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Abstract. In this work, we examine the hyperstability of the quintic functional equation ϕ(u +
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1. Introduction and preliminaries

One of the most important areas of mathematical research, which has its origins in
problems relating to applied mathematics, is the investigation of stability issues for func-
tional equations. Ulam [28] stated the following as the first query pertaining to the stability
of homomorphisms.

Let U be a group and V be a metric group with a metric d(·, ·). Given ϵ > 0, is there
a δ > 0 such that if a function ϕ : U → V fulfills

d(ϕ(uv), ϕ(u)ϕ(v)) < δ,

for all u, v ∈ U , then there is a homomorphism Φ : U → V with

d (ϕ(u),Φ(u)) < ϵ,
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for all u ∈ U?
Hyers provided the first partial answer to Ulam’s concern regarding the Cauchy equa-

tion in Banach spaces in [19]. Later, Aoki was the first to generalize Hyers’ findings and
not until much later by Rassias [24] and Găvruţa [18]. Since then, several functional equa-
tions’ stability issues have been thoroughly researched (see [7, 8, 20, 25]). If any function
f approximates (in some sense) the solution to the functional equation, then the func-
tional equation is said to be hyperstable. It appears that the first hyperstability finding,
which dealt with ring homomorphisms, was published in [6]. Hyperstability, however, is
mentioned for the first time in [21].

Brzdȩk investigated the hyperstability results for the Cauchy equation (see [9–11]). The
hyperstability of the parametric basic equation of information was addressed by Gselmann
in [17]. Bahyrycz and Piszczek reported the Jensen functional equation’s hyperstability in
[4]. For a certain class of complete metric spaces, Brzdȩk and Ciepliński [13] demonstrated
a simple fixed point theorem, namely, complete non-Archimedean metric spaces, p-adic
strings, and superstrings that are related to several quantum physics-related phenomena.
They also demonstrated that how effective and practical this theorem is for demonstrating
the Hyers-Ulam stability of a huge class of functional equations in a single variable.

The fixed point theorem [12, Theorem 1] was restated in 2-Banach spaces by El-Fassi
[15] in 2017, and a radical quartic functional equation was introduced and examined its
Ulam stability in 2-Banach spaces by fixed-point approache. In [5], Bounader examined
the hyperstability of the quartic functional equation in Banach spaces. In [2], Aribou et al.
presented the hyperstability results of a cubic- quartic functional equation in ultrametric
Banach spaces. And also, in 2020, Sayar and Bergam [27], examined stability and hyper-
stability for the quadratic functional equation in 2-Banach space by Brzdȩk fixed-point
theorem.

Motivated by the above results on the hyperstability of additive functional equations,
quadratic functional equations, cubic functional equations and quartic functional equa-
tions, in the current work, we try to examine the hyperstability of the following quintic
functional equation

ϕ(u+ 3v)− 5ϕ(u+ 2v)− ϕ(u− 2v) + 10ϕ(u+ v) + 5ϕ(u− v)− 10ϕ(u)− 120ϕ(v) = 0,

in Banach spaces by means of Brzdȩk’s fixed point approach.
A concept employed by Brzdȩk in [9–11] and later by Piszczek [23] served as the

inspiration for the manner of the primary results’ confirmation. Its foundation is a fixed-
point theorem for functional spaces discovered by Brzdȩk (see [12], Theorem 1]). Most
frequently, the superstability and hyperstability, which also accepts bounded functions-are
concerned. Numerous articles have been written on this topic and we refer to [1, 3, 4, 14,
16, 17, 21, 22, 26, 29].

Throughout the paper, N denote the set of all natural numbers, N0 = N ∪ {0}, R
denote the set of all real numbers, Nm denote the set of all natural numbers greater than
or equal to m, for every m ∈ N and R+ denote the set of all positive real numbers. We
use the notation U0 for the set U\{0}.
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Theorem 1. [13] Let U be a non-empty set, (V, d) be a complete metric space, and Υ :
VU → VU fulfill the hypothesis

lim
m→+∞

Υδm = 0,

for {δm}m∈N in VU with
lim

m→+∞
δm = 0.

Suppose that an operator Φ : VU → VU fulfills

d (Φψ(u),Φς(u)) ≤ Υ(∆(ψ, ς))), ψ, ς ∈ VU ,

for all u ∈ U , where a mapping ∆ : VU × VU → RU
+ is defined by

∆(ψ, ς) (u) := d(ψ(u), ς(u)), ψ, ς ∈ VU , u ∈ U .

If there is a mapping ϑ : U → R+ and ζ : U → V fulfilling

d (Φψ(u),Φς(u)) ≤ ψ(u)

and
ϑ∗(u) :=

∑
m∈N0

(Υmϑ) (u) <∞

for all u ∈ U , then the limit
lim

m→+∞
(Φmζ) (u)

exists for each u ∈ U . Furthermore, the mapping χ ∈ VU , defined by

χ(u) := lim
m→+∞

(Φmζ) (u)

is a fixed point of Φ with
d (ζ(u), χ(u)) ≤ ϑ∗(u)

for all u ∈ U .

The upcoming fixed point theorem, which corresponds to Theorem 1 in complete
normed space, is then discussed. This outcome is an important factor in the formula-
tion of stability findings.

Theorem 2. Let U be a nonempty set, (V, ∥ · ∥) be a Banach space and let ϕ1, ϕ2, · · · , ϕl :
U → U be mappings and L1, · · · , Ll : X → R+be functions. Suppose that Φ : VU → VU

and two operators Υ : RU×U
+ → RU×U

+ fulfill the conditions:

∥Φψ(u)− Φς(u)∥ ≤
l∑

i=1

Li(u) ∥ψ (ϕi(u))− ς (ϕi(u))∥
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for all ψ, ς ∈ VU , u ∈ U and

Υδ(u) :=
l∑

i=1

Li(u)δ (ϕi(u)) , δ ∈ RU×U
+ , u ∈ U .

If there exist mappings ϑ : U × U → R+ and ζ : U → V satisfying

∥Φζ(u)− ζ(u)∥ ≤ ϑ(u)

and

ϑ∗(u) :=

∞∑
m=0

(Υmϑ) (u) <∞

for all u ∈ U , then the limit
lim

m→+∞
(Φmζ) (u) (1)

exists for every u ∈ U . Furthermore, the mapping χ : U → V defined by

χ := lim
m→+∞

(Φmζ) (u)

is a fixed point of Φ with
∥ζ(u)− χ(u)∥ ≤ ϑ∗(u)

for all u ∈ U .

For our notational handiness, we use the abbreviation

Dϕ(u, v) = ϕ(u+ 3v)− 5ϕ(2v + u)− ϕ(u− 2v) + 10ϕ(v + u)

+5ϕ(u− v)− 10ϕ(u)− 120ϕ(v). (2)

2. Main results

In this section, we demonstrate various hyperstability and stability of (2) in Banach
spaces utilizing Theorem 2. Suppose that U is a normed space along with U0 = U\{0}
and (V, ∥ · ∥) is a Banach space.

Theorem 3. Let τ1, τ2 : U0 × U0 → R+ be two functions such that

W := {m ∈ N : αm < 1} = ∅,

where

αm :=
1

120
η1(m+ 3)η2(m+ 3) +

1

120
η1(m− 2)η2(m− 2) +

1

24
η1(m+ 2)η2(m+ 2)

+
1

12
η1(m+ 1)η2(m+ 1) +

1

12
η1(m)η2(m) +

1

24
η1(m− 1)η2(m− 1)
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and

ηi(m) := inf {l ∈ R+ : τi(mu) ≤ lτi(u), u ∈ U0}

for all m ∈ N, where i = 1, 2. Assume that ϕ : U → V fulfills

∥Dϕ(u, v)∥ ≤ τ1(u)τ2(v), u, v ∈ U0 (3)

such that 3v+ u ̸= 0, 2v+ u ̸= 0, u− 2v ̸= 0, u− v ̸= 0 and v+ u ̸= 0. Then there is only
one quintic mapping H : U → V fulfilling

∥ϕ(u)−H(u)∥ ≤ η0τ1(u)τ2(u)

for all u ∈ U0, where

η0 := inf
m∈W

{
η1(m)

120(1− αm)

}
.

Proof. Replacing (u, v) by (nu, u) in (3), we obtain∥∥∥∥ 1

120
ϕ((3 + n)u)− 1

24
ϕ((2 + n)u)− 1

120
ϕ((n− 2)u) +

1

12
ϕ((1 + n)u)

+
1

24
ϕ((n− 1)u)− 1

12
ϕ(nu)− ϕ(u)

∥∥∥∥ ≤ 1

120
τ1(nu)τ2(u) (4)

for all u ∈ U0 and all n ∈ N. For any n ∈ N, we define the operator Φn : VU0 → VU0 by

Φnψ(u) :=
1

120
ψ((3 + n)u)− 1

24
ψ((2 + n)u)− 1

120
ψ((n− 2)u)

+
1

12
ψ((1 + n)u) +

1

24
ψ((n− 1)u)− 1

12
ψ(nu) (5)

for all ψ ∈ VU0 and all u ∈ U0. Moreover, putting

ϑn(u) :=
1

120
τ1(nu)τ2(u) (6)

for all u ∈ U0, and observe that

ϑn(u) =
1

120
τ1(nu)τ2(u) ≤

1

120
η1(n)τ1(u)τ2(u) (7)

for all u ∈ U0 and all n ∈ N. Using the conditions (5) and (7) in (4), we get

∥ϕ(u)− Φnϕ(u)∥ ≤ ϑn(u)

for all u ∈ U0. Moreover, for any u ∈ U0 and every ψ, ς ∈ VU0 , we obtain

∥Φnψ(u)− Φnς(u)∥ =

∥∥∥∥ 1

120
ψ((3 + n)u)− 1

24
ψ((2 + n)u)− 1

120
ψ((n− 2)u)
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+
1

12
ψ((1 + n)u) +

1

24
ψ((n− 1)u)− 1

12
ψ(nu)

− 1

120
ς((3 + n)u) +

1

24
ς((2 + n)u) +

1

120
ς((n− 2)u)

− 1

12
ς((1 + n)u)− 1

24
ς((n− 1)u) +

1

12
ς(nu)

∥∥∥∥
≤ 1

120

∥∥∥∥(ψ − ς)((3 + n)u)

∥∥∥∥+
1

24

∥∥∥∥(ψ − ς)((2 + n)u)

∥∥∥∥
+

1

120

∥∥∥∥(ψ − ς)((n− 2)u)

∥∥∥∥+
1

12

∥∥∥∥(ψ − ς)((1 + n)u)

∥∥∥∥
+

1

24

∥∥∥∥(ψ − ς)((n− 1)u)

∥∥∥∥+
1

12

∥∥∥∥(ψ − ς)(nu)

∥∥∥∥.
This brings us to define the operator Υn : RU0×U0

+ → RU0×U0
+ by

Υnδ(u) :=
1

120
δ((3 + n)u) +

1

24
δ((2 + n)u) +

1

120
δ((n− 2)u)

+
1

12
δ((1 + n)u) +

1

24
δ((n− 1)u) +

1

12
δ(nu)

for all u ∈ U0 and all δ ∈ RU0×U0
+ . For every n ∈ N, the operator previously defined has the

form specified in (1) with ϕ1(u) = (3 + n)u, L1(u) =
1

120 ; ϕ2(u) = (2 + n)u, L2(u) =
1
24 ;

ϕ3(u) = (n−2)u, L3(u) =
1

120 ; ϕ4(u) = (1+n)u, L4(u) =
1
12 ; ϕ5(u) = (n−1)u, L5(u) =

1
24 ;

ϕ6(u) = nu, L6(u) =
1
12 for all u ∈ U0.

By induction, we will prove that for all u ∈ U0, m ∈ N0, and n ∈W , we have

(Υm
n ϑn) (u) ≤

1

120
η1(n)α

m
n τ1(u)τ2(u). (8)

We may deduce the inequality (8) holds for m = 0 from (6) and (7). Following that,
we suppose that (8) is true for m = k, where k ∈ N. Then(
Υk+1

n ϑn

)
(u) = Υn

((
Υk

nϑn

)
(u)

)
=

1

120
(Υn

nϑn) ((3 + n)x) +
1

24
(Υn

nϑn) ((2 + n)u) +
1

120
(Υn

nϑn) ((n− 2)u)

+
1

12
(Υn

nϑn) ((1 + n)u) +
1

24
(Υn

nϑn) ((n− 1)u) +
1

12
(Υn

nϑn) (nu)

≤ 1

120

(
1

120
η1(n)α

k
nτ1((3 + n)u)τ2((3 + n)u)

)
+

1

24

(
1

120
η1(n)α

k
nτ1((2 + n)u)τ2((2 + n)u)

)
+

1

120

(
1

120
η1(n)α

k
nτ1((n− 2)u)τ2((n− 2)u)

)
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+
1

12

(
1

120
η1(n)α

k
nτ1((1 + n)u)τ2((1 + n)u)

)
+

1

24

(
1

120
η1(n)α

k
nτ1((n− 1)u)τ2((n− 1)u)

)
+

1

12

(
1

120
η1(n)α

k
nτ1(nu)τ2(nu)

)
≤ 1

120
η1(n)α

k+1
n τ1(u)τ2(u)

for all u ∈ U0 and all n ∈ W . Thus, for m = k + 1, the inequality (8) holds. Since the
inequality (8) holds for all m ∈ N0, we may obtain this conclusion. Thus we obtain

ϑ∗n(u) =
∞∑

m=0

(Υm
n ϑn) (u)

≤
∑

0≤n≤∞

1

120
η1(n)α

m
n τ1(u)τ2(u)

≤ η1(n)

120(1− αn)
τ1(u)τ2(u) <∞

for all u ∈ U0 and n ∈W . Therefore, according to Theorem 2, we obtain the limit mapping

Hn(u) := lim
m→+∞

(Φm
n ϕ) (u)

exists for each u ∈ U0 and n ∈W , and

∥ϕ(u)−Hn(u)∥ ≤ η1(n)τ1(u)τ2(u)

120(1− αn)
(9)

for all u ∈ U0 and n ∈W .
Now, we will prove that Hn fulfills (2). It is enough to prove the following inequality

∥D(Φm
n ϕ)(u, v)∥ ≤ αm

n τ1(u)τ2(v), (10)

for all u, v ∈ U0 and n ∈ W . Consider k ∈ N and suppose that (10) holds for m = k.
Then, for each u, v ∈ U0 and n ∈W , we get

∥∥∥D(Φk+1
n ϕ)(u, v)

∥∥∥ ≤ 1

120
αk
nτ1((3 + n)u)τ2((3 + n)v) +

1

24
αk
nτ1((2 + n)u)τ2((2 + n)v)

+
1

120
αk
nτ1((n− 2)u)τ2((n− 2)v) +

1

12
αk
nτ1((1 + n)u)τ2((1 + n)v)

+
1

24
αk
nτ1((n− 1)u)τ2((n− 1)v) +

1

12
αk
nτ1((n)u)τ2((n)v)

≤ αk+1
n τ1(u)τ2(v).
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By induction, we need to prove that (10) holds for all u, v ∈ U0, m ∈ N0, and n ∈ W .
Taking the limit m→ ∞ in (10), we get

Hn(u+ 3v)− 5Hn(u+ 2v)−Hn(u− 2v) + 10Hn(u+ v)

+5Hn(u− v)− 10Hn(u)− 120Hn(v) = 0

for all u, v ∈ U0 such that 3v+u ̸= 0, 2v+u ̸= 0, u−2v ̸= 0, u−v ̸= 0, v+u ̸= 0, m ∈ N0,
and n ∈W . This implies that we can be defined H : U → V which fulfills

H(u) :=
1

120
H((n+ 3)u)− 1

120
H((n− 2)u)− 1

24
H((n+ 2)u)

+
1

12
H((n+ 1)u)− 1

12
H(nu) +

1

24
H((n− 1)u), (11)

for all u ∈ U0 and all n ∈W .
Next, we need to show that each quintic mapping H : U → V fulfills the inequality

∥ϕ(u)−H(u)∥ ≤ Lτ1(u)τ2(u) (12)

for all u ∈ U0, with 0 < L, is equal to Hn for every n ∈ W . As a result, we set n0 ∈ W
and H : U → V fulfilling (12). From (9), for every u ∈ U0, we have

∥H(u)−Hn0(u)∥ ≤ ∥H(u)− ϕ(u)∥+ ∥ϕ(u)−Hn0(u)∥
≤ Lτ1(u)τ2(u) + ϑ∗n0

(u)

≤ L0τ1(u)τ2(u)

∞∑
m=0

αm
n0
, (13)

where L0 := (1−αn0)L+
1

120η1(n0) > 0 and we exclude the case that τ1(u) ≡ 0 or τ2(u) ≡ 0
which is trivial. From the observation, the functions H and Hn0 are the solutions to the
functional equation (11) for every n ∈W .

Next, we prove that, for every j ∈ N0, we obtain

∥H(u)−Hn0(u)∥ ≤ L0τ1(u)τ2(u)

∞∑
m=j

α∞
n0

(14)

for all u ∈ U0. The inequality (13) is valid for the case j = 0. The next step is to correct
k ∈ N and suppose that (14) is true for j = k. In the sense of (13), for every u ∈ U0, we
obtain

∥H(u)−Hn0(u)∥ ≤ 1

120
L0τ1((3 + n0)u)τ2((3 + n0)u))

∞∑
m=k

αm
n0

+
1

24
L0τ1((2 + n0)u)τ2((2 + n0)u))

∞∑
m=k

αm
n0
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+
1

120
L0τ1((−2 + n0)u)τ2((−2 + n0)u))

∞∑
m=k

αm
n0

+
1

12
L0τ1((1 + n0)u)τ2((1 + n0)u))

∞∑
m=k

αm
n0

+
1

24
L0τ1((−1 + n0)u)τ2((−1 + n0)u))

∞∑
m=k

αm
n0

+
1

12
L0τ1((n0)u)τ2((n0)u))

∞∑
m=k

αm
n0

≤ L0αn0τ1(u)τ2(u)
∞∑

m=k

αm
n0

≤ L0τ1(u)τ2(u)
∞∑

m=k+1

αm
n0
.

Thus the condition (14) is valid for j = 1+ k. As a result, we may say that the inequality
(14) is true for all j ∈ N0. Taking the limit j → ∞ in inequality (14), we obtain

H = Hn0 . (15)

Also, in view of (9), we have

∥ϕ(u)−Hn0(u)∥ ≤ η1(n)τ1(u)τ2(u)

120(1− αn)
,

for all u ∈ U0 and all n ∈W . This implies the condition (3) with H = Hn0 and (15) shows
the uniqueness of H.

Theorem 4. Let τ : U0 × U0 → R+ be a function such that

W := {m ∈ N : αm < 1} = ∅,

where

αm :=
1

120
η(3 +m) +

1

24
η(2 +m) +

1

120
η(−2 +m)

+
1

12
η(1 +m) +

1

24
η(−1 +m) +

1

12
η(m)

and

η(m) := inf {l ∈ R+ : τ(mu) ≤ lτ(u), u ∈ U0} , (16)

for every m ∈ N. Assume that ϕ : U → V fulfills

∥Dϕ(u, v)∥ ≤ τ(u) + τ(v) (17)
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for all u, v ∈ U0, such that 3v + u ̸= 0, 2v + u ̸= 0, u− 2v ̸= 0, u− v ̸= 0 and v + u ̸= 0.
Then there is only one quintic mapping H : U → V satisfying

∥H(u)− ϕ(u)∥ ≤ η0τ(u), (18)

for all u ∈ U0, where

η0 := inf
m∈W

{
1 + η(m)

120(1− αm)

}
.

Proof. Replacing (u, v) by (nu, u) in (17), we have∥∥∥∥ 1

120
ϕ((3 + n)u)− 1

24
ϕ((2 + n)u)− 1

120
ϕ((−2 + n)u) +

1

12
ϕ((1 + n)u)

+
1

24
ϕ((−1 + n)u)− 1

12
ϕ(nu)− ϕ(u)

∥∥∥∥ ≤ 1

120
(τ1(nu) + τ2(u)) (19)

for all u ∈ U0 and all n ∈ N. For any n ∈ N, we define the operator Φn : VU0 → VU0 by

Φnψ(u) :=
1

120
ψ((n+ 3)u)− 1

24
ψ((n+ 2)u)− 1

120
ψ((n− 2)u)

+
1

12
ψ((n+ 1)u) +

1

24
ψ((n− 1)u)− 1

12
ψ(nu)

for all ψ ∈ VU0 and all u ∈ U0. Moreover, put

ϑn(u) :=
1

120
(τ(nu) + τ(u)) , (20)

for all u ∈ U0, and observe that

ϑn(u) =
1

120
(τ(nu) + τ(u)) ≤ 1

120
(η(n) + 1) τ(u) (21)

for all u ∈ U0 and all n ∈ N. The inequality (19), then has the following form

∥ϕ(u)− Φnϕ(u)∥ ≤ ϑn(u)

for all u ∈ U0. Moreover, for any u ∈ U0 and every ψ, ς ∈ VU0 , we obtain

∥Φnψ(u)− Φnς(u)∥ ≤ 1

120

∥∥∥∥(ψ − ς)((n+ 3)u)

∥∥∥∥+
1

24

∥∥∥∥(ψ − ς)((n+ 2)u)

∥∥∥∥
+

1

120

∥∥∥∥(ψ − ς)((n− 2)u)

∥∥∥∥+
1

12

∥∥∥∥(ψ − ς)((n+ 1)u)

∥∥∥∥
+

1

24

∥∥∥∥(ψ − ς)((n− 1)u)

∥∥∥∥+
1

12

∥∥∥∥(ψ − ς)(nu)

∥∥∥∥.
This brings us to define the operator Υn : RU0×U0

+ → RU0×U0
+ by

Υnδ(u) :=
1

120
δ((n+ 3)u) +

1

24
δ((n+ 2)u) +

1

120
δ((n− 2)u)
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+
1

12
δ((n+ 1)u) +

1

24
δ((n− 1)u) +

1

12
δ(nu)

for all u ∈ U0 and all δ ∈ RU0×U0
+ . For every n ∈ N, the form of the operator previously

specified is given in (1) with

ϕ1(u) = (n+ 3)u, L1(u) =
1

120
,

ϕ2(u) = (n+ 2)u, L2(u) =
1

24
,

ϕ3(u) = (n− 2)u, L3(u) =
1

120
,

ϕ4(u) = (n+ 1)u, L4(u) =
1

12
,

ϕ5(u) = (n− 1)u, L5(u) =
1

24
,

ϕ6(u) = nu, L6(u) =
1

12

for all u ∈ U0. By induction, we will verify that for every u ∈ U0, m ∈ N0, and n ∈W , we
have

(Υm
n ϑn) (u) ≤

1

120
(η(n) + 1)αm

n τ(u). (22)

The condition (22) for m = 0 is derived from (20) and (21).
Suppose that (22) holds for m = k. Then(

Υk+1
n ϑn

)
(u) = Υn

((
Υk

nϑn

)
(u)

)
=

1

120
(Υn

nϑn) ((n+ 3)x) +
1

24
(Υn

nϑn) ((n+ 2)u) +
1

120
(Υn

nϑn) ((n− 2)u)

+
1

12
(Υn

nϑn) ((n+ 1)u) +
1

24
(Υn

nϑn) ((n− 1)u) +
1

12
(Υn

nϑn) (nu)

≤ 1

120
(η(n) + 1)αk+1

n τ(u),

for all u ∈ U0 and every n ∈W . Therefore, for m = k+1, the inequality (22) holds. As a
result, we may say that the inequality (22) holds for all m ∈ N0. Thus we have

ϑ∗n(u) =

∞∑
m=0

(Υm
n ϑn) (u)

≤
∞∑
n=0

1

120
(η(n) + 1)αm

n τ(u)

≤ (η(n) + 1)

120(1− αn)
τ(u) <∞
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for all u ∈ U0 and n ∈W . Therefore, according to Theorem 2, we obtain the limit function

Hn(u) := lim
m→+∞

(Φm
n ϕ) (u)

exists for every u ∈ U0 and every n ∈W , and

∥ϕ(u)−Hn(u)∥ ≤ (η(n) + 1)τ(u)

120(1− αn)
(23)

for all u ∈ U0 and n ∈W . Now, we want to prove that Hn fulfills (2), it is enough to show
the following inequality

∥D(Φm
n ϕ)(u, v)∥ ≤ αm

n (τ(u) + τ(v)) (24)

for all u, v ∈ U0, m ∈ N0, and n ∈ W . Since the condition (17) is all that is required in
the situation m = 0, assume that k ∈ N and suppose that (24) holds for every m = k and
u, v ∈ U0 and n ∈W . Then, for each u, v ∈ U0 and n ∈W , we have∥∥∥D(Φk+1

n ϕ)(u, v)
∥∥∥ ≤ αk+1

n (τ(u) + τ2(v)) .

By induction, we need to prove that (24) holds for every u, v ∈ U0, m ∈ N0, and n ∈ W .
Taking the limit m→ ∞ in (24), we obtain

DHn(u, v) = 0

for all u, v ∈ U0, m ∈ N0, and n ∈W . This implies that the mapping H : U → V satisfies

H(u) :=
1

120
H((n+ 3)u)− 1

24
H((n+ 2)u)− 1

120
H((n− 2)u)

+
1

12
H((n+ 1)u) +

1

24
H((n− 1)u)− 1

12
H(nu) (25)

for all u ∈ U0 and all n ∈W .
Next, we need to show that each quintic mapping H : U → V fulfills the inequality

∥ϕ(u)−H(u)∥ ≤ Lτ(u) (26)

for all u ∈ U0, with some 0 < L, is equal to Hn for every n ∈ W . As a result, we fix
n0 ∈W and H : U → V fulfills (26). From (16), for every u ∈ U0, we get

∥H(u)−Hn0(u)∥ ≤ ∥H(u)− ϕ(u)∥+ ∥ϕ(u)−Hn0(u)∥
≤ Lτ(u) + ϑ∗n0

(u)

≤ L0τ(u)

∞∑
m=0

αm
n0
, (27)
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where L0 := (1 − αn0)L + 1
120η(n0) > 0 and we exclude the case that τ(u) ≡ 0 which is

trivial. From the observation, the functions H and Hn0 are the solutions to the equations
(25) for every n ∈W . Next, we prove that, for every j ∈ N0, we obtain

∥H(u)−Hn0(u)∥ ≤ L0τ(u)
∞∑

m=j

α∞
n0
, (28)

for all u ∈ U0. The inequality (27) is valid for the case j = 0.
Next, we set k ∈ N and assume (28) is true for j = k. In view of (27), for every u ∈ U0,

we have

∥H(u)−Hn0(u)∥ ≤ 1

120
L0τ((n0 + 3)u)

∞∑
m=k

αm
n0

+
1

24
L0τ((n0 + 2)u)

∞∑
m=k

αm
n0

+
1

120
L0τ((n0 − 2)u)

∞∑
m=k

αm
n0

+
1

12
L0τ((n0 + 1)u)

∞∑
m=k

αm
n0

+
1

24
L0τ((n0 − 1)u)

∞∑
m=k

αm
n0

+
1

12
L0τ((n0)u)

∞∑
m=k

αm
n0

≤ L0αn0τ(u)(u)
∞∑

m=k

αm
n0
.

Thus

∥H(u)−Hn0(u)∥ ≤ L0τ(u)

∞∑
m=k+1

αm
n0
.

So the condition (28) is valid for j = k + 1. Hence we may infer that for any j ∈ N0, the
inequality (28) holds. Taking the limit j → ∞ in (28), we obtain

H = Hn0 . (29)

Also, in view of (23), we have

∥ϕ(u)−Hn0(u)∥ ≤ (η(n) + 1)τ(u)

120(1− αn)

for all u ∈ U0 and all n ∈ W . This implies the condition (18) with H = Hn0 and (29)
confirms the uniqueness of H.

3. Hyperstability

The φ-hyperstability of (2) in Banach spaces is the subject of the following theorem.
In particular, we take into account functions ϕ : U → V fulfilling (2), i.e.,

∥Dϕ(u, v)∥ ≤ φ(u, v)
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for all u, v ∈ U0 such that u+ 3v ̸= 0, u+ 2v ̸= 0, u− 2v ̸= 0, u− v ̸= 0, u+ v ̸= 0 with a
given mapping φ : U0 × U0 → R+.

Next, we find a unique quintic mapping H : U → V which is near to ϕ. After that,
assuming some further φ assumptions, we demonstrate that the conditional functional
equation (2) belongs to the family of functions ϕ : U → V and is φ-hyperstable.

Theorem 5. Let τ1, τ2, αm and W be as in Theorem 3. Assume that
limm→+∞ η1(m) = 0,

limm→+∞ η1(m)η2(m) = 0,

limm→+∞ η1(m− 2)η2(m− 2) = 0.

Then every mapping ϕ : U → V fulfilling (3) is a solution of (2) on U0.

Proof. Suppose that ϕ : U → V fulfills (3). By Theorem 3, there is a mapping
H : U → V fulfilling (2) and

∥ϕ(u)−H(u)∥ ≤ η0τ1(u)τ2(u)

for all u ∈ U0, where

η0 := inf
m∈W

{
η1(m)

120(1− αm)

}
.

So, in view of (5), η0 = 0. This means that ϕ(u) = H(u) for all u ∈ U0. So

Dϕ(u, v) = 0

for all u, v ∈ U0 such that u+ 3v ̸= 0, u+ 2v ̸= 0, u− 2v ̸= 0, u− v ̸= 0, u+ v ̸= 0 which
gives that ϕ fulfills (2) on U0.

Corollary 1. Let ϵ ≥ 0, c1, c2 ∈ R with c1 + c2 < 0. Assume that a mapping ϕ : U → V
fulfills ϕ(0) = 0 and

∥Dϕ(u, v)∥ ≤ ϵ∥u∥c1∥v∥c2 (30)

for all u, v ∈ U0 such that u+3v ̸= 0, u+2v ̸= 0, u− 2v ̸= 0, u− v ̸= 0, u+ v ̸= 0. Then
ϕ is quintic on U0.

Proof. Theorem 3 is supported by the proof, which defines

τ1, τ2 : U0 × U0 → R+ by τ1(u) = ϵ1∥u∥c1 , τ2(v) = ϵ2∥v∥c2

and τ1(0) = τ2(0) = 0 with ϵ1, ϵ2 ∈ R+ and c1, c2 ∈ R such that ϵ1ϵ2 = ϵ and c1 + c2 < 0.
For each m ∈ N, we obtain

η1(m) = inf{l ∈ R+ : τ1(mx) ≤ τ1(u), u ∈ U0}
= inf{l ∈ R+ : ϵ1∥mu∥c1 ≤ lϵ1∥u∥c1 , u ∈ U0}
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= mc1 .

Similarly, we obtain η2(m) = mc2 for all m ∈ N.
Now, we can find m0 ∈ N such that

αm =
1

120
(m+ 3)c1+c2 +

1

24
(m+ 2)c1+c2 +

1

120
(m− 2)c1+c2

+
1

12
(m+ 1)c1+c2 +

1

24
(m− 1)c1+c2 +

1

12
(m)c1+c2 < 1

for all m ≥ m0. According to Theorem 3, there is only one quintic mapping H : U → V
satisfying

∥ϕ(u)−H(u)∥ ≤ ϵη0τ1(u)τ2(u)

for all m ∈ U0. Since c1 + c2 < 0, one of c1 and c2 must be negative. Assume that c2 < 0.
Then 

limm→+∞ η1(m) = limm→+∞mc1 = 0,

limm→+∞ η1(m)η2(m) = limm→+∞mc1+c2 = 0,

limm→+∞ η1(m− 2)η2(m− 2) = limm→+∞(m− 2)c1+c2 = 0.

The expected outcomes are thus obtained by Theorem 5.

Example 1. Let U be a normed space and V be a Banach space. Let ϕ : U → V be a
mapping such that Dϕ(u0, v0) ̸= 0 for some u0, v0 ∈ U and

∥Dϕ(u, v)∥ ≤ c∥u∥c1∥v∥c2

for all u, v ∈ U0 such that u + 3v ̸= 0, u + 2v ̸= 0, u − 2v ̸= 0, u − v ̸= 0, u + v ̸= 0,
where ϵ > 0 and c1, c2 ∈ R. Assume that the numbers c1, c2 satisfy c1 + c2 < 0. Then the
functional equation

ϕ(u+ 3v)− 5ϕ(u+ 2v)− ϕ(u− 2v) + 10ϕ(u+ v) + 5ϕ(u− v)− 10ϕ(u)− 120ϕ(v)

= 0, ∀u, v ∈ U0, (31)

has no solution in the class of functions ϕ : U → V.

Proof. Suppose that ϕ : U → V is a solution of (31). Then (30) holds, and consequently,
according to Corollary 1, ϕ is a quintic mapping on U0, which means that Dϕ(u0, v0) = 0.
This is a contradiction.

Corollary 2. Let ϵ ≥ 0, c ∈ R with c < 0. If a mapping ϕ : U → V fulfills ϕ(0) = 0 and

∥Dϕ(u, v)∥ ≤ ϵ (∥u∥c + ∥v∥c) (32)

for all u, v ∈ U0 such that u+3v ̸= 0, u+2v ̸= 0, u− 2v ̸= 0, u− v ̸= 0, u+ v ̸= 0. Then
ϕ is quintic on U0.
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Example 2. Let U0 be a normed space and V be a Banach space. Let ϕ : U0 → V be a
mapping such that Dϕ(u0, v0) ̸= 0 for some u0, v0 ∈ U0 and

∥Dϕ(u, v)∥ ≤ c∥u∥c∥v∥c

for all u, v ∈ U0 such that u+3v ̸= 0, u+2v ̸= 0, u− 2v ̸= 0, u− v ̸= 0, u+ v ̸= 0, where
ϵ > 0 and c ∈ R. Assume that the number c satisfies c < 0. Then the functional equation

ϕ(u+ 3v)− 5ϕ(u+ 2v)− ϕ(u− 2v) + 10ϕ(u+ v) + 5ϕ(u− v)− 10ϕ(u)− 120ϕ(v)

= 0, ∀u, v ∈ U0, (33)

has no solution in the class of functions ϕ : U → V.

Proof. Suppose that ϕ : U → V is a solution of (33). Then (32) holds, and consequently,
according to Corollary 2, ϕ is a quintic mapping on U0, which means that Dϕ(u0, v0) = 0.
This is a contradiction.

The findings of hyperstability for inhomogeneous quintic functional equations are
demonstrated by the following corollary.

Corollary 3. Let ϵ, c1, c2 ∈ R with ϵ ≥ 0 and c1 + c2 < 0. Assume that mappings
G : U2 → V and ϕ : U → V fulfill ϕ(0) = 0 and

∥Dϕ(u, v)−G(u, v)∥ ≤ ϵ∥u∥c1∥v∥c2 (34)

for all u, v ∈ U0 such that u + 3v ̸= 0, u + 2v ̸= 0, u − 2v ̸= 0, u − v ̸= 0, u + v ̸= 0. If
the functional equation

Dϕ(u, v) = G(u, v)

for all u, v ∈ U0, has a solution ϕ0 : U → V on U0, then ϕ satisfies (34) on U0.

Proof. From (34), we obtain the mapping f : U → V defined by f := ϕ − ϕ0 fulfills
(32).

The equation (2) on U0 is therefore implied by Corollary 1, which states that f is a
solution. Thus

Dϕ(u, v)−G(u, v) = D(f + ϕ0)(u, v)−G(u, v)

= 0

for all u, v ∈ U0 such that u+ 3v ̸= 0, u+ 2v ̸= 0, u− 2v ̸= 0, u− v ̸= 0, u+ v ̸= 0, which
means that ϕ is a solution to (3) on U0.

4. Conclusion

We proved the hyperstability of the quintic functional equation ϕ(u + 3v) − 5ϕ(u +
2v) − ϕ(u − 2v) + 10ϕ(u + v) + 5ϕ(u − v) − 10ϕ(u) − 120ϕ(v) = 0, in Banach spaces by
means of Brzdȩk’s fixed point theorem.
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