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Abstract. Let G be a nontrivial graph without isolated vertices. A function f : V (G) → {0, 1, 2}
is a semitotal Roman dominating function of G if for each v ∈ V (G) with f(v) = 0, there exists
u ∈ V (G) for which f(u) = 2 and uv ∈ E(G) and for each v ∈ V (G) with f(v) ̸= 0, there exists
u ∈ V (G) for which f(u) ̸= 0 and dG(u, v) ≤ 2. The minimum weight ωG(f) =

∑
u∈V (G) f(u)

of a semitotal Roman dominating function f of G is the semitotal Roman domination number of
G, denoted by γt2R(G). In this paper, we initiate the study of semitotal Roman domination. We
characterize graphs G with small values of γt2R(G) and solve some realization problems with other
existing related concepts. We also investigate the semitotal Roman domination in the join, corona
and complimentary prism of graphs.
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1. Introduction

Semitotal domination and Roman domination are two among intriguing concepts in
domination in graphs. Both extend the classical notion of domination by incorporating
additional structural or functional constraints, offering alternative perspective and appli-
cations.
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The semitotal domination in graph was introduced by W. Goddard et al. in [9], and
it bridges the gap between total domination and traditional domination. A semitotal
dominating set S requires that S is a dominating set, but unlike the total domination,
only requires that each vertex in S is of distance 1 or 2 from at least one vertex in S. It
has practical applications in network resilience and communication.

Roman domination, which draws inspiration from the Roman empire’s defense strate-
gies, was introduced in 2004 by E.J. Cockayne et al. [8]. In this context, a Roman
dominating function assigns weights (0, 1, or 2) to the vertices of a graph such that every
vertex with weight 0 has an adjacent vertex with weight 2. It reflects a scenario where
resources (represented by weights) are allocated to ensure the protection of vulnerable
nodes, offering insights into resource optimization and strategic planning in networks.
Since its introduction, Roman domination has become a very active area of research (see
for example [1], [6], [8], [11], [16], [17], [18]). Part of its development was the introduction
of the total Roman domination in 2016 by A. Ahangar et al. [1], some of the follow-up
studies of which can be found in [15] and [16].

In this paper, we introduce and initiate the study of the semitotal Roman domination.
We explore graphsG with values of γt2R(G) equal to 2, 3 or 4, and we solve some realization
problems involving the concept with other existing related concepts. We also investigate
the semitotal Roman domination in the join, corona and complimentary prism of graphs.

All throughout this paper, by a graph G we mean simple and undirected. We refer to
[5] for all graph terminologies we used but are not defined here. As usual, the symbols
V (G) and E(G) denote the vertex set and edge set, respectively, of G. For S ⊆ V (G), |S| is
the cardinality of S. In particular, |V (G)| and |E(G)| are the order and size, respectively,
of G.

Given two graphs G and H with disjoint vertex sets, the join G+H of G and H is the
graph with vertex set V (G)∪V (H) and edge set E(G) ∪ E(H)∪{uv : u ∈ V (G) and v ∈
V (H)}. The corona G◦H of graph G and H is obtained by taking one copy of G of order
n and n copies of H, and then joining the ith vertex of G to every vertex of the ith copy
of H. The complementary prism, denoted GG, is formed from the disjoint union of G and
its complement G by adding a perfect matching between corresponding vertices of G and
G.

For u ∈ V (G), the open neighborhood of u is the set NG(u) of all vertices adjacent to u.
The closed neighborhood of u in G is the set NG[u] = NG(u) ∪ {u}. For S ⊆ V (G),the
open neighborhood of S is the set NG(S) = ∪u∈SNG(u). The closed neighborhood of S is
the set NG[S] = NG(S) ∪ S. A set S ⊆ V (G) is a dominating set in G if NG[S] = V (G).
The minimum cardinality of a dominating set in G, denoted by γ(G), is the domination
number of G. A dominating set S of G with |S| = γ(G) is called a γ-set of G. The
authors always refer to [4] for the introduction and more comprehensive discussion of the
development of the concept of domination in graphs.

Provided that G has no isolated vertices, a set S ⊆ V (G) is a total dominating set in G
if for every v ∈ V (G), there exists u ∈ S such that uv ∈ E(G). The minimum cardinality
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of a total dominating set in G, denoted by γt(G), is the total domination number of G.
A total dominating set S in G with |S| = γt(G) is called a γt-set of G. M. Henning and
A. Yeo provides in [12] a very comprehensive discussion of total domination, including its
history and the succeeding developments.

A set S ⊆ V (G) is a semitotal dominating set in G if S is a dominating set in G
such that for every x ∈ S, there exists y ∈ S\{x} for which dG(x, y) ≤ 2. The smallest
cardinality of a semitotal dominating set in G, denoted by γt2(G), is called a semitotal
domination number in G. A semitotal dominating set S in G with cardinality γt2(G) is
called a γt2-set of G. It was introduced in [9] and further studied in [1, 10, 13, 14, 16].

A Roman dominating function (RDF) of G is a function f : V (G) → {0, 1, 2} such
that every vertex u ∈ V (G) for which f(u) = 0 is adjacent to at least one vertex v for
which f(v) = 2. Provided G has no isolated vertices, a total Roman dominating function
of G is a dominating Roman function f : V (G) → {0, 1, 2} such that for every v ∈ V (G)
with f(v) ̸= 0, there exists u ∈ V (G) with f(u) ̸= 0 and uv ∈ V (G). The Roman
domination number (resp. total Roman domination number) of G is the minimum weight
ωG(f) =

∑
v∈V (G) f(v) of an RDF (resp. TRDF) of G. We write f ∈ RDF (G) and

f ∈ TRDF (G) to mean that f is an RDF and TRDF, respectively, of G. An RDF (resp.
TRDF) with ωG(f) = γR(G) is referred to as a γR-function (resp. γtR-function ) of G.

2. The semitotal Roman domination

We start by introducing a semitotal Roman dominating function. A function f :
V (G) → {0, 1, 2} is a semitotal Roman dominating function of a graph G, and write
f ∈ SRDF (G), if each of the following holds:

(i) For each v ∈ V (G) with f(v) = 0, there exists u ∈ V (G) with f(u) = 2 and
uv ∈ E(G);

(ii) For each v ∈ V (G) with f(v) ̸= 0, there exists u ∈ V (G) for which f(u) ̸= 0 and
dG(u, v) ≤ 2.

The minimum weight ωG(f) =
∑

u∈V (G) f(u) of a semitotal Roman dominating function
f of G is the semitotal Roman domination number of G, denoted by γt2R(G).

As usual, we write f = (V0, V1, V2) for a function f : V (G) → {0, 1, 2} of a graph G
where Vi = {v ∈ V (G) : f(v) = i for each i ∈ {0, 1, 2}}. More precisely, f ∈ SRDF (G) if
and only if V2 ∩NG(v) ̸= ∅ for each v ∈ V0 and V1 ∪ V2 is a semitotal dominating set of
G. In this case, ωG(f) = |V1|+ 2|V2|.

Proposition 1. Let G be any graph. Then G admits a semitotal Roman dominating
function if and only if G has no isolated vertices.

Proposition 2. For all graphs G without isolated vertices,

γt2(G) ≤ γR(G) ≤ γt2R(G) ≤ min{γtR(G), 2γt2(G)}. (1)
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Proof. Clearly, a total Roman dominating function is a semitotal Roman dominating
function and a semitotal Roman dominating function ofG is a Roman dominating function.
Thus, γR(G) ≤ γt2R(G) ≤ γtR(G). Also, if S ⊆ V (G) is a semitotal dominating set of
G, then f = (V (G) \ S,∅, S) ∈ SRDF (G), showing that γt2R(G) ≤ 2γt2(G). Now, let
f = (V0, V1, V2) ∈ RDF (G). Then S = V1 ∪ V2 is a total dominating set of G. We claim
that V1 ⊆ NG(S, 2). Let x ∈ V1. Suppose that dG(x, y) ≥ 3 for all y ∈ S \ {x}. Since x is
not an isolated vertex, there exists z ∈ NG(x) ∩ V0. Then there exists w ∈ V2 for which
zw ∈ E(G), implying that dG(x,w) ≤ 2, a contradiction. This establishes the claim, which
implies that S \NG(S, 2) ⊆ V2. For each u ∈ S \NG(S, 2), pick one vu ∈ V (G) for which
dG(u, vu) ≤ 2. If S∗ = {vu : u ∈ S \NG(S, 2)}, then S ∪ S∗ is a semitotal dominating set
of G with |S∗| ≤ |V2|. Thus, γt2(G) ≤ |S|+ |S∗| ≤ |V1|+ 2|V2| = γR(G).

The following examples show that the inequalities in Equation 1 are sharp. For all
n ≥ 1,

γR(K1,n) < γt2R(K1,n) = 3 = γtR(K1,n) < 2γt2(K1,n).

On the other hand,

γR(P5) = γt2R(P5) = 2γt2(P5) = 4 < γtR(P5).

Proposition 3. Let G be any graph without isolated vertices, and let f = (V0, V1, V2) be
a γt2R-function in G. Then each of the following holds:

(i) V0 = ∅ if and only if V2 = ∅; and

(ii) V1 = ∅ if and only if V2 is a γt2-set in G.

Proof. Clearly, if V2 = ∅, then V0 = ∅. Conversely, if V0 = ∅ and V2 ̸= ∅, then
g = (V0, V1 ∪ V2,∅) ∈ SRDF (G) with ωG(g) = |V1|+ |V2| < ωG(f), a contradiction. This
proves (i).

If V1 = ∅, then γt2R(G) = 2|V2| ≥ 2γt2(G). Then Inequality 1 completes the equation
γt2R(G) = 2γt2(G). Consequently, |V2| = γt2(G) and V2 is a γt2-set of G. Conversely,
suppose that V2 is a γt2-set of G. Then Inequality 1 yields |V1| + 2γt2(G) = γt2R(G) ≤
2γt2(G), showing that V1 = ∅. This completes (ii).

Proposition 4. Let G be a graph without isolated vertices. Then

(i) γt2R(G) = γt2(G) if and only if G has a γt2R-function f = (V0, V1, V2) for which
V0 = ∅; and

(ii) γt2R(G) = 2γt2(G) if and only if G has a γt2R-function f = (V0, V1, V2) for which V2

is a γt2-set of G.

Proof. For (i), suppose that γt2R(G) = γt2(G), and let f = (V0, V1, V2) be a γt2R-
function of G. Then |V1 + |V2| = |V1|+ 2|V2|, showing that V2 = ∅. The converse follows
from Proposition 3.
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To prove (ii), if γt2R(G) = 2γt2(G) and f = (V0, V1, V2) is a γt2R- function of G, then
|V1| + 2|V2| = 2|V1| + 2|V2|. Necessarily, V1 = ∅. By Proposition 3, V2 is a γt2-set of G.
Conversely, by Proposition 3, V1 = ∅ and γt2R(G) = 2|V2| = 2γt2(G).

Proposition 5. Let G be a connected graph of order n ≥ 2. Then γt2R(G) = 2 if and
only if G = K2.

Proof. Let G = K2, then γt2R(G) = 2. Conversely, assume that γt2R(G) = 2 and
let f = (V0, V1, V2) be a γt2R-function of G. Since V1 ∪ V2 is a semitotal dominating set,
2 ≤ |V1| + |V2| ≤ |V1| + 2|V2| = 2. Necessarily, V2 = ∅ and, by Proposition 3, V0 = ∅.
Therefore, V (G) = V1, that is, G = K2.

Proposition 6. Let G be a connected graph of order n ≥ 3. Then γt2R(G) = 3 if and only
if either γ(G) = 1 or there exist u and v for which NG[v] = V (G) \ {u} and dG(u, v) = 2.

Proof. Suppose that γt2R(G) = 3, and let f = (V0, V1, V2) be a γt2R-function of G. If
|V1| = 3, then since G is connected, G = K3 or G = P3. In any case, γ(G) = 1. Suppose
that |V2| = 1 = |V1|, say V2 = {v} and V1 = {u}. Then V0 ̸= ∅ and V0 = V (G) \ {u} ⊆
NG[v]. If uv ∈ E(G), then NG[v] = V (G) and γ(G) = 1. Otherwise, dG(u, v) = 2.

Conversely, suppose that either there exists v ∈ V (G) for which NG[v] = V (G) or there
exist u, v ∈ V (G) such that V (G) \ {u} = NG[v] and dG(u, v) = 2. In any case, let V0 =
V (G)\{u, v}, V1 = {u} and V2 = {v}. Then f ∈ SRDF (G) so that γt2R(G) ≤ ωG(f) = 3.
Since n ≥ 3, Proposition 5 implies that γt2R(G) = 3.

Proposition 7. Let G be a connected graph. Then γt2R(G) = 4 if and only if γ(G) ≥ 2
and either

(i) γt2(G) = 2 and for all γt2-sets {u, v} of G, NG(u)\NG(v) ̸= ∅ and NG(v)\NG(u) ̸=
∅; or

(ii) γt2(G) = 3 and G has distinct vertices u, v and w for which V (G) \ {u,w} = NG[v]
and dG(u, v) = 2 and dG(w, v) = 2.

Proof. Suppose that γt2R(G) = 4. By Proposition 5 and Proposition 6, γ(G) ≥ 2.
Let f = (V0, V1, V2) is a γt2R-function of G. In view of Proposition 3, if V2 = ∅, then
|V (G)| = 4 and γt2R(G) ≤ 3, a contradiction. Thus, either |V2| = 2 and V1 = ∅ or
|V2| = 1 and |V1| = 2. By Proposition 3, the former implies that γt2(G) = |V2| = 2
and, by Proposition 6, (i) holds. Now, suppose that V2 = {v} and V1 = {u,w}. Since
V1 ∪ V2 is a semitotal dominating set of G, γt2(G) ≤ 3. If γt2(G) = 2, then (i) holds.
Suppose that γt2(G) = 3. Since f ∈ SRDF (G), V (G) \ {u,w} ⊆ NG[v]. Suppose that
uv ∈ E(G). If dG(u,w) = 1, then f∗ = (V0∪{u}, {w}, {v}) ∈ SRDF (G) with ωG(f

∗) = 3,
a contradiction. If dG(u,w) ≥ 2 and P = [u = x1, x2, . . . , xk = w] is a u-w geodesic
in G, then xj ∈ V0 for all j ∈ {2, 3, . . . , k − 1}. Since xk−1v ∈ E(G), dG(w, v) = 2.
Thus, f∗∗ = (V0 ∪ {u}, {w}, {v}) ∈ SRDF (G) with ωG(f

∗∗) = 3, a contradiction. Thus,
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uv /∈ E(G). Similarly, wv /∈ E(G). Therefore, NG[v] = V (G) \ {u,w}. Suppose that
dG(u, v) ≥ 3, and let P be a v-u geodesic in G. Since NG[v] = V (G)\{u,w}, P has length
3 and w lies on P so that dG(u, v) = 2 and uw ∈ E(G). Then {u, v} is a γt2-set of G, a
contradiction. Therefore, dG(u, v) = 2 = dG(w, v). Thus, (ii) holds.

Conversely, assume that γ(G) ≥ 2. Suppose that (i) holds. In view of Proposition 6,
γt2R(G) ≥ 4. Now let S = {u, v} be a γt2-set of G. Since f = (V (G) \ {u, v},∅, {u, v}) ∈
SRDF (G), γt2R(G) ≤ ωG(f) ≤ 4. Now, suppose that (ii) holds. Since γt2(G) = 3,
γt2R(G) ≥ 4 by Proposition 6. Moreover, since f = (V (G) \ {u,w}, {u,w}, {v}) ∈
SRDF (G), γt2R(G) ≤ wG(f) = 4. In any case, γt2R(G) = 4,

Proposition 6 asserts that if γt2R(G) = 3, then γt2(G) = 2. Proposition 7 also provides
that the converse need not be true. In particular, for G2 in Figure 1, γt2(G2) = 2 but
γt2R(G) = 4 by Proposition 7.

The graph G1 in Figure 1 provides a graph which perfectly satisfies condition (ii) of
Proposition 7.

vu w
G1 :

v u
G2 :

Figure 1: Graphs satisfying the conditions of Proposition 7

Proposition 8. For each positive integer n and integer 0 ≤ k ≤ n, there exists a connected
graph G for which γR(G) = 4n and γt2R(G) = 4n + k. Consequently, the difference
γt2R(·)− γR(·) can be made arbitrarily large.

Proof. We consider the following cases:

Case 1: Suppose that k = 0. Consider the corona G = P2n ◦ K4 provided in Figure 2.
Then γR(G) = 4n = γt2R(G).

x1 x2

x2n−1 x2n

· · ·

Figure 2: The graph P2n ◦K4

Case 2: Suppose that k = n. In this case take the graph G as in Figure 3 obtained
from P6n−2 = [x1, x2, . . . , x6n−2] by joining K4 with x3j−2 for all j = 1, 2, . . . , 2n. Then
γR(G) = 4n and γt2R(G) = 4n+ k.

Case 3: Finally, suppose that 1 ≤ k ≤ n − 1. Consider the graph G obtained from
P2n+4k = [x1, x2, . . . , 2n+4k] by joining K4 with xj for all j ∈ {1, 2, . . . , 2n− 2k}∪ {2n−
2k + 3l : l = 1, 2, . . . , 2k} (see Figure 4 below). Then γR(G) = 2(2n− 2k) + 4k = 4n and
γt2R(G) = 2(2n− 2k) + (4k + k) = 4n+ k.
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x1

x2

x3

x4

x5

x6

x7

x6n−5

x6n−4

x6n−3

x6n−2

· · ·

Figure 3: A graph G with γR(G) = 4n and γt2R(G) = 4n+ n

x1 x2

x2n−2k−1

x2n−2k

x2n−2k+1

x2n−2k+2

x2n−2k+3

x2n−2k+4

x2n−2k+5

x2n−2k+6

x2n−2k+7

x2n−2k+8

x2n−2k+9

x2n+4k−3

x2n+4k−2

x2n+4k−1

x2n+4k

· · · · · ·

Figure 4: A graph G with γR(G) = 4n and γt2R(G) = 4n+ k, 1 ≤ k ≤ n− 1

Proposition 9. For each positive integer n and integer 0 ≤ k ≤ n, there exists a connected
graph G for which γt2R(G) = 4n and γtR(G) = 4n + k. Consequently, the difference
γtR(·)− γt2R(·) can be made arbitrarily large.

Proof. For k = 0, we take the graph G = P2n ◦ K4 in Figure 2. For this graph,
γt2R(G) = γtR(G) = 4n. Suppose that k = n. Consider the graph G given in Figure 5
obtained from P4n−1 = [x1, x2, . . . , x4n−1] by joining K4 with x2j−1 for all j = 1, 2, . . . , 2n.
Then γt2R(G) = 2(2n) = 4n and γtR(G) = 2(2n) + n = 4n+ k.

x1

x2

x3

x4

x7

x4n−3

x4n−2

x4n−1

· · ·

Figure 5: A graph G with γR(G) = 4n and γt2R(G) = 4n+ n

Now, suppose that 1 ≤ k ≤ n−1. Obtain G as the graph in Figure 6 from P2n+2k+1 =
[x1, x2, . . . , x2n+2k+1] by joiningK4 with xj for all j ∈ {1, 2, . . . , 2n−2k}∪{2n−2k+2l+1 :
l = 1, 2, . . . , 2k}. Then γt2R(G) = 2(2n− 2k) + 2(2k) = 4n and γtR(G) = 4n+ k.

Proposition 10. Let G be a disconnected graph without isolated vertices, and let C1, C2, ..., Ck

be the components of G. Then

γt2R(G) =
∑k

i=1 γt2R(Ci).
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x1 x2

x2n−2k−1

x2n−2k

x2n−2k+1

x2n−2k+2

x2n−2k+3

x2n−2k+4

x2n−2k+5

x2n−2k+6

x2n−2k+7

x2n+2k−1

x2n+2k

x2n+2k+1

· · · · · ·

Figure 6: A graph G with γt2R(G) = 4n and γtR(G) = 4n+ k, 1 ≤ k ≤ n− 1

Proof. Let f1, f2, ..., fk be γt2R-functions of C1, C2, ..., Ck, respectively. Then the func-
tion f : V (G) → {0, 1, 2} given by

f(x) =


f1(x), if x ∈ V (C1),

f2(x), if x ∈ V (C2),
...

fk(x), if x ∈ V (Ck),

is a SRDF of G. Thus, γt2R(G) ≤ ωG(f) =
∑k

i=1 γt2R(Ci). Conversely, let f be a γt2R-
function of G. Then, for each i ∈ {1, 2, . . . , k}, the restriction f |Ci of f to Ci is a SRDF
of C1, showing γt2R(Ci) ≤ ωCi(f |Ci). Thus

∑k
i=1 γt2R(Ci) ≤

∑k
i=k ωCi(f) = ωG(f) =

γt2R(G).

Proposition 11. For paths, cycles and complete multipartite graphs, we have the follow-
ing:

(i) For n ≥ 2, γt2R(Pn) =


n, n = 2, 3,

3k + r, n = 4k + r and 0 ≤ r ≤ 2,

3k + 2, n = 4k + 3.

(ii) For n ≥ 3, γt2R(Cn) =


3, n = 3,

3k + r, n = 4k + r and 0 ≤ r ≤ 2,

3k + 2, n = 4k + 3.

(iii) For the complete k-partite G = Kn1,n2,...,nk
with 2 ≤ n1 ≤ n2 ≤ · · · ≤ nk,

γt2R(G) =

{
3, if n1 = 2;

4, otherwise.

Proof. For (i), if n = 2, 3, then the result follows immediately. For n ≥ 4, write
n = 4k + r where 0 ≤ r ≤ 3. We define f = (V0, V1, V2) as follows:

Case 1: Suppose that r = 0. Put V2 = {x4l−2 : l = 1, 2, . . . , k}, V1 = {x4l : l = 1, 2, . . . , k}
and V0 = V (Pn) \ (V1 ∪ V2).
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Case 2: Suppose that r = 1. Put V2 = {x4k, x4l−2 : l = 1, 2, . . . , k}, V1 = {x4l : l =
1, 2, . . . , k − 1} and V0 = V (Pn) \ (V1 ∪ V2).

Case 3: Suppose that r = 2. Define V2 = {x4l−2 : l = 1, 2, . . . , k + 1}, V1 = {x4l : l =
1, 2, . . . , k} and V0 = V (Pn) \ (V1 ∪ V2).

Case 4: Finally, suppose that r = 3. Define V2 = {v4l−2 : l = 1, 2, . . . , k + 1}, V1 = {v4l :
l = 1, 2, . . . , k} and V0 = V (Pn) \ (V1 ∪ V2).

In any case, f = (V0, V1, V2) is a γt2R-function of Pn with ωPn(f) = 3k+r for 0 ≤ r ≤ 2
and ωPn(f) = 3k + 2 when r = 3.

Similar arguments prove statement (ii). Whereas, statement (iii) follows from Propo-
sition 6 and Proposition 7.

3. Semitotal Roman domination in graphs under some operations

Here we investigate the semitotal Roman domination in the join, corona and comple-
mentary prism of graphs.

3.1. In the join of graphs

In what follows, by f |G we mean the restriction of f to G.

Theorem 1. Let G and H be any graphs and f = (V0, V1, V2) : V (G+H) → {0, 1, 2} be a
function with V0 ̸= ∅. Then f ∈ SRDF (G+H) if and only if one of the following holds:

(i) V2 ⊆ V (G), f |G ∈ RDF (G) and one of the following holds:

(a) V1 ∩ V (H) ̸= ∅;

(b) |(V1 ∪ V2) ∩ V (G)| ≥ 2;

(ii) V2 ⊆ V (H), f |H ∈ RDF (H), and one of the following holds:

(a) V1 ∩ V (G) ̸= ∅;

(b) |(V1 ∪ V2) ∩ V (H)| ≥ 2;

(iii) V2 ∩ V (G) ̸= ∅ and V2 ∩ V (H) ̸= ∅.

Proof. Suppose that f ∈ SRDF (G + H). Since V0 ̸= ∅, V2 ̸= ∅. Suppose that
V2 ⊆ V (G), and let v ∈ V0 ∩ V (G). Then there exists u ∈ V2 for which uv ∈ E(G +H).
Since V2 ⊆ V (G), uv ∈ E(G). Accordingly, f |G ∈ RDF (G). If V1 ∩ V (H) ̸= ∅, then
(i)(a) holds. Suppose that V1 ∩ V (H) = ∅. Pick v ∈ V2. Since f ∈ SRDF (G+H), there
exists u ∈ V1 ∪ V2 for which 1 ≤ dG+H(v, w) ≤ 2. The assumptions imply that w ∈ V (G).
Thus, (i)(b) holds. Similarly, if V2 ⊆ V (H), then (ii) holds. Clearly, if both (i) and (ii)
do not hold, then (iii) holds.
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Conversely, assume that (i) holds. Let v ∈ V0. If v ∈ V (H), then pick any u ∈ V2. If
v ∈ V (G), then since f |G ∈ RDF (G), there exists u ∈ V2 for which uv ∈ E(G). In any
case, uv ∈ E(G+H). Let v ∈ V1 ∪ V2. If v ∈ V (H), then v ∈ V1 and uv ∈ E(G+H) for
all u ∈ V2 ⊆ V (G). Suppose that v ∈ V (G). If (i)(a) holds, then dG+H(u, v) = 1 for all
u ∈ V1 ∩ V (H). If (i)(b) holds, then dG+H(u, v) ≤ 2 for all u ∈ [(V1 ∪ V2) ∩ V (G)] \ {v}.
Accordingly, f ∈ SRDF (G +H). Similarly, if (ii) holds, then f ∈ SRDF (G +H). It is
also clear that if (iii) holds, then f ∈ SRDF (G+H).

Corollary 1. Let G and H be any graphs. Then

2 ≤ γtR(G+H) ≤ 4. (2)

Proof. Since G + H is at least P2, γt2R(G + H) ≥ 2 by Proposition 5. Now let
u ∈ V (G) and v ∈ V (H). Define V0 = V (G+H)∖ {u, v}, V1 = ∅ and V2 = {u, v}. Then
V2 ∩ V (G) ̸= ∅ and V2 ∩ V (H) ̸= ∅. By Theorem 1, f = (V0, V1, V2) ∈ TRD(G + H).
Thus, γt2R(G+H) ≤ wG+H(f) = 4.

Proposition 12. Let G and H be any graphs of orders n and m, respectively. Then

(i) γt2R(G+H) = 2 if and only if n = m = 1;

(ii) γt2R(G+H) = 3 if and only if n ̸= 1 or m ̸= 1 and one of the following holds:

(a) γ(G) = 1 or γ(H) = 1;

(b) ∆(G) = n− 2 or ∆(H) = m− 2.

(iii) γt2R(G+H) = 4 if and only if ∆(G) ≤ n− 3 and ∆(H) ≤ m− 3.

Proof. By Proposition 5, γt2R(G+H) = 2 if and only if G+H = P2. Thus, (i) holds.

Suppose that γt2R(G + H) = 3. By (i), G ̸= K1 or H ̸= K1. If γ(G + H) = 1,
then γ(G) = 1 or γ(H) = 1 and (ii)(a) holds. Otherwise, by Proposition 6, there exists
u, v ∈ V (G+H) for which NG+H [v] = V (G+H) \ {u} and dG+H(u, v) = 2. Necessarily,
either u, v ∈ V (G) or u, v ∈ V (H). This means that if γ(G) ̸= 1 and γ(H) ̸= 1, then
(ii)(b) holds. Conversely, if G ̸= K1 or H ̸= K1, then γt2R(G +H) ≥ 3 by (i). If (ii)(a)
holds, then γ(G+H) = 1 and γt2R(G+H) = 3 (by Proposition 6). If (ii)(b) holds, then
∆(G) = m+n−2. Thus, there exists u, v ∈ V (G+H) such that NG+H [v] = V (G+H)\{u}
and dG+H(u, v) = 2. By Proposition 6, γt2R(G+H) = 3. This proves (ii).

Statement (iii) follows immediately from statements (i) and (ii) and the Inequality
2.

The join G + H, where G = K2, is a good example of Proposition 12(ii)(b), where
∆(G) = n − 2 = 0. Proposition 12(iii) also implies that γt2R(Km,n) = 4 for all integers
m,n ≥ 3.
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3.2. In the corona of graphs

Let G and H be connected graphs. We adapt the notation Hv to denote the copy of
H whose vertices is joined to v ∈ V (G).

Theorem 2. Let G be nontrivial connected graph and H be any graph, and let f =
(V0, V1, V2) : V (G ◦ H) → {0, 1, 2}. Then f ∈ SRDF (G ◦ H) if and only if each of the
following holds:

(i) For each v ∈ V0 ∩ V (G), f |Hv ∈ RDF (Hv) and each of the following holds:

(a) |(V1 ∪ V2) ∩ V (Hv)| ≥ 2 whenever NG(v) ⊆ V0;

(b) V2 ∩ V (Hv) ̸= ∅ whenever NG(v) ∩ V2 = ∅.

(ii) For each v ∈ V1 ∩ V (G), f |Hv ∈ RDF (Hv).

(iii) For each v ∈ V2 ∩ V (G), (V1 ∪ V2) ∩NG(v, 2) ̸= ∅ whenever V (Hv) ⊆ V0.

Proof. If f ∈ SRDF (G◦H), then the statements (i)-(iii) are clear. Conversely, assume
that all conditions (i), (ii) and (iii) hold for f . First, let x ∈ V0 and let v ∈ V (G) for
which x ∈ V (v +Hv). Suppose that x = v. If NG(v) ∩ V2 ̸= ∅, say u ∈ NG(v) ∩ V2, then
u ∈ V2∩NG◦H(x). If, on the other hand, NG(v)∩V2 = ∅, then by (i)(b), V2∩V (Hv) ̸= ∅.
Pick u ∈ V2 ∩ V (Hv). Then u ∈ V2 ∩NG◦H(x). Suppose that x ̸= v. If v ∈ V0 ∪ V1, then
since f |Hv ∈ RDF (Hv), there exists u ∈ V2∩NHv(x). This means that u ∈ V2∩NG◦H(x).
And, if v ∈ V2, then v ∈ V2 ∩NG◦H(x).

Next, let x ∈ V1 ∪ V2 and let v ∈ V (G) for which x ∈ V (v + Hv). If x = v ∈ V1,
then since f |Hv ∈ RDF (Hv), (V1 ∪ V2) ∩ V (Hv) ̸= ∅. Then 1 ≤ dG◦H(x, u) ≤ 2 for all
u ∈ (V1 ∪ V2) ∩ V (Hv). Suppose x = v ∈ V2. If V (Hv) \ V0 ̸= ∅, then 1 ≤ dG◦H(u, x) ≤ 2
for all u ∈ V (Hv) \V0. If V (Hv) ⊆ V0, then by (iii), there exists u ∈ (V1 ∪V2)∩NG(x, 2).
Finally, suppose that x ̸= v. If v ∈ V1 ∪ V2, then we are done. Suppose that v ∈ V0. If
NG(v) \ V0 ̸= ∅, then dG◦H(x, u) ≤ 2 for all u ∈ NG(v) \ V0 ⊆ (V1 ∪ V2). If NG(v) ⊆ V0,
then by (i)(a), there exists u ∈ (V1 ∪ V2) ∩ V (Hv) with u ̸= x. Here, dG◦H(x, u) ≤ 2.

The above results imply that f ∈ SRDF (G ◦H).

It is worth noting that Theorem 2(i)(a) does not happen if H = K1.

Corollary 2. Let G be a nontrivial connected graph of order n. Then

(i) γt2R(G ◦K1) = n+ γ(G);

(ii) γt2R(G ◦H) = 2n for all nontrivial graphs H.

Proof. In the case where H = K1 = {u}, we define for each v ∈ V (G), V (Hv) = {uv}.
Let S ⊆ V (G) be a γ-set of G. Define V0 = (V (G) \S)∪ (∪v∈S{uv}), V1 = ∪v∈V (G)\S{uv}
and V2 = S. It is easy to see that f = (V0, V1, V2) ∈ SRDF (G ◦H). Thus, γt2R(G ◦H) ≤
ωG◦H(f) = 2|S| + (n − |S|) = n + γ(G). Now, let f = (V0, V1, V2) be a γt2R-function of
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G ◦H. Since f is a γt2R-function, f(u
v) = 1 for all v ∈ V1 ∩ V (G) and f(uv) = 0 for all

v ∈ V2 ∩ V (G). Let

X = {v ∈ V0 ∩ V (G) : f(uv) = 2}, Y = {uv : v ∈ X} and W = {uv : v ∈ V1 ∩ V (G)},

and define

V ∗
0 = (V0 \X) ∪ Y ∪W, V ∗

1 = V1 \ [(V1 ∩ V (G)) ∪W ] and V ∗
2 = ((V1 ∪ V2) ∩ V (G)) ∪X.

First, we claim that g = (V ∗
0 , V

∗
1 , V

∗
2 ) ∈ SRDF (G ◦ H). Let x ∈ V ∗

0 . We consider the
following cases:

Case 1: Suppose x ∈ V0 \ X. If x = uv for some v, then v ∈ V2 ∩ V (G). Hence,
v ∈ V ∗

2 ∩NG◦H(x). If x ∈ V (G), then f(ux) ̸= 2 and thus, there exists y ∈ V2∩V (G) such
that xy ∈ E(G ◦H). This means that y ∈ V ∗

2 ∩NG◦H(x).

Case 2: Suppose x ∈ Y ∪W . Then x = uv where v ∈ X or v ∈ V1 ∩ V (G). In any case,
v ∈ V ∗

2 ∩NG◦H(x).

Now, let x ∈ V ∗
1 . Then x = uv ∈ V1 with v /∈ V1 ∩ V (G). Thus, v ∈ V0 ∩ V (G). Since

v /∈ X, there exists y ∈ V2 ∩NG(v). This means that dG◦H(x, y) = 2.

Finally, let x ∈ V ∗
2 . If x ∈ X, then x ∈ V0 ∩ V (G) for which ux ∈ V2, and there

exists y ∈ V2 ∩ V (G) so that dG◦H(ux, y) = 2. This means that dG◦H(x, y) = 1. Suppose
x ∈ (V1 ∪ V2) ∩ V (G). Take y ∈ V (G) such that xy ∈ E(G). If y ∈ V0, then either
y ∈ X ⊆ V ∗

2 or uy ∈ V1 \ W ⊆ V ∗
1 . In any case, there exists u ∈ V ∗

1 ∪ V ∗
2 such that

1 ≤ dG◦H(x, u) ≤ 2. then since ux ∈ V0, there exists y ∈ V2 such that 1 ≤ dG◦H(x, y) ≤ 2.
On the other hand, if y ∈ V1 ∪ V2, then y ∈ V ∗

2 and dG◦H(x, y) = 1.

The above arguments show that g ∈ SRDF (G ◦H). And since V (G) ⊆ V ∗
0 , V

∗
2 is a

dominating set of G. Moreover, since X = V2 \ (V2 ∩ V (G) and |W | = |V1 ∩ V (G)|,

ωG◦H(g) = |V ∗
1 |+ 2|V ∗

2 |
= |V1| − 2|V1 ∩ V (G)|+ 2[|V2|+ |V1 ∩ V (G)|]
= |V1|+ 2|V2|
= γt2R(G ◦H).

Thus, n+ γ(G) ≤ n+ |V ∗
2 | = |V ∗

1 |+ 2|V ∗
2 | = γt2R(G ◦H). This proves (i).

To prove (ii), since f = (∪v∈V (G)V (Hv),∅, V (G)) ∈ SRDF (G◦H), γt2R(G◦H) ≤ 2n.
To get the other inequality, let f = (V0, V1, V2) ∈ SRDF (G ◦H). For each v ∈ V2 ∩V (G),
clearly f(V (Hv + v) ≥ 2. For each v ∈ (V0 ∪ V1) ∩ V (G), since f |Hv ∈ RDF (Hv),
f(V (Hv + v)) ≥ 2. Thus, ωG◦H(f) ≥

∑
v∈V (G) f(V (Hv + v)) ≥ 2n.

3.3. In the complementary prism of graphs

Proposition 13. Let G be a graph of order n. Then
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(i) γt2R(GG) = 2 if and only if G = K1.

(ii) γt2R(GG) = 3 if and only if G ∈ {K2,K2}.

(iii) γt2R(GG) = 4 if and only if either

(a) G ∈ {K3,K3}; or
(b) G ̸= K2 and G (resp. G ̸= K2 and G) has vertices u and v for which NG[v] =

V (G) and NG[u] = {u, v} (resp. NG[v] = V (G) and NG[u] = {u, v}).

Proof. By Proposition 5, γt2R(GG) = 2 if and only if GG = K2. Thus, (i) holds.

Suppose that γt2R(GG) = 3. Since GG ̸= K2, γ(GG) ≥ 2 by (i). By Proposition 6,
GG has vertices u and v for which NGG[v] = V (GG) \ {u} and dGG(u, v) = 2. This is
possible only if GG = P4 or equivalently, G ∈ {K2,K2}. The converse of (ii) is immediate.

Suppose that γt2R(GG) = 4. In view of Proposition 7, we consider two cases:

Case 1: Suppose that γt2(GG) = 2, and let {u, v} be a γt2-set of GG. Since GG ̸= K2, if
dGG(u, v) = 1, then GG = P4, a contradiction. Thus, dGG(u, v) = 2. Assume v ∈ V (G).
Necessarily, u ∈ V (G) and u ̸= v. Since {u, v} is a dominating set of GG, NG[v] = V (G)
and NG[u] = V (G) \ {v} or equivalently, NG[u] = {u, v}.

Case 2: Suppose that γt2(GG) = 3 and u, v and w are vertices of GG for which the
following hold:

(a) V (GG) \ {u,w} = NGG[v];

(b) dGG(u, v) = 2 and dGG(w, v) = 2.

WLOG assume that v ∈ V (G). If u ∈ V (G), then by (b), dG(u, v) = 2, say [u, z, v] is a
u-v geodesic in G. Then by (a), u ∈ NGG[v] or z ∈ NGG[v], which is impossible. Thus
u ∈ V (G). Similarly, w ∈ V (G). Moreover, (a) implies that V (G) = {v, u, w}. Thus,
either G = P3 or G = K3. But if G = P3, then G is among the graphs described in Case
1. Thus, G = K3. The converse of (iii) is also immediate.

Corollary 3. If G is a graph with isolated vertex v such that γ(G − v) = 1, then
γt2R(GG) = 4.

Proposition 14. Suppose that both G and G contain no isolated vertices. Then

max{γt2R(G), γt2R(G)} ≤ γt2R(GG) ≤ γt2R(G) + γt2R(G).

Proof. Let f = (V f
0 , V f

1 , V f
2 ) and g = (V g

0 , V
g
1 , V

g
2 ) be a γt2R-functions of G and G,

respectively. It is straightforward to show that F = (V f
0 ∪ V g

0 , V
f
1 ∪ V g

1 , V
f
2 ∪ V g

2 ) ∈
SRDF (GG). Therefore, γt2R(GG) ≤ ωGG(F ) = γt2R(G) + γt2R(G).

To get the other inequality, let p = (V0, V1, V2) be a γt2R-function of GG. Let

A = {v ∈ V0 ∩ V (G) | V2 ∩NGG(v) = {v} and NG(v) ⊆ V0},
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B = {v ∈ V0 ∩ V (G) | V2 ∩NGG(v) = {v} and NG(v) ∩ V1 ̸= ∅}, and

C = {v ∈ V (G) ∩ (V1 ∪ V2) | (V1 ∪ V2) ∩NGG(v, 2) ⊆ V (G)}.

For each v ∈ A ∪ C, choose exactly one uv ∈ NG(v) and let D = {uv | v ∈ A} and
E = {uv | v ∈ C}.

Define q = (V ∗
0 , V

∗
1 , V

∗
2 ) by

V ∗
0 = (V0 ∩ V (G))∖ (A ∪B ∪D ∪ E),

V ∗
1 = (V1 ∩ V (G)) ∪A ∪B ∪D ∪ E, and

V ∗
2 = V2 ∩ V (G).

We claim that q ∈ SRDF (G). Let u ∈ V ∗
0 . Since u ∈ V0, there exists v ∈ V2 for which

uv ∈ E(GG). Beacause u /∈ (A ∪ B), v ∈ V (G). Thus, v ∈ V ∗
2 and uv ∈ E(G). Let

x ∈ V ∗
1 ∪ V ∗

2 . We consider the following cases:

Case 1: x ∈ V ∗
1 .

Suppose that x ∈ V1 ∩ V (G). Then there exists y ∈ V1 ∪ V2 for which dGG(x, y) ≤ 2. If
x /∈ C, then y ∈ (V1∪V2)∩V (G) ⊆ V ∗

1 ∪V ∗
2 . If x ∈ C, then there exists ux ∈ NG(x)∩E ⊆

V ∗
1 . If x ∈ A, then there exists ux ∈ NG(x) ∩ D ⊆ V ∗

1 . If x ∈ D, then x = uv for
some v ∈ A ⊆ V ∗

1 and v ∈ NG(x). Suppose that x ∈ B. Since NG(x) ∩ V1 ̸= ∅, say
y ∈ NG(x) ∩ V1, we have y ∈ V ∗

1 and xy ∈ E(G). Finally, suppose x ∈ E. Then x = uv
for some v ∈ C. This means that v ∈ V ∗

1 ∪ V ∗
2 and xv ∈ E(G).

Case 2: x ∈ V ∗
2 .

Then there exists y ∈ V1 ∪ V2 for which dGG(x, y) ≤ 2. If x /∈ C, then y ∈ V (G) so that
y ∈ V ∗

1 ∪ V ∗
2 and dG(x, y) ≤ 2. Suppose that x ∈ C. Then ux ∈ E and xux ∈ E(G).

Accordingly, q = (V ∗
0 , V

∗
1 , V

∗
2 ) ∈ SRDF (G), showing that γt2R(GG) = ωGG(p) ≥

ωG(q) ≥ γt2R(G).

Similarly, γt2R(GG) ≥ γt2R(G).

Acknowledgment: The authors would like to thank the Department of Science and
Technology - Accelerated Science and Technology Human Resource Development Program
(DOST-ASTHRDP)-Philippines, and MSU-Iligan Institute of Technology for funding this
research.



B. F. Bullang et al. / Eur. J. Pure Appl. Math, 18 (1) (2025), 5749 15 of 15

References

[1] A.H. Ahangar, M. Henning, V. Samodivkin and I. Yero, Total Roman domination
in graphs. Applicable Analysis and Discrete Mathematics , Vol. 10, No. 2 (October
2016), pp. 501-517.

[2] I. Aniversario, S. Canoy Jr., and F.P. Jamil. On semitotal domination in graphs.
Articles in European Journal of Pure and Applied Mathematics, October 2019.

[3] A. Aradais and F.P. Jamil, Outer-connected Semitotal Domination in Graphs, 2021,
Eur. J. Pure Appl. Math. Volume 15 Pages 1265-1279, (2022).

[4] B. Basavanagoud, and S.M. Hosamani. Connected semitotal-point domination in
graphs. International Journal of Advances in Science and Technology, 2011.

[5] F. Buckley and F. Harary. Distance in Graphs. Redwood City, CA: Addison-Wesley.,
1990.

[6] E.W. Chambers, et. al.. Extremal Problems for Roman Domination. Society for In-
dustrial and Applied Mathematics Journals for Discrete Mathematics. 2004.

[7] E.J. Cockayne and S.T. Hedetniemi. Towards a theory of domination in graphs. Net-
works: An International Journal. 1977.

[8] E.J. Cockayne, P.M. Dreyer Sr., S.M. Hedetniemi, S.T. Hedetniemi, Roman domina-
tion in graphs, Discrete Mathematics Volume 278, Issues 1–3. 2004.

[9] W. Goddard, M. Henning and C. McPillan, Semitotal domination in graphs, Utilitas
Mathematica, Vol 94, 67-81, 2014.

[10] G. Hao and W. Zhuang, Semitotal domination in trees, Discrete Mathematics and
Theoretical Computer Science, Vol. 20(2), 1-11, 2018.

[11] M.A. Henning, S.T. Hedetniemi. Defending the Roman Empire—A new strategy, Dis-
crete Mathematics Volume 266, Issues 1–3. 2003.

[12] M. Henning and A. Yeo, Total Domination in Graphs, Springer Monographs in Math-
ematics, Springer, 2013.

[13] M. Henning and A. Marcon, On matching and semitotal domination in graphs, Dis-
crete Mathematics, Vol 324(6), 13-18, 2014.

[14] M. Henning and A. Marcon, Semitotal domination in claw-free cubic graphs, Annals
of Combinatorics, Vol 20(4), 799-813, 2016.

[15] A.Martinez, S. Garcia and A. Garcia, Further results on the total Roman domination
in graphs, Mathematics, Vol. 8(3), 2020.

[16] M.J. Rivera and F.P. Jamil, Total Roman domination in the join, corona and com-
plementary prism of graphs, Asia Pacific Journal of Science, Mathematics and Engi-
neering, Vol. 7(2)(2021), pp 37-48.

[17] C.S. ReVelle, K.E. Rosing, Defendens imperium romanum: a classical problem in
military strategy, Amer. Math. Monthly, Volume 107(7) Pages 585-594, (2000).

[18] I. Stewart, Defend the roman empire!. Sci. Amer. Volume 281(6) Pages 136-139,
(1999).


