ2 − ω2, · · · )

〉
≥ −1

3
∥Ψ(ϱ)−Ψ(ω)∥22 +

1

3
∥ϱ− ω∥22,

∥Ψ(ϱ)−Ψ(ω)∥2 =
∥∥∥ϱ
3
− ω

3

∥∥∥
2
=

1

3
∥ϱ− ω∥2,
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i.e., Ψ is relaxed (13 ,
1
3)-cocoercive and 1

3 -Lipschitz continuous and

⟨ψ(ϱ)− ψ(ω), ϱ− ω⟩ =
〈(3ϱ0

4
− 3ω0

4
, 0, 0, · · ·

)
, (ϱ0 − ω0, ϱ1 − ω1, ϱ2 − ω2, · · · )

〉
=

3

4
∥ϱ− ω∥22,

∥ψ(ϱ)− ψ(ω)∥2 =
∥∥∥3ϱ
4

− 3ω

4

∥∥∥
2
=

3

4
∥ϱ− ω∥2.

Thus, ψ is 3
4 -strongly monotone and 3

4 -Lipschitz continuous. Also, for τ =
1

3
and strictly

continuous function g : [0,∞) → [0,∞) with g(0) = 0, we have

∥Ψ(ϱ)−Ψ(ω)∥ − τ∥ϱ− ω∥ − g(∥ϱ−Ψ(ϱ)∥)
=

1

3
|ϱ− ω| − 1

3
|ϱ− ω| − g(|ϱ− ϱ

3
|)

= −g
(2ϱ
3

)
≤ 0,

i.e., ∥Ψ(ϱ) − Ψ(ω)∥ ≤ τ∥ϱ − ω∥ + g(∥ϱ − Ψ(ϱ)∥). Thus, Ψ satisfies (2) and also ϱ∗ =
(0, 0, 0, · · · ) ∈ Ξ(Ψ). Now, define C : H → H by C(ϱ) = C({ϱn}) = {a = {ak} : a0 ≥
9
16ϱ0, ak = 0,∀n = 1, 2, · · · }. Now, for any α ∈ [0, 1] and a0, b0 ∈ C(ϱ) gives αa0 + (1 −
α)b0 ≥ 9

16ϱ0, thus, C(ϱ) is convex set. Now, we shall verify that C(ϱ) is closed. Define
Q : [ 916ϱ0,∞) → C(ϱ) by Q(s) = (s, 0, 0, · · · ). Then Q is well defined and for distinct
a0, b0 ∈ [ 916ϱ0,∞), we acquire (a0, 0, 0, · · · ) ̸= (b0, 0, 0, · · · ), i.e., Q is one-to-one and there
exists an a0 ∈ [ 916a0,∞), such that Q(a0) = (a0, 0, 0, · · · ),∀a = (a0, 0, 0, · · · ) ∈ C(ϱ), i.e., Q
is onto. Consider the usual metric spaces (R, d) and (l2, d

′
), then for all a, b ∈ [ 916a0,∞),

we acquire

d
′
(Q(a), Q(b)) = d

′
((a0, 0, 0, · · · ), (b0, 0, 0, · · · )) = |a− b| = d(a, b).

Thus, Q is continuous. Q−1 is also continuous and one-to-one and onto, so Q is home-
omorphism. Since C(ϱ) is the homeomorphic image of a closed set [ 916a0,∞), and hence
closed. Define PC(ϱ) : H → C(ϱ) as under:

PC(ϱ)(l0, l1, l2, · · · ) =


(l0, l1, l2, · · · ), if (l0, l1, l2, · · · ) ∈ C(ϱ)
( 9
16ϱ0, 0, 0, · · · ), if (l0, l1, l2, · · · ) /∈ C(ϱ), l0 < 9

16ϱ0

(l0, 0, 0, · · · ), if(l0, l1, l2, · · · ) /∈ C(ϱ), l0 ≥ 9
16ϱ0.

Then ∥PC(a)(l) − PC(b)(l)∥ ≤ 9
16∥a − b∥, i.e., PC fulfills assumption A. Next, we shall

explore an element ϱ∗ such that ϱ∗ ∈ Ξ(Ψ) ∩ Ξ(Π). Consider ϱ∗ = (ϱ∗0, 0, 0, · · · ) : ϱ∗0 ≥ 0.
If ϱ∗ > 0, then

⟨Ψ(ϱ∗), ψ(ω∗)− ψ(ϱ∗)⟩ =
〈ϱ∗
3
,
3ω∗

4
− 3ϱ∗

4

〉
=

1

4
⟨(ϱ∗0, 0, 0, · · · ), (ω∗

0 − ϱ∗0, 0, 0, · · · )⟩

< 0, ∀ω∗ = (ω∗
0, 0, 0, · · · ) ∈ C(ϱ∗).
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On the other hand, for ϱ∗ = (0, 0, 0, · · · ), we acquire

⟨Ψ(ϱ∗), ψ(ω∗)−ψ(ϱ∗)⟩ = ⟨(0, 0, 0, · · · ), (ω∗
0−ϱ∗0, 0, 0, · · · )⟩ = 0, ∀ω∗ = (ω∗

0, 0, 0, · · · ) ∈ C(ϱ∗).

Thus, for ϱ∗ = (0, 0, 0, · · · ) ∈ Ξ(Ψ) ∩ Ξ(Π).

3.2. Fractional differential equation

The history of fractional calculus can be traced back to the middle of the 19th century
from the pure mathematics. But a century later, its substantial and significant applica-
tions have been drawn by engineers and physicists in their respective fields. Fractional
derivatives are generalization of ordinary derivatives which simultaneously set out the be-
havior of several physical phenomena. A very much attention have been paid to Fractional
differential equations (FDEs) due to their worthy applications in several physical phenom-
ena appearing in engineering, mechanics, economics, biology, etc., see, [27, 29, 46, 52, 53]
and references therein and so these equations are widely used in many different domains.
Now a days, fixed point theory has become a crucial tool to handle nonlinear problems
arising in multi-disciplinary sciences. Its capacity and aptitude to demonstrate the exis-
tence and uniqueness of solutions, provides researchers to construct fixed point iterative
methods to research and examine FDEs. In recent time, researchers have been explored
different classes of FDEs by implementing fundamental tools of fixed point theory, for
more details, we refer, [1, 2, 14, 17, 18, 24, 42, 44].

Now, we take SIMPS (14) into account to examine the following Caputo-type non-
linear fractional differential equation (C-NFDE):{

γDξϱ(u) + Φ(u, ϱ(u)) = 0,

ϱ(0) = ϱ(1) = 0, 1 < ξ < 2, u ∈ [0, 1],
(41)

here, γDξ signifies a Caputo-fractional derivative of order ξ and Φ : [0, 1] × R → R is a
continuous function. Let X = {ℑ : ℑ : [0, 1] → R} is a real continuous function equipped
with supremum norm. The Green’s function related to (41) is expressed as under:

G(u, v) =

{
1

Γ(ξ)(u(1− v)(ξ−1) − (u− v)(ξ−1)), if 0 ≤ v ≤ u ≤ 1,
u(1−v)(ξ−1)

Γ(ξ) , if 0 ≤ u ≤ v ≤ 1.

Now, we proceed to accomplish the goal of this sub-section.

Theorem 5. Let X = C[0, 1] and the operator ℑ : X → X is defined by

ℑ(ϱ(u)) =
∫ 1

0
G(u, v)Φ(v, h(v))dv,∀ϱ ∈ X .

If,
|Φ(v, ϱ(v))− Φ(v, j(v))| ≤ g(ϱ−ℑ(ϱ)) + τ |ϱ− j|,∀v ∈ [0, 1], ϱ, j ∈ X . (42)

Then the scheme (14) associated to ℑ converges to the solution of C-NFDE (41).
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Proof. Evidently, if ϱ ∈ X solves (41) iff ϱ solves:

ϱ(u) =

∫ 1

0
G(u, v)Φ(v, h(v))dv.

Then for all ϱ, j ∈ X and u ∈ [0, 1], imposing the assumption (42) and employing the
definition of operator ℑ, we acquire

∥ℑ(ϱ(u))−ℑ(j(u))∥ =
∣∣∣ ∫ 1

0
G(u, v)Φ(v, ϱ(v))dv −

∫ 1

0
G(u, v)Φ(v, j(v))dv

∣∣∣
=

∣∣∣ ∫ 1

0
G(u, v)[Φ(v, ϱ(v))− Φ(v, j(v))]dv

∣∣∣
≤

∫ 1

0
G(u, v)|Φ(v, ϱ(v))− Φ(v, j(v))|dv

≤
∫ 1

0
G(u, v)[g(|ϱ(v)−ℑ(ϱ(v))|) + τ |ϱ(v)− j(v)|]dv

≤ sup
u∈[0,1]

∫ 1

0
G(u, v)[g(|ϱ(v)−ℑ(ϱ(v))|) + τ |ϱ(v)− j(v)|]dv

≤ g(∥ϱ(v)−ℑ(ϱ(v))∥) + τ∥ϱ(v)− j(v)∥,

(43)

which yields
∥ℑ(ϱ)−ℑ(j)∥ ≤ g(∥ϱ−ℑ(ϱ)∥) + τ∥ϱ− j∥.

So, ℑ satisfies (2) and by the virtue of the Theorem 2, the sequence initiated by SIMPS
(14) converges to an element in Ξ(ℑ) which solves C-NFDE (41).

4. Conclusions

A four-step semi-implicit midpoint scheme is designed to investigate the fixed point of
a contractive mapping under some mild assumptions. Convergence analysis and stability
results of the implied scheme are exhibited. Furthermore, we applied our scheme to ex-
amine a general quasi-variational inequality. By redesigning the proposed mid-point rule,
we inspected a common solution of a contractive mapping and a general quasi-variational
inequality. Finally, a nonlinear fractional differential equation is studied by employing
SIMPS (14). In future, semi-implicit type schemes could be implemented to explore
fixed points of some generalized nonexpansive mappings including Suzuki’s generalized
nonexpansive mapping, asymptotically and total asymptotically non-expansive mappings.
Some nonlinear problems such as variational inequalities, quasi-variational inequalities and
inclusions are some worthy future research directions.
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