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Abstract. In this paper, a new analytical framework for solving the fundamental nonlinear model,
the time-fractional Date-Jimbo-Kashiwara-Miwa equation, is proposed. The time-fractional Date-
Jimbo-Kashiwara-Miwa equation is made simpler by reducing it to an ordinary differential equation
through the Power Index Method’s multiplication of variables x and t. Because it permits a change
in variables, which can uncover a hidden pattern in the equation, multiplying x and t is significant.
The original equation’s terms may be removed or their complexity decreased with the aid of this
transformation. The benefits of various variable transformations vary depending on the particular
issue, but this transformation has the advantage of simplifying the equation, which makes it simpler
to solve, analyze, and produce precise and explicit solutions. Both rational and logarithm functions
are present in the solutions that were obtained. Through 3D visualizations of the general solutions,
our method offers a deeper comprehension of the dynamics of the equation. The behavior of the
solution to the time-fractional Date-Jimbo-Kashiwara-Miwa equation is depicted in the paper’s 3D
visualization. The solitons and nonlinear wave solutions are depicted in each plot. Our findings
show the effectiveness of the Power Index Method in this situation and highlight its capacity to
address challenging issues.
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1. Introduction

In computational chemistry, particle physics, plasma physics, and other fields, nonlin-
ear partial differential equations (NPDEs) have been used as models to explain nonlinear
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physical phenomena. The study of exact or analytical solutions has received a lot of atten-
tion because it is crucial to the examination of the model physical characteristics. Different
wave types, such as solitary waves, optical solutions, singular solutions, periodic waves,
breather waves, rogue waves, and rational wave solutions, can be created using analytical
techniques. Investigating techniques for solving fractional nonlinear partial differential
equations (PDEs) is necessary to better understand the dynamics of these real-world com-
ponents. This investigation is necessary to learn more about and comprehend the intricate
behaviors that are present in the systems indicated above. The greater richness and gen-
erality that fractional nonlinear PDE solutions offer, which surpasses classical solutions
in terms of descriptive power, makes them of academic interest [25], [8], [9], [21], [19],
[18]. Mathematicians have created and applied creative and trustworthy methods to ex-
plore novel discoveries. The generalized Khater method, generalized Kudryashov method,
fractional sub-equation method, modified extended direct algebraic approach, (G’/G)-
expansion method, and simple equation method are a few of these techniques. Numerous
methods have been employed in recent research to look into solutions [17], [2], [20], [14],
[22], [16].
In mathematics, analytic solutions often serve as a foundation for further analysis. How-
ever, when analytic solutions are not feasible. We discuss alternative approaches like:
asymptotic expansions, perturbation theory, bifurcation analysis, numerical methods (e.g
finite element, finite difference etc). These approaches can provide valuable insights into
solution properties, such as: stability and instability, bifurcation and pattern formation,
long-time behavior and attraction, symmetries and conservation law.

The time-fractional DJKM equation is a significant extension of the classical DJKM equa-
tion, incorporating fractional derivatives to model complex phenomena in physics, math-
ematics and engineering. Despite the existence of various fractional derivatives, our work
focuses on the conformable fractional derivative due to its uniqueness. The motivation for
this work is multifaceted:
(1) The increasing importance of fractional derivative in modeling real-world phenomena
(2) The need for analytic solutions to understand the underlying dynamics of the time-
fractional DJKM equation
By addressing these motivations, our work provides a comprehensive analysis of the time-
fractional DJKM equation and contributes to the growing field of fractional derivatives

DJKM equation was firstly presented by Kadomtsev and Petviashvili so as to study the
stability of the KdV soliton [13]. Later, some important properties of DJKM have been
investigated in [5], [24], [11] and [15]. In 2020, Wazwaz have observed the Painleve integra-
bility and multiple soliton solutions by getting variable coefficient in [29]. In 2021, Khudija
and Khalil applied Lie symmetry transformation on DJKM and reduced into linear PDEs
[3].
In paper [10], the CDJKM equation has the following form [12], [7].
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uxxxxy + 4uxxyux + 2uxxxuy + 6uxyuxx − γuyyy − 2ρ
∂2

∂x2

(
∂αu

∂tα

)
= 0 (1)

where u = u(x, y, t) represents the physical quantity of wave amplitude and the subscripts
indicate partial differentiation with regard to the specified variables whereas γ, ρ are con-
stants, and 0 < α ≤ 1 shows wave behavior of the solitions. This definition is widely used
in different fields, including physics, engineering, and mathematics, and has been shown
to be effective in modeling complex phenomena. This definition is chosen for its simplicity
and applicability to many problem.
A lot of studies have been presented to seek the solutions of equation (1). Wang and Hu
[6] have derived the Grammian solutions of equation (1). Guo and Lin [5] have studied
interaction solutions between lump and stripe soliton solutions via a quadratic function.
Adem et al. [30] have used the extended transformed rational function that depends on the
Hirota bilinear form to constructed Complexion solutions of the DJKM equation. Yuan et
al. [27] have studied Wronskian and Grammian solutions to the DJKM equation. Singh
and Gupta [1] have investigated the Painleve property of the suggested equation and have
revealed some exact solutions to the studied equation by using the Pickering’s algorithm.
Sajid and Akram [24] have utilized exp(ϕ(ξ))-expansion method to seek some exact solu-
tions to equation (1).
In recent years, the concept of fractional derivatives has been applied with great success
to model various real-life phenomena in many scientific fields. Fractional order operators
include the history of a physical phenomenon from the initial state to the current state.
Therefore, fractional order operators are often applied to model systems that describe the
influence of memory effects in [23], [26], [4] and [28].
Function transformation is a mathematical technique that uses a specific transformation
to convert the time-fractional DJKM equation into a more tractable form, enabling us to
derive analytical solutions using various methods, such as Power Index Method. We have
derived closed-form analytical solutions for the time-fractional DJKM equation, which re-
veal the dynamics of wave propagation and dispersion in terms of fractional derivatives,
providing new insights into the behavior of complex systems. Our results can be applied
in various fields, such as signal processing, image processing, and optical communications,
to model and analyze complex wave phenomena, leading to improved performance and
enhanced understanding of these systems.
The purpose of the paper is to develop a novel analytical framework for solving non-
linear Partial differential equations using function transformation, focusing on the time-
fractional DJKM equation. We address previously unsolved problems in nonlinear PDEs,
are deriving exact solutions for nonlinear wave equations with fractional time derivatives.
Overcoming limitations of existing methods in handling nonlinear wave dynamics. Our
research has significant practical implications for accurate modeling and simulation of
nonlinear wave phenomena in physics, engineering and optics. Enhanced understanding
of nonlinear wave interactions and their role in complex systems. Informing the devel-
opment of new numerical methods and analytical tools for nonlinear PDEs. There are
many other definitions of fractional derivatives in different ways such as Caputo frac-
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tional derivative, Riemann liouville fractional derivative and Grunwald-letnikov fractional
derivative. Recently, Khalil et al. have introduced a new, straightforward definition of the
fractional derivative called the conformable fractional derivative with the limit operator
and he made the most significant contributions to Fractioanl derivative.
Remark 1 ”We use of polynomial fractional derivatives as

Dα
t (t

s) =
Γ(s+ 1)

Γ(s− α+ 1)
ts−α (2)

All the fractional derivatives applying on polynomial have same results”.
This paper is divided as follows: In Section 2, Power Index Method (PIM) is introduced.
In Section 3, new function transformations are applied to the DJKM equation. Section 4
are devoted to results and discussion. Finally conclusion is demonstrated in Section 5.

2. Power Index Method

Step:-1 Considering the PDE (1) and we want to show its exact solution, we introduce
the variable ξ as;

ξ = xmtr

and transformation of general form is;

u(x, t) = xntsf(ξ)

Since ξ and u depend only x and t, so all terms vanish except last term.
Step:-2 By using fractional derivatives of polynomial as

Dα
t (t

s) =
Γ(s+ 1)

Γ(s− α+ 1)
ts−α

we can find

Dα
t u = Dα

t (x
ntsf(ξ)) = xn

Γ(s+ 1)

Γ(s− α+ 1)
ts−αf(ξ) + xntsDα

t f(ξ)

= xn
Γ(s+ 1)

Γ(s− α+ 1)
ts−αf(ξ) + xm+nts+r−α Γ(r + 1)

Γ(r − α+ 1)
f ′(ξ)

The indexes of x and t in every term may be defined the following form

px = a1m+ a2n

pt = b1r + b2s

where ai, bi, i = 1, 2 are constants that can be come by taking fractional derivatives. We
observe coefficients of px and pt so that the PDE may be transformed to ODE. The best
optimal indexes of independent variable x and t are chosen in such away that only two
indexes vary at time and others are fixed constants. We continue this process with different
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indexes of x and t so that we find all well-defined transformations.
Step:-3 By using the analytic solution of ODE and transformation, we can easily find the
relation between x and ξ in each term as;
The indexes of x, t in terms containing f and f ′ are;

px(f) = n, px(f
′) = m+ n

pt(f) = s− α, pt(f
′) = s+ r − α

Since ξ = xmtn, so the values of px(f) and px(f
′) must be multiplies of m and similarly,

the values of pt(f) and pt(f
′) must be multiplies of r.

Step:-4 We select out a few members of the family of indexes of x and ξ. Further, we

Figure 1: ”Flow Chart of Power Index Method which shows how we transition from a PDE to an ODE, and
subsequently obtain analytical solutions. Furthermore, when we substitute the soultion back into the original
solution PDE, it satisfies the equation, validating our approach”.

get different members of Power Indexes in order that we will select unique values of Power
Indexed. We retain the same technique for other variables. Now, we have got selected a
new variable and transformation with changeable indexes.
Next each term is changed by using a new variable and transformation. Our objective is
concentrated PDE into ODE

R(ξ, f ′, f ′′, ...) = 0 (3)

where R is polynomial of f(ξ) and its derivatives.
By using Power Index Method, we can gain a deeper understanding of power and influ-
ence within various contexts, and develop more effective strategies for promoting positive
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change.
Step:-5 Solve the ODE (3) by using computerized symbolic package like Maple. If we
get exact solution of the ODE then expressing this solution by using new variable and
transformation.

3. Analytic solutions of Date-Jimbo-Kashiwara-Miwa equation by using
new function transformations

Case 1:-
We choose function transformation

ξ = x2rt2n (4)

u = xβf(ξ) (5)

Using time-fractional derivative, we have

∂αu

∂tα
=

Γ(2n+ 1)

Γ(2n− α+ 1)
xβ+2rt2n−αf ′(ξ) (6)

∂

∂x
(
∂αu

∂tα
) =

Γ(2n+ 1)

Γ(2n− α+ 1)
t2n−α

(
2rt2nxβ+4r−1f ′′ + xβ+2r−1(β + 2r)f ′

)
(7)

∂2

∂x2
(
∂αu

∂tα
) =

Γ(2n+ 1)

Γ(2n− α+ 1)
t2n−α ∂

∂x

(
2rt2nxβ+4r−1f ′′ + xβ+2r−1(β + 2r)f ′

)
=

Γ(2n+ 1)

Γ(2n− α+ 1)
t2n−α

(
4r2t4nxβ+6r−2f ′′′ + 2rt2nxβ+4r−2(2β + 6r − 1)f ′′

+(β + 2r)(β + 2r − 1)xβ+2r−2f ′
)

(8)

Using ( 6), (7) and (8) the PDE (1) can be expressed in simplified as;

4r2t4nx4rf ′′′ + 2rt2nx2r(3 + 2r)f ′′ + 2f ′ = 0 (9)

Since ξ = x2rt2n, so (9) reduces to ODE. For simplification, we take V = f ′ then (9)
becomes

ξ2V ′′ + ξ(
2β + 6r − 1

2r
)V ′ +

β2 + 4βr + 4r2 − β − 2r

4r2
V = 0 (10)

It is easy to see that (10) is Euler second order linear ODE. If we choose V = ξk, V ′ = kξk−1

and V ′′ = k(k − 1)ξk−2 then the characteristic equation of (10) is

k(k − 1) + k(
2β + 6r − 1

2r
) +

β2 + 4βr + 4r2 − β − 2r

4r2
= 0 (11)
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The roots of equation (11) are

k1 =
1− 2β − 4r

2r
+

√
(2β + 4r − 1)2 − 4β(β + 4r − 1) + 2r(2r − 1)

2r

k2 =
1− 2β − 4r

2r
−

√
(2β + 4r − 1)2 − 4β(β + 4r − 1) + 2r(2r − 1)

2r
(12)

Hence the analytic solution of ODE (10) is

f ′ = V = c1ξ
k1 + c2ξ

k2

By replacing V = f ′ and taking integral on both sides, we get

f(ξ) = c1
ξk1+1

k1 + 1
+ c2

ξk2+1

k2 + 1
+ c3 (13)

Using transformations (4), (5) and analytic solution of ODE (13), we get exact solution
of PDE (1) which is

u = c1x
β (x

2rt2n)k1+1

k1 + 1
+ c2x

β (x
2rt2n)k2+1

k2 + 1
+ c3x

β

u = c1
xβ+2rk1+2rt2nk1+2n

k1 + 1
+ c2

xβ+2rk2+2rt2nk2+2n

k2 + 1
+ c3x

β (14)

where k1 and k2 are given in (12). When β = 0.5 it become rapidly change in the wave
amplitude.
Case 2:-

ξ = xtm (15)

u = xβtnf(ξ) (16)

Using time-fractional derivative, we have

∂αu

∂tα
=

Γ(m+ 1)

Γ(m− α+ 1)
xβ+1tn+m−αf ′(ξ) +

Γ(n+ 1)

Γ(n− α+ 1)
xβtn−αf(ξ) (17)

∂

∂x
(
∂αu

∂tα
) =

Γ(m+ 1)

Γ(m− α+ 1)
tn+m−α

(
tmxβ+1f ′′ + xβ(β + 1)f ′

)
+

Γ(n+ 1)

Γ(n− α+ 1)
tn−α

(
βxβ−1tmf ′ + β(β − 1)f + xβt2mf ′′ + βxβ−1tmf ′

)
(18)

∂2

∂x2
(
∂αu

∂tα
) = m1t

3mx3f ′′′ + (2m1(β + 1) + n1)t
2mxβ(2)f ′′+

β(m1(β + 1) + 2n1)xt
mf ′ + n1β(β − 1)f = 0, (19)
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where m1 = Γ(m+1)
Γ(m−α+1) and n1 = Γ(n+1)

Γ(n−α+1) . Using (17), (19) and ξ = xtm, the PDE (1)
can be expressed as;

m1ξ
3f ′′′ + (2m1(β + 1) + n1)ξ

2f ′′ + β(m1(β + 1) + 2n1)ξf
′ + n1β(β − 1)f = 0 (20)

It is easy to see that (20) is Euler second order linear ODE. If we choose f = ξk, f ′ =
kξk−1, f ′′ = k(k− 1)ξk−2 and f ′′′ = k(k− 1)(k− 2)ξk−3 then the characteristic equation is

m1k(k−1)(k−2)+k(k−1)(2m1(β+1)+n1)+β(m1(β+1)+2n1)k+n1β(β−1) = 0 (21)

The roots of equation (21) are k = −β, k = 1− β and k = − n1
m1

.
Hence the analytic solution of ODE (20) is

f(ξ) = c1ξ
−β + c2ξ

1−β + c3ξ
− n1

m1 (22)

Using transformations (15), (16) and analytic solution of ODE (22), we get exact solution
of PDE (1) which is

u = xβtn(c1x
−βt−βm + c2x

−β+1t(1−β)m + c3x
−βn1
m1 t

−n1m
m1 ) (23)

When β becomes more decrease then wave amplitude become frequent.
Case 3:-
If we choose 2n = 1and 2r = α in Case 1

ξ = xαt (24)

u = xβf(ξ) (25)

Using time-fractional derivative, we have

∂αu

∂tα
=

Γ(2)

Γ(2− α)
xα+βt1−αf ′ (26)

∂

∂x
(
∂αu

∂tα
) =

Γ(2)

Γ(2− α)
t1−α

(
αtx2α+β−1f ′′ + (α+ β)xα+β−1f ′

)
(27)

∂2

∂x2
(
∂αu

∂tα
) =

Γ(2)

Γ(2− α)
t1−α ∂

∂x

(
αtx2α+β−1f ′′ + (α+ β)xα+β−1f ′

)
=

Γ(2)

Γ(2− α)
t1−α

(
α2tx3α+β−2f ′′′ + α(2α+ β − 1)tx2α+β−2f ′′ + α(α+ β)tx2α+β−2f ′′

+(α+ β)(α+ β − 1)xα+β−2f ′
)

(28)

Using (26), (27) and (28) the PDE (1) can be expressed as;

α2(xαt)2f ′′′ + α(xαt)(2αβ + 3α2 − α)f ′′ + (β(β − 1) + 2αβ + α2 − α)f ′ = 0 (29)
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Since ξ = xαt, so (29) reduces to ODE. For simplification, we take V = f ′ then (29)
becomes

ξ2V ′′ + ξ

(
2β + 3α− 1

α

)
V ′ +

(
β(β − 1) + 2αβ + α(α− 1)

α2

)
V = 0 (30)

It is easy to see that (30) is Euler second order linear ODE.
If we choose V = ξk, V ′ = kξk−1 and V ′′ = k(k − 1)ξk−2

then the characteristic equation is

k(k − 1) + k

(
2β + 3α− 1

α

)
+

β(β − 1) + 2αβ + α(α− 1)

α2
= 0 (31)

The roots of equation (31) are k1 =
−β+α−1

α and k2 = −(β+α
α )

Hence the analytic solution of ODE (30) is

f ′ = V = c1ξ
−β+α−1

α + c2ξ
−(β+α

α
)

By replacing V = f ′ and taking integral on both sides, we get

f(ξ) = c1
ξk1+1

k1 + 1
+ c2

ξk1+1

k2 + 1
+ c3 (32)

Using transformations (24), (25) and analytic solution of ODE (32), we get exact solution
of PDE (1) which is

u = xβ
(
c1
(xαt)k1+1

k1 + 1
+ c2

(xαt)k2+1

k2 + 1
+ c3

)
(33)

When β = 1.5 then small oscillation in wave amplitude are observed.
Case 4:-
We choose function transformation

ξ = xmt (34)

u = xnf(ξ)− xnsint (35)

Using time-fractional derivative, we have

∂αu

∂tα
=

Γ(2)

Γ(2− α)
xm+nt1−αf ′ − xnsin

(
t+

απ

2

)
(36)

∂

∂x
(
∂αu

∂tα
) =

Γ(2)

Γ(2− α)
t1−α

(
mtx2m+n−1f ′′+(m+n)xm+n−1f ′−nxn−1sin

(
t+

απ

2

))
(37)

∂2

∂x2
(
∂αu

∂tα
) =

Γ(2)

Γ(2− α)
t1−α ∂

∂x

(
mt2m+n−1f ′′ + (m+ n)xm+n−1f ′ − nxn−1sin

(
t+

απ

2

))
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=
Γ(2)

Γ(2− α)
t1−α

(
m2t2x3m+n−2f ′′′ +m(2m+ n− 1)tx2m+n−2f ′′ +m(m+ n)tx2m+n−2f ′′

+(m+ n)(m+ n− 1)xm+n−2f ′ − n(n− 1)xn−2sin
(
t+

απ

2

))
(38)

Using (36), (37) and (38) into the PDE (1). To convert our equation (38) into ODE we
have to take the only value n = 1, otherwise we are unable to convert ODE.

m2x2mt2f ′′′ + xmt(3m2 +m)f ′′ +m(m+ 1)f ′ = 0 (39)

Since ξ = xmt, so (39) reduces to ODE. For simplification, we take V = f ′ then (39)
becomes

ξ2V ′′ + ξ

(
3m+ 1

m

)
V ′ +

(
m+ 1

m

)
V = 0 (40)

It is easy to see that (40) is Euler second order linear ODE.
If we choose V = ξk, V ′ = kξk−1 and V ′′ = k(k − 1)ξk−2

then the characteristic equation is

k(k − 1) + k

(
3m+ 1

m

)
+

m+ 1

m
= 0 (41)

The roots of equation (41) are k = −1 and k = −1− 1
m

Hence the analytic solution of ODE (40) is

f ′ = V = c1ξ
−1 + c2ξ

−1− 1
m

By replacing V = f ′ and taking integral on both sides, we get

f(ξ) = c1ln(ξ)−mc2ξ
− 1

m + c3 (42)

Using transformations (34), (35) and analytic solution of ODE (42), we get exact solution
of PDE (1) which is

u = xn
(
c1ln(x

mt)− mc2t
− 1

m

x
+ c3

)
− xnsint (43)

When β = 2.5 then it become rapidly changing in the wave amplitude.
Case 5:-
We choose function transformation

ξ = eaxt (44)

u = e−bxf(ξ) (45)

Using time-fractional derivative, we have

∂αu

∂tα
=

Γ(2)

Γ(2− α)
t1−αe(a−b)xf ′ (46)
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∂

∂x
(
∂αu

∂tα
) =

Γ(2)

Γ(2− α)
t1−α

(
ate(2a−b)xf ′′ + (a− b)e(a−b)xf ′

)
(47)

∂2

∂x2
(
∂αu

∂tα
) =

Γ(2)

Γ(2− α)
t1−α ∂

∂x

(
ate(2a−b)xf ′′ + (a− b)e(a−b)xf ′

)
=

Γ(2)

Γ(2− α)
t1−α

(
a2t2e(3a−b)xf ′′′ + (3a2 − 2ab)te(2a−b)xf ′′ + (a− b)2e(a−b)xf ′

)
(48)

Using (46), (47) and (48) into the PDE (1). To convert our equation (48) into ODE we
divide a2eax

a2e2axt2f ′′′ + (3a2 − 2ab)eaxtf ′′ + (a− b)2f ′ = 0 (49)

Since ξ = xmt, so (49) reduces to ODE. For simplification, we take V = f ′ then (49)
becomes

ξ2V ′′ +

(
3a− 2b

a

)
ξV ′ +

(a− b)2

a2
V = 0 (50)

It is easy to see that (50) is Euler second order linear ODE.
If we choose V = ξk, V ′ = kξk−1 and V ′′ = k(k − 1)ξk−2

then the characteristic equation is

k(k − 1) +

(
3a− 2b

a

)
k +

(a− b)2

a2
= 0 (51)

The roots of equation (51) are real and repeated i-e k = −1 + b
a and k = −1 + b

a
Hence the analytic solution of ODE (50) is

f ′ = V = (c1 + c2lnξ)ξ
−1+ b

a

By replacing V = f ′ and taking integral on both sides, we get

f(ξ) = (c1 + c2lnξ)ξ
b
a + c3 (52)

Using transformations (44), (45) and analytic soltuion of ODE (52), we get exact solution
of PDE (1) which is

u = (c1 + c2(ax+ ln(t)))t
b
a + c3e

bx (53)

When a = 1.0 and b = 1.4 amplitude of the wave ocillates.
Case 6:-
We choose function transformation

ξ =
xm

1 + t
(54)

u = xnf(ξ) (55)
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Using time-fractional derivative, we have

∂αu

∂tα
=

Γ(3/2)

(1 + t)3/2
xn+mf ′ (56)

∂

∂x

(
∂αu

∂tα

)
=

Γ(3/2)

(1 + t)3/2

(
m
xn+2m−1

(1 + t)
f ′′ + (n+m)xn+m−1f ′

)
(57)

∂2

∂x2

(
∂αu

∂tα

)
=

Γ(3/2)

(1 + t)3/2
∂

∂x

(
m
xn+2m−1

(1 + t)
f ′′ + (n+m)xn+m−1f ′

)
=

Γ(3/2)

(1 + t)3/2

(
m2x

n+3m−2

(1 + t)2
f ′′′ +m(2m+ n− 1)

x2m+n−2

(1 + t)
f ′′

+m(m+ n)
x2m+n−2

(1 + t)
f ′′ + (m+ n)(n+m− 1)xn+m−2f ′

)
(58)

Using (56), (57) and (58) the PDE (1) can be expressed as;

m2ξ2f ′′′ + (m2 + 3m)ξf ′′ + 2f ′ = 0 (59)

Since ξ = xm

(1+t) , so (59) reduces to ODE. The ODE is same as in case 3. It’s solution will

also be same. For simplification, we take V = f ′ then (59) becomes

ξ2V ′′ + (
m2 + 3m

m2
)ξV ′ +

2

m2
V = 0 (60)

It is easy to see that (60) is Euler second order linear ODE. If we choose V = ξk, V ′ = kξk−1

and V ′′ = k(k − 1)ξk−2.
then the characteristic equation of (60) is;

k(k − 1) + (
m+ 3

m
)k +

2

m2
= 0 (61)

The roots of equation (61) are k = −1 and k = −1
Hence the analytic solution of ODE (60) is

f ′ = V = c1ξ
− 2

m + c2ξ
− 1

m

By replacing V = f ′ and taking integral on both sides, we get

f(ξ) = c1
ξ−

2
m
+1

− 2
m + 1

+ c2
ξ−

1
m
+1

− 1
m + 1

+ c3 (62)

Using transformation (54), (55) and analytic solution of ODE (62), we get exact solution
of PDE (1) which is

u = xnc1

(
xm

1+t

)− 2
m
+1

− 2
m + 1

+ xnc2

(
xm

1+t

)− 1
m
+1

− 1
m + 1

+ xnc3
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u = mc1
xm+n−2

(m− 2)(1 + t)−
2
m
+1

+mc2
xm+n−1

(m− 1)(1 + t)−
1
m
+1

+ xnc3 (63)

When m = −0.5 and n = 3 there is sudden change in wave amplitude.

4. Figures

Figure 2: 3D plot of solution (14)
of PDE (1) with r = −1 ; n = 1
and β = 0.5 shows more rapid
decay in the wave amplitude

Figure 3: 3D plot of solution (23)
of PDE (1) with m = 8, β =
−10 and n = 6 wave amplitude
become more frequent

Figure 4: 3D plot of solution (33)
of PDE (1) with α = 1.5 ; β =
1.5 wave amplitude exhibits oscil-
latory behavior

Figure 5: 3D plot of solution (43)
of PDE (1) with α = 1.5 ; β =
1.5 shows more rapid decay in the
wave amplitude

Figure 6: 3D plot of solution (53)
of PDE (1) with a = 1.0 and
b = 1.4 wave amplitude exhibits
oscillatory behavior

Figure 7: 3D plot of solution (63)
of PDE (1) with m = −0.5 and
n = 3 sudden change in wave am-
plitude

5. Discussion of the Results

By developing an analytical approach to solve the time-fractional DJKM equation, this
paper significantly advances the field of nonlinear science. The study’s successful applica-
tion of the Power Index Method reveals a variety of solutions with unique wave structures,
demonstrating the method effectiveness in solving challenging nonlinear problems. The



B. Yasmeen, K. Ahmad, N. Fatima / Eur. J. Pure Appl. Math, 18 (1) (2025), 5756 14 of 17

paper is a useful tool for scientists and researchers because of its thorough analysis and
graphical representations, which provide a deeper understanding of the equation’s dynam-
ics and physical phenomena. Additionally, the study opens up new research directions in
a number of scientific fields by showcasing the Power Index Method capacity to solve frac-
tional differential equations. All things considered, the paper’s distinctive methodology
and conclusions make it a noteworthy and influential addition to the field.
In this study, we presented novel solutions known as a rational and logarithm functions.
As a result of the above thorough discussion and compression, we are able to produce new,
intriguing, and thorough results that have not been addressed by other approaches in the
prior literature. To solve the nonlinear equation, we employed a potent technique. Other
complex equations can be studied using this method.

6. Conclusions

This work represents a major advancement in the effort to solve the time-fractional
Date-Jimbo-Kashiwara-Miwa equation, a basic nonlinear model with broad applications in
many scientific fields. We have effectively derived a wide range of solutions by utilizing the
Power Index Method, demonstrating the method’s potential for modeling intricate wave
structures. Various solutions for the current model are derived in the form of rational
and logarithm functions. Every result found in this paper is fresh and original. The
3D under some suitable values of parameters are also plotted. These solutions provide
important insights into the complex dynamics of nonlinear phenomena and have important
applications in contemporary science and engineering. It provides a versatile and flexible
method for solving challenging equations. It can be used with a variety of physical models
and systems.
Further investigation into the use of fractional calculus in nonlinear dynamics is made
possible by the efficacy of the Power Index Method as shown in this work. Determining
precise solutions for such intricate equations creates new opportunities to investigate the
complex behavior of nonlinear systems, which is crucial for improving our comprehension
of a range of physical and natural phenomena. Furthermore, the solutions graphical
representations offer a visual depiction of the underlying dynamics, promoting a better
understanding of the complex interactions among the different parameters. The obtained
solutions are verified using Maple software by substituting the solutions back into the
equation.

7. Future Recommendations

Future studies could focus on applying this methodology to more complex issues, like
coupled nonlinear time-fractional Date-Jimbo-Kashiwara-Miwa equations and systems of
nonlinear PDEs, which are essential for simulating intricate physics and engineering phe-
nomena. Additionally, this study will be expanded upon to create a new technique for
exact solutions with a variety of behaviors, especially in the fields of neuroscience, machine
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learning for flow, and power electronics, where nonlinear oscillators are crucial. The world
will transform in a new way as a result of our research.
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