EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

2025, Vol. 18, Issue 1, Article Number 5758 ISSN 1307-5543 – ejpam.com Published by New York Business Global

Ulam Stability of a Pexiderized Additive-quadratic Equation

Mehdi Dehghanian^{1,*}, Yamin Sayyari¹, Siriluk Donganont^{2,*}, Choonkil Park³

¹ Department of Mathematics, Sirjan University of Technology, Sirjan, Iran

² School of Science, University of Phayao, Phayao 56000, Thailand

³ Department of Mathematics, Research Institute for Convergence of Basic Science,

Hanyang University, Seoul 04763, Korea

Abstract. Suppose that E is a normed space. In this work, using Brzdęk fixed point theorem, we prove the Hyers-Ulam stability of the Pexiderized additive-quadratic functional equation

f(x+y) + f(x-y) + h(x+y) = 2f(x) + 2f(y) + h(x) + h(y)

for all $x, y \in E$.

2020 Mathematics Subject Classifications: 39B72, 39B82, 47H10

Key Words and Phrases: Pexiderized additive-quadratic functional equation, Hyers-Ulam stability, fixed point

1. Introduction and preliminariess

The concept of stability of functional equations originated from a problem of Ulam [33]. In continue, Hyers gave a positive answer to the question of Ulam in the context of Banach spaces in the case of additive mappings, that was the first notable advance and a step toward more solutions in this field. Also, he answered the question of Ulam for the case of approximate additive mappings under the assumption that G_1 and G_2 are Banach spaces (see [19]).

The method provided by Hyers [19] which produces the additive function will be called a direct method. This method is the most important and powerful tool to concerning the stability of system of different functional equations [31]. That is, the exact solution of the functional equation is explicitly constructed as a limit of a sequence, starting from the

Email addresses: mdehghanian@sirjantech.ac.ir (M. Dehghanian), y.sayyari@sirjantech.ac.ir (Y. Sayyari),

1

https://www.ejpam.com

Copyright: (c) 2025 The Author(s). (CC BY-NC 4.0)

^{*}Corresponding author.

^{*}Corresponding author.

DOI: https://doi.org/10.29020/nybg.ejpam.v18i1.5758

siriluk.pa@up.ac.th (S. Donganont), baak@hanyang.ac.kr (C. Park)

given approximate solution (see [14, 23, 32]). The other method is fixed point method, that is, the exact solution of the functional equation is explicitly constructed as a fixed point of some certain map [4, 11–13, 27].

Recently, a number of results concerning the stability have been obtained by different ways and been applied to a number of functional equations, functional inequalities and mappings (see [6, 7, 22, 29, 30]). Also, many mathematicians studied the stabilities additive-quadratic equation and the Drygas' equation (see [12, 18, 21]).

A mapping $f: E \to B$ is said to be additive if it satisfies

$$f(x+y) = f(x) + f(y)$$

for all $x, y \in E$. A mapping $f : E \to B$ is called quadratic if f satisfies the functional equation

$$f(x+y) + f(x-y) = 2f(x) + 2f(y)$$

for all $x, y \in E$.

In [1], Aczél and Dhombres showed that if E is a linear space over a field F of characteristic 0, then $q: E \to F$ is a solution of the quadratci functional equation if and only if there is a unique symmetric biadditive mapping $L: E^2 \to F$ such that q(x) = L(x, x) for all $x \in E$.

Various Pexiderized versions of the quadratic functional equation have been studied in [5, 20]. Various works on stability of the quadratic functional equation can be found in [9, 16, 28].

In 2011, Brzdęk et al. [8] gave a simple fixed point theorem. Before stating Brzdęk fixed point theorem, let us introduce some hypothesis, which we will use in the sequel. (A1) E is a nonempty set and B is a Banach space.

(A2) $\delta_1, \ldots, \delta_k : E \to E$ and $\lambda_1, \ldots, \lambda_k : E \to \mathbb{R}_+$ are given maps.

(A3) $\mathcal{H}: B^E \to B^E$ is an operator satisfying the inequality

$$\left\|\mathcal{H}g(x) - \mathcal{H}l(x)\right\| \le \sum_{i=1}^{k} \lambda_i(x) \left\|g\left(\delta_i(x)\right) - l\left(\delta_i(x)\right)\right\|$$

for all $g, h : E \to B$ and $x \in E$. (A4) $\Lambda : \mathbb{R}^E_+ \to \mathbb{R}^E_+$ is a linear operator defined by

$$\Lambda \mathcal{F}(x) := \sum_{i=1}^{k} \lambda_i(x) \mathcal{F}\left(\delta_i(x)\right)$$

for $\mathcal{F}: E \to \mathbb{R}_+$ and $x \in E$.

Theorem 1. [8] Suppose that the hypotheses (A1)–(A4) are satisfied. Assume that there are functions $\mu: E \to \mathbb{R}_+$ and $\varphi: E \to B$ such that, for all $x \in E$,

$$\left\|\mathcal{H}\varphi(x) - \varphi(x)\right\| \le \mu(x)$$

M. Dehghanian et al. / Eur. J. Pure Appl. Math, ${\bf 18}~(1)~(2025),\,5758$ and

$$\mu^*(x) := \sum_{n=0}^{\infty} \Lambda^n \mu(x) < \infty$$

hold. Then, for all $x \in E$ the limit

$$T(x) := \lim_{n \to \infty} \mathcal{H}^n \varphi(x)$$

exists and the mapping $T: E \to B$ is a unique fixed point of \mathcal{H} with

$$\|\varphi(x) - T(x)\| \le \mu^*(x)$$

for all $x \in E$.

Theorem 2. [2] Let $f, h: E \to B$ be mappings satisfying

$$||f(x+y) + f(x-y) + h(x+y) - 2f(x) - 2f(y) - h(x) - h(y)|| \le \epsilon$$

for some $\epsilon > 0$ and for all $x, y \in E$. Then there exist an additive mapping $A : E \to B$ and a unique quadratic mapping $Q : E \to B$ such that

$$\|h(x) - h(0) - A(x)\| \le 13\epsilon, \|f(x) - f(0) - Q(x)\| \le 24\epsilon$$

for all $x \in E$.

Motivated by the above results on the Hyers-Ulam stability of additive functional equations, quadratic functional equations, cubic functional equations and quartic functional equations, in the current work, we try to examine the Hyers-Ulam stability of the following Pexiderized additive-quadratic functional equation

$$\phi(u+3v) - 5\phi(u+2v) - \phi(u-2v) + 10\phi(u+v) + 5\phi(u-v) - 10\phi(u) - 120\phi(v) = 0, (1)$$

in Banach spaces by means of Brzdęk's fixed point approach.

A concept employed by Brzdęk, a lot of articles on hyperstability have been written on this topic and we refer to [24, 25].

Throughout the paper \mathbb{N}_0 denotes the set of all non-negative integers.

2. Some auxiliary results

In this section, we establish lemmas for the proof of Hyers-Ulam stability of the functional equation (1).

The next theorem is an example of a very classical result in Hyers-Ulam stability.

3 of 13

Theorem 3. [17] Let $h: E \to B$ be a mapping satisfying

$$||h(x+y) - h(x) - h(y)|| \le \eta(||x||^p + ||y||^p)$$

for some $\eta \ge 0, p > 0, p \ne 1$ and for all $x, y \in E$. Then there is a unique additive mapping $A: E \rightarrow B$ such that

$$\|h(x) - A(x)\| \le \frac{2\eta}{|2^p - 2|} \|x\|^p \tag{2}$$

for all $x \in E$.

Researchers obtained new results on Ulam stability of some functional equations using the Banach limit (see [3, 15]).

In the continue, we need the following lemma, whose proof is similar to the proof of Theorem 3, and so we will omit it.

Lemma 1. Let $h: E \to B$ be a mapping satisfying

$$||h(x+y) - h(x) - h(y)|| \le \eta (||x||^p + ||y||^p) + \theta ||x-y||^p$$

for some $\eta, \theta \ge 0, p > 0, p \ne 1$ and for all $x, y \in E$. Then there is a unique additive mapping $A: E \rightarrow B$ satisfying (2).

Lemma 2. Let $f: E \to B$ be a mapping satisfying

$$\|f(x+y) + f(x-y) - 2f(x) - 2f(y)\| \le \eta(\|x\|^p + \|y\|^p) + \theta\|x-y\|^p$$
(3)

for some $\eta, \theta \ge 0, p > 0, p \ne 2$ and for all $x, y \in E$. Then there exists a unique quadratic mapping $Q: E \rightarrow B$ such that

$$||f(x) - Q(x)|| \le \frac{2\eta}{|2^p - 4|} ||x||^p$$

for all $x \in E$.

Proof. Putting x = y = 0 in (3), we obtain f(0) = 0. Setting y = x in (3) and dividing by 4, we obtain

$$\|f(x) - \frac{1}{4}f(2x)\| \le \frac{\eta}{2} \|x\|^p \tag{4}$$

for all $x \in E$.

Let $\mathcal{H}: B^E \to B^E$ and $\mu: E \to \mathbb{R}_+$ be defined by

$$\mathcal{H}g(x) = \frac{1}{4}g(2x), \qquad g \in B^E$$

and

$$\mu(x) = \frac{\eta}{2} \|x\|^p$$

for all $x \in E$. Then

$$\left\|\mathcal{H}f(x) - f(x)\right\| \le \mu(x)$$

for all $x \in E$. Hence

$$\|\mathcal{H}g(x) - \mathcal{H}l(x)\| \le \frac{1}{4} \|g(2x) - l(2x)\|$$

For all $g, h \in B^E$ and $x \in E$, $\mathcal{H} : B^E \to B^E$ satisfies the condition (A3) with $\lambda_1(x) = \frac{1}{4}$ and $\delta_1(x) = 2x$. By (A4), the operator $\Lambda : \mathbb{R}^E_+ \to \mathbb{R}^E_+$ is defined by:

$$\Lambda \mathcal{F}(x) = \frac{1}{4} \mathcal{F}(2x), \qquad \mathcal{F} \in \mathbb{R}^E_+$$

for all $x \in E$. Hence

$$\Lambda \mu(x) = \frac{1}{4}\mu(2x) = 2^{p-2}\mu(x), \qquad \mu \in \mathbb{R}^E_+$$

for all $x \in E$. Since Λ is linear,

$$\Lambda^n \mu(x) = 2^{n(p-2)} \mu(x), \qquad n \in \mathbb{N}_0$$

for all $x \in E$.

If p < 2, then the series $\sum_{n=0}^{\infty} \Lambda^n \eta(x)$ is convergent for all $x \in E$ and

$$\mu^*(x) = \sum_{n=0}^{\infty} \Lambda^n \mu(x) = \sum_{n=0}^{\infty} 2^{n(p-2)} \mu(x) = \frac{2\eta}{4-2^p} \|x\|^p$$

for all $x \in E$. By Theorem 1, there exists a mapping $Q: E \to B$ such

$$Q(x) = \lim_{n \to \infty} \mathcal{H}^n f(x), \qquad Q(x) = \frac{1}{4}Q(2x)$$

and

$$||f(x) - Q(x)|| \le \frac{2\eta}{4 - 2^p} ||x||^p$$

for all $x \in E$.

Next, by induction on n, one can see that

$$\begin{aligned} & \|\mathcal{H}^{n}f(x+y) + \mathcal{H}^{n}f(x-y) - 2\mathcal{H}^{n}f(x) - 2\mathcal{H}^{n}f(y)\| \\ & \leq 2^{n(p-2)} \left[\eta \left(\|x\|^{p} + \|y\|^{p} \right) + \theta \|x-y\|^{p} \right] \end{aligned}$$

for all $x, y \in E$ and $n \in \mathbb{N}_0$. By letting $n \to \infty$ we conclude that Q is a quadratic mapping. Now, we consider the case p > 2. Replacing x and y by $\frac{x}{2}$ in (3), we have

$$\left\|f(x) - 4f\left(\frac{x}{2}\right)\right\| \le \frac{2\eta}{2^p} \|x\|^p$$

M. Dehghanian et al. / Eur. J. Pure Appl. Math, 18 (1) (2025), 5758 for all $x \in E$. Consider

$$\mathcal{H}g(x) = 4g\left(\frac{x}{2}\right), \qquad g \in B^E,$$
$$\Lambda \mathcal{F}(x) = 4\mathcal{F}\left(\frac{x}{2}\right), \qquad \mathcal{F} \in \mathbb{R}_+^E$$

and $\mu(x) = \frac{2\eta}{2^p} ||x||^p$ for all $x \in E$. Also,

$$\Lambda \mu(x) = 2^{2-p} \mu(x)$$

for all $x \in E$. Since p > 2, the serie $\sum_{n=0}^{\infty} \Lambda^n \mu(x)$ is convergent for all $x \in E$ and

$$\mu^*(x) = \sum_{n=0}^{\infty} \Lambda^n \mu(x) = \frac{2\eta}{2^p - 4} \|x\|^p$$

for all $x \in E$. So, by Theorem 1 there is $Q: E \to B$ such that

$$Q(x) = \lim_{n \to \infty} \mathcal{H}^n f(x), \qquad Q(x) = 4Q\left(\frac{x}{2}\right)$$

and

$$||f(x) - Q(x)|| \le \frac{2\eta}{2^p - 4} ||x||^p$$

for all $x \in E$. It follows from (3) and by induction $n \in \mathbb{N}_0$ that

$$\begin{aligned} & \|\mathcal{H}^{n}f(x+y) + \mathcal{H}^{n}f(x-y) - 2\mathcal{H}^{n}f(x) - 2\mathcal{H}^{n}f(y)\| \\ & \leq 2^{n(2-p)} \left[\eta \left(\|x\|^{p} + \|y\|^{p} \right) + \theta \|x-y\|^{p} \right] \end{aligned}$$

for all $x, y \in E$. Therefore, Q satisfies the quadratic functional equation.

To prove the uniqueness of Q for the case p < 2, assume that $Q_1, Q_2 : E \to B$ satisfy the quadratic functional equation on E and

$$||f(x) - Q_1(x)|| \le \eta_1 ||x||^p, \qquad ||f(x) - Q_2(x)|| \le \eta_2 ||x||^p$$

for some $\eta_1, \eta_2 \ge 0$ and for all $x \in E$. Then

$$||Q_1(x) - Q_2(x)|| \le (\eta_1 + \eta_2) ||x||^p$$

for all $x \in E$. Hence

$$Q_1(x) = \frac{1}{4}Q_1(2x), \qquad Q_2(x) = \frac{1}{4}Q_2(2x)$$

for all $x \in E$. Thus

$$||Q_1(x) - Q_2(x)|| \le \frac{1}{4} ||Q_1(2x) - Q_2(2x)|| \le \frac{2^p}{4} (\eta_1 + \eta_2) ||x||^p$$

for all $x \in E$. By induction on $n \in \mathbb{N}_0$ we see that

$$||Q_1(x) - Q_2(x)|| \le \left(\frac{2^p}{4}\right)^n (\eta_1 + \eta_2) ||x||^p$$

which tends to 0 as $n \to \infty$ for all $x \in E$. This implies

$$Q_1(x) = Q_2(x)$$

for all $x \in E$. The proofs of the cases p > 2 runs as before.

3. Main results

In this section, we investigate the Hyers-Ulam stability of the Pexiderized additivequadratic functional equation (1) in Banach spaces.

Theorem 4. Let $f, h : E \to B$ be mappings satisfying

$$\|f(x+y) + f(x-y) + h(x+y) - 2f(x) - 2f(y) - h(x) - h(y)\| \le \epsilon \left(\|x\|^p + \|y\|^p\right)$$
(5)

for some $\epsilon \ge 0, p > 0, p \ne 1, 2$ and for all $x, y \in E$. Then there exist an additive mapping $A: E \rightarrow B$ and a unique quadratic mapping $Q: E \rightarrow B$ such that

$$\|h(x) - h(0) - A(x)\| \le \frac{8 + 2^{4-p}}{|2^p - 2|} \epsilon \|x\|^p,$$

$$\|f(x) - f(0) - Q(x)\| \le \frac{10 + 2^{4-p}}{|2^p - 4|} \epsilon \|x\|^p$$

for all $x \in E$.

Proof. Interchanging x with y in (5), we obtain

$$\|f(x+y) + f(y-x) + h(x+y) - 2f(x) - 2f(y) - h(x) - h(y)\| \le \epsilon \left(\|x\|^p + \|y\|^p\right)$$
(6)

for all $x, y \in E$. From (5) and (6) it follows that

$$||f(x-y) - f(y-x)|| \le 2\epsilon \left(||x||^p + ||y||^p\right)$$

for all $x, y \in E$. Putting y = 0 in the above inequality, we get

$$||f(x) - f(-x)|| \le 2\epsilon ||x||^p$$
(7)

for all $x \in E$.

Substituting x and then -x in the place of y in (5), we have

$$||f(2x) + f(0) + h(2x) - 4f(x) - 2h(x)|| \le 2\epsilon ||x||^p,$$
(8)

$$\|f(0) + f(2x) + h(0) - 2f(x) - 2f(-x) - h(x) - h(-x)\| \le 2\epsilon \|x\|^p \tag{9}$$

7 of 13

for all $x \in E$. From (7), (8) and (9), we obtain

$$\begin{aligned} \|h(2x) - h(x) + h(-x) - h(0)\| & (10) \\ \leq \|f(2x) + f(0) + h(2x) - 4f(x) - 2h(x)\| \\ &+ \|f(0) + f(2x) + h(0) - 2f(x) - 2f(-x) - h(x) - h(-x)\| + 2\|f(x) - f(-x)\| \\ \leq 2\epsilon \|x\|^p + 2\epsilon \|x\|^p + 4\epsilon \|x\|^p = 8\epsilon \|x\|^p \end{aligned}$$

for all $x \in E$.

Replacing x by -x in the last inequality, we obtain

$$\|h(-2x) + h(x) - h(-x) - h(0)\| \le 8\epsilon \|x\|^p$$
(11)

for all $x \in E$.

It follows from (10) and (11) that

$$||h(2x) + h(-2x) - 2h(0)|| \le 16\epsilon ||x||^p,$$

which implies

$$\|h(x) + h(-x) - 2h(0)\| \le \frac{16}{2^p} \epsilon \|x\|^p \tag{12}$$

for all $x \in E$. Replacing y by -y in (5), we have

$$\|f(x+y) + f(x-y) + h(x-y) - 2f(x) - 2f(-y) - h(x) - h(-y)\| \le \epsilon \left(\|x\|^p + \|y\|^p\right)$$
(13)

for all $x, y \in E$. By (5), (7), (12) and (13), we have

$$\begin{aligned} \|h(x+y) - h(x-y) - 2h(y) + 2h(0)\| & (14) \\ \leq \|f(x+y) + f(x-y) + h(x+y) - 2f(x) - 2f(y) - h(x) - h(y)\| \\ & + \|f(x+y) + f(x-y) + h(x-y) - 2f(x) - 2f(-y) - h(x) - h(-y)\| \\ & + 2\|f(y) - f(-y)\| + \|h(y) + h(-y) - 2h(0)\| \\ \leq \epsilon (\|x\|^p + \|y\|^p) + \epsilon (\|x\|^p + \|y\|^p) + 4\epsilon \|y\|^p + \frac{16}{2^p}\epsilon \|y\|^p \\ &= \epsilon \left(2\|x\|^p + (6+2^{4-p})\|y\|^p\right) \end{aligned}$$

for all $x, y \in E$. Interchanging x with y in (14), we get

$$\|h(x+y) - h(y-x) - 2h(x) + 2h(0)\| \le \epsilon \left(2\|y\|^p + \left(6 + 2^{4-p}\right)\|x\|^p\right)$$
(15)

for all $x, y \in E$. By (12), (14) and (15), we have

$$\begin{split} &\|2h(x+y) - 2h(x) - 2h(y) + 2h(0)\| \\ &\leq \|h(x+y) - h(x-y) - 2h(y) + 2h(0)\| + \|h(x+y) - h(y-x) - 2h(x) + 2h(0)\| \\ &+ \|h(x-y) + h(y-x) - 2h(0)\| \\ &\leq \left(8 + 2^{4-p}\right)\epsilon \left(\|x\|^p + \|y\|^p\right) + 2^{4-p}\epsilon \|x-y\|^p, \end{split}$$

 $8 \ {\rm of} \ 13$

which implies

$$\|h(x+y) - h(x) - h(y) + h(0)\| \le \left(4 + 2^{3-p}\right)\epsilon \left(\|x\|^p + \|y\|^p\right) + 2^{3-p}\epsilon \|x-y\|^p$$
(16)

for all $x, y \in E$. Define $\hat{h} : E \to B$ by $\hat{h}(x) := h(x) - h(0)$ for all $x \in E$. Then we can rewrite the inequality (16) in the form

$$\|\widehat{h}(x+y) - \widehat{h}(x) - \widehat{h}(y)\| \le \left(4 + 2^{3-p}\right)\epsilon \left(\|x\|^p + \|y\|^p\right) + 2^{3-p}\epsilon \|x-y\|^p$$

for all $x, y \in E$. Applying Lemma 1 to \hat{h} , we get a unique additive mapping $A_1 : E \to B$ such that

$$\|\widehat{h}(x) - A_1(x)\| \le \frac{8 + 2^{4-p}}{|2^p - 2|} \epsilon \|x\|^p,$$

which implies

$$||h(x) - h(0) - A_1(x)|| \le \frac{8 + 2^{4-p}}{|2^p - 2|} \epsilon ||x||^p$$

for all $x \in E$. Letting x = y = 0 in (5), we have

$$2f(0) + h(0) = 0. (17)$$

Next, using (5), (16) and (17), we get

$$\begin{split} \|f(x+y) + f(x-y) - 2f(x) - 2f(y) + 2f(0)\| \\ &\leq \|f(x+y) + f(x-y) + h(x+y) - 2f(x) - 2f(y) - h(x) - h(y)\| \\ &+ \|h(x+y) - h(x) - h(y) + h(0)\| \\ &\leq \epsilon \left(\|x\|^p + \|y\|^p \right) + \left(4 + 2^{3-p} \right) \epsilon \left(\|x\|^p + \|y\|^p \right) + 2^{3-p} \epsilon \|x-y\|^p \\ &= \left(5 + 2^{3-p} \right) \epsilon \left(\|x\|^p + \|y\|^p \right) + 2^{3-p} \epsilon \|x-y\|^p \end{split}$$

for all $x, y \in E$.

Similarly, we define $\hat{f}: E \to B$ by $\hat{f}(x) := f(x) - f(0)$ for all $x \in E$. Then we obtain $\|\hat{f}(x+y) + \hat{f}(x-y) - 2\hat{f}(x) - 2\hat{f}(y)\| \le (5+2^{3-p})\epsilon (\|x\|^p + \|y\|^p) + 2^{3-p}\epsilon \|x-y\|^p$

for all $x,y\in E.$ By Lemma 2, there exists a unique quadratic mapping $Q:E\to B$ such that

$$\|\widehat{f}(x) - Q(x)\| \le \frac{10 + 2^{4-p}}{|2^p - 4|} \epsilon \|x\|^p,$$

which implies

$$||f(x) - f(0) - Q(x)|| \le \frac{10 + 2^{4-p}}{|2^p - 4|} \epsilon ||x||^p$$

for all $x \in E$, which ends our proof.

The following example shows that for p = 1 the Pexider additive-quadratic functional equation (1) is not stable (see [26]).

Example 1. Define $\psi : \mathbb{R} \to \mathbb{R}$ by

$$\psi(x) = \begin{cases} -b & x \le -1 \\ bx & -1 < x < 1 \\ b & x \ge 1 \end{cases}$$

where a, b > 0 and assume that $f, h : \mathbb{R} \to \mathbb{R}$ are defined by

$$f(x) = ax^2$$
 and $h(x) = \sum_{n=0}^{\infty} \frac{\varphi(2^n x)}{2^n}$

for all $x \in \mathbb{R}$. We show that

$$||f(x+y) + f(x-y) + h(x+y) - 2f(x) - 2f(y) - h(x) - h(y)|| \le 8b(|x|+|y|)$$

for all $x, y \in \mathbb{R}$, but there are no constant $k \ge 0$ and no mapping $A : \mathbb{R} \to \mathbb{R}$ satisfying (1) and

$$|h(x) - h(0) - A(x)| \le k|x|$$

for all $x \in \mathbb{R}$.

In the following we show that for p = 2 the equation (1) is not stable (see [10]).

Example 2. Define $\varphi : \mathbb{R} \to \mathbb{R}$ by

$$\varphi(x) = \begin{cases} ax^2 & -1 < x < 1\\ a & |x| \ge 1 \end{cases}$$

where a, b > 0 and assume that $f, h : \mathbb{R} \to \mathbb{R}$ are defined by

$$f(x) = \sum_{n=0}^{\infty} \frac{\varphi(2^n x)}{4^n}$$
 and $h(x) = bx$

for all $x \in \mathbb{R}$. We show that

$$\|f(x+y) + f(x-y) + h(x+y) - 2f(x) - 2f(y) - h(x) - h(y)\| \le 32a \left(|x|^2 + |y|^2\right)$$

for all $x, y \in \mathbb{R}$, but there are no constant $k \ge 0$ and no mapping $Q : \mathbb{R} \to \mathbb{R}$ satisfying (1) and

$$|f(x) - f(0) - Q(x)| \le k|x|^2$$

for all $x \in \mathbb{R}$.

10 of 13

4. Conclusion and Future Works

In this work, using Brzdęk fixed point theorem, we proved the Hyers-Ulam stability of the Pexiderized additive-quadratic functional equation (1) in Banach spaces. We can apply the method to study the Hyers-Ulam stability problems of the Pexiderized additivequadratic functional equation (1) in fuzzy Banach spaces, matrix Banach spaces, Hilbert C^* -modules and fuzzy Hilbert C^* -modules, in future work.

Acknowledgements

The authors are thankful to the editors and the anonymous reviewers for many valuable suggestions to improve this paper.

Funding

S. Donganont was supported by the University of Phayao and Thailand Science Research and Innovation Fund (Fundamental Fund 2025, Grant No. 5020/2567). Conflict of interest

The authors declare that they have no competing interests.

References

- J Aczél and J Dhombre. Functional Equastions in Several Variables. Cambridge University Press., Cambridge, 1989.
- [2] M Adam. Alienation of the quadratic and additive functional equations. Anal. Math., 45(3):449–460, 2019.
- [3] R Badora, J Brzdęk, and K Ciepliński. Applications of banach limit in ulam stability. Symmetry, 13(5(841)):1–18, 2021.
- [4] A Batool, S Nawaz, O Ege, and M de cla Sen. Hyers-ulam stability of functional inequalities: A fixed point approach. J. Inequal. Appl., 2020(1(251)):1–18, 2020.
- [5] B Bouikhalene and E Elqorachi. Ulam-găvriţa-rassias stability of the pexider functional equation. Int. J. Appl. Math. Stat., 7(FE07):27–39, 2007.
- [6] S Bowmiya, G Balasubramanian, V Govindan, M Donganont, and H Byeon. Generalized linear differential equation using hyers-ulam stability approach. *Eur. J. Pure Appl. Math.*, 17(4):3415–3435, 2024.
- [7] S Bowmiya, G Balasubramanian, V Govindan, M Donganont, and H Byeon. Hyersulam stability of fifth order linear differential equations. *Eur. J. Pure Appl. Math.*, 17(4):3585–3609, 2024.
- [8] J Brzdęk, J Chudziak, and Z Páles. A fixed point approach to stability of functional equations. Nonlinear Anal., 74:6728–6732, 2011.
- [9] P W Cholewa. Remarks on the stability of functional equations. Aequationes Math., 27:76–86, 1984.

- [10] S Czerwik. On the stability of the quadratic mapping in normed spaces. Abh. Math. Sem. Univ. Hamburg, 62:59–64, 1992.
- [11] M Dehghanian, C Park, and Y Sayyari. Stability of ternary antiderivation in ternary banach algebras via fixed point theorem. *Cubo*, 25(2):273–288, 2023.
- [12] M Dehghanian and Y Sayyari. The application of brzdęk's fixed point theorem in the stability problem of the drygas functional equation. *Turk. J. Math.*, 47(6):1778–1790, 2023.
- [13] M Dehghanian and Y Sayyari. A fixed point technique to the stability of hadamard D-hom-der in banach algebras. Math. Slovaca, 74(1):151–158, 2023.
- [14] M Dehghanian, Y Sayyari, and C Park. Hadamard homomorphisms and hadamard derivations on banach algebras. *Misk. Math. Notes*, 24(1):129–137, 2023.
- [15] E El-hady and J Brzdęk. Banach limit and ulam stability of nonhomogeneous cauchy equation. Math., 10(1695):1–15, 2022.
- [16] E El-hady, Y Sayyari, M Dehghanian, and Y Alruwaily. Stability results for some classes of cubic functional equations. Axioms, 13(7(480)):1–12, 2024.
- [17] Z Gajda. On stability of additive mappings. Int. J. Math. Math. Sci., 14:431–434, 1991.
- [18] V Govindan, C Park, S Pinelas, and T M Rassias. Hyers-ulam stability of an additivequadratic functional equation. *Cubo*, 22(2):233–255, 2020.
- [19] D H Hyers. On the stability of the linear functional equation. Proc. Natl. Acad. Sci. U.S.A., 27:222–224, 1941.
- [20] S M Jung and P K Sahoo. Hyers-ulam stability of the quadratic equation of pexider type. J. Korean Math. Soc., 38(3):645–656, 2001.
- [21] S M Jung and P K Sahoo. Stability of a functional of drygas. Aequationes Math., 64:263–273, 2002.
- [22] B V Senthil Kumar, H Dutta, and S Sabarinathan. Modular stabilities of a reciprocal second power functional equation. Eur. J. Pure Appl. Math., 13(5):1162–1175, 2020.
- [23] S Paokanta, M Dehghanian, C Park, and Y Sayyari. A system of additive functional equations in complex banach algebras. *Demonstr. Math.*, 56(1(20220165)):1–10, 2023.
- [24] P Phochai and S Saejung. The hyperstability of general linear equation via that of cauchy equation. Aequationes Math., 93(4):781–789, 2019.
- [25] P Phochai and S Saejung. Hyperstability of generalized linear functional equations in several variables. Bull. Aust. Math. Soc., 102(2):293–302, 2020.
- [26] M Piszczek and J Szczawinska. Stability of the drygas functional equation on restricted domain. *Results Math.*, 68:11–24, 2015.
- [27] A Rani, S Devi, and M K Antil. Stability results of the additive-quadratic functional equations in random normed spaces by using direct and fixed-point method. *Commun. Math. Appl.*, 14(2):827–843, 2023.
- [28] T M Rassias. On the stability of the quadratic functional equation and its applications. Studia Univ. Babes-Bolyai Math., 43(3):89–124, 1998.
- [29] K Ravi and B V Senthil Kumar. Generalized hyers-ulam-rassias stability of a system of bi-reciprocal functional equations. *Eur. J. Pure Appl. Math.*, 8(2):283–293, 2015.
- [30] Y Sayyari, M Dehghanian, and S Nasiri. Solution of some irregular functional equa-

tions and their stability. J. Linear Topol. Algebra, 11(4):271-277, 2022.

- [31] Y Sayyari, M Dehghanian, and C Park. Some stabilities of system of differential equations using laplace transform. J. Appl. Math. Comput., 69(4):3113–3129, 2023.
- [32] Y Sayyari, M Dehghanian, and C Park. A system of biadditive functional equations in banach algebras. *Appl. Math. Sci. Eng.*, 31(1(2176851)):1–11, 2023.
- [33] S M Ulam. Problems in Modern Mathematics. John Wiley & Sons, Inc., New York, 1964.