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Abstract. In a random walk {N, p(x, y)} where N is an infinite graph and {p(x, y)} is a set
of transition probabilities, if {p′

(x, y)} is another set subordinate to the set {p(x, y)} such that
p

′
(x, y) ≤ p(x, y) for all pairs (x, y) and p

′
(x, y) < p(x, y) for atleast one pair (x, y), then

{N, p
′
(x, y)} can be identified as a Schrödinger network. In general, we consider the random

walk {N,P
′} which is subordinate to {N,P} and discuss the relation between the classes of super-

average functions defined by the transition probabilities sets {p(x, y)} and {p′
(x, y)}. Moreover,

we define {N,P
′} as parahyperbolic if 0 is the only bounded P

′
-average function on N and study

various potential-theoretic properties of parahyperbolic networks. We also give equivalent condi-
tions for a random walk to be parahyperbolic. Finally, we discuss the relation between bounded
P

′
and P -average functions.

2020 Mathematics Subject Classifications: 31C20, 31C05, 60J45

Key Words and Phrases: Superaverage functions, subordinate structure, parahyperbolic, P
′
-

Green’s potential, bounded P and P
′
functions

1. Introduction

In the state space N = {0, 1, 2, ....} with the set P = {p(x, y)} of transition probabili-
ties given by p(n, n + 1) = αn, p(n, n − 1) = βn, for n ≥ 1, αn, βn > 0, αn + βn ≤ 1 and
0 ≤ p(0, 1) ≤ 1, the transience, the recurrence, the hitting time etc. of the random walk
{N,P} depend on P . For example if p(n, n+1) = p(n, n−1) = 1

2 for n ≥ 1 and p(0, 1) = 1
then {N,P} is recurrent and any function u(x) on N such that u(n) = 1

2u(n+1)+ 1
2u(n−1)

for n ≥ 1 and u(0) = u(1) is constant. This example is the motivation for the consider-
ation of the following problem: Let {N,P} be a random walk ([2] and [12]) where N is
an infinite graph which is connected and P = {p(x, y)} is a set of transition probabilities,
p(x, y) > 0 if and only if x and y are neighbours; p(x, y) and p(y, x) may have different
values. Suppose P

′
= {p′

(x, y)} is another set of transition probabilities on N such that
p
′
(x, y) ≤ p(x, y) for every pair x, y. The problem is to study how the properties of tran-

sience, recurrence and other probabilistic results in {N,P} get transformed in the random
walk {N,P

′}. We refer to P
′
as a transition probability structure on N subordinate to P .
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There is an analogy in the context of general infinite networks ([1] and [10]) {X, t(x, y)}.
Here potential-theoretic properties of functions on X are studied using the Laplace op-
erator ∆u(x) =

∑
t(x, y)[u(y) − u(x)]. If q ≥ 0 is a function on X, there is another

interesting Schrödinger operator ([4] and [7]) ∆qu(x) = ∆u(x) − q(x)u(x). If we write

t
′
(x, y) = t(x,y)

q(x)+
∑

t(x,y) than {X, t
′
(x, y)} is another network where t

′
(x, y) ≤ t(x, y) which

provides a convenient base for the study of Schrödinger potentials with a comparable study
of Laplace potentials.

In this article, we discuss the potential-theoretic aspects of functions on N determined
by the original structure P and another structure P

′
that is subordinate to P . For related

results, we have referred [6] and [11]. The classification of connected and locally finite in-
finite network into parabolic and hyperbolic of order p is investigated in [13], where as the
same is done for non-locally finite networks in [3]. The concept of recurrent random walks
on countable infinite state spaces is explored by V. R. Manivannan and M. Venkataraman
[5]. In [8] M. Surya priya and N. Nathiya establishes the existence of Green’s function
on non-reversible random walks through the application of potential theoretic techniques.
With reference to the aforementioned, we have looked into the concepts of P

′
-Green’s

function as well as parahyperbolic and bounded hyperbolic subordinate structures.

S. Sivan and M. Venkataraman [9], says that an infinite network is parahyperbolic if and
only if constant 1 is a potential. They have given neccessary and sufficient condition for a
network to be parahyperbolic. V. Anandam [1] has studied the Schrödinger operators and
subordinate structures on infinite networks. Where as in the present article, we delve into
the potential theory associated to a structure subordinate to a non-locally finite random
walk. We define parahyperbolic random walk and its subordinate structure. Finally a
section is devoted to investigate the relation between bounded P -average functions and
bounded P

′
-average functions.

2. Preliminaries

Definition 1. Random walk: Let {N,P} be a random walk with a countable infinite
number of states N and P = {p(x, y)} is the probability transition matrix, where p(x, y)
denotes the transition probability from state x to state y. We assume {N,P} is connected
(i.e, for any two distinct states there exists a path connecting them) and without self loops.
As usual, we shall take N as an infinite graph by defining [x, y] as an edge if and only if
p(x, y) > 0. We say two states x and y are neighbours if there exists an edge between them
and it is denoted by x ∼ y and p(x) =

∑
y∼x p(x, y) = 1 for every x ∈ N .

Note: We do not place the condition that the number of neighbours of any state is finite.
Hence we consider only those real-valued functions s on N for which

∑
y∼x

p(x, y)|s(y)| < ∞

for any x ∈ N . Write As(x) =
∑
y
p(x, y)s(y).

Definition 2. Interior and Boundary of a set: We say a state x is an interior state of
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a subset K if and only if x and all its neighbours are in a subset K of N . The set of all
interior states of K is denoted by K̊ and the boundary of K by ∂K = K\K̊.

Definition 3. Laplacian(∆): Let s(x) be a real valued function defined on N . For x ∈ K̊,
K ⊂ N , the Laplacian (∆) of s at x is defined as

∆s(x) =
∑
y∼x

p(x, y)[s(y)− s(x)] = (A− I)s(x)

Definition 4. A function u defined on a subset K is said to be P -superaverage (re-
spectively, P -subaverage and P -average) on K if and only if s(x) ≥ As(x) (respectively
s(x) ≤ As(x) and s(x) = As(x)) for every x ∈ K̊.

Definition 5. If p ≥ 0 is a P -superaverage function such that any P -subaverage function
majorized by p is non-positive, then p is called a P -potential.

Definition 6. If s is a P -superaverage function on N and if K is a subset of N such that
∆s(x) = 0 for each x in N\K, then K is said to be the P -average support of s in N .

If there is a perturbation on Laplace operator indicated by the operator ∆qu(x) =
∆u(x) − q(x)u(x), q ≥ 0, (the operator ∆q is commonly referred to as a Schrödinger
operator on N) we have

∆qu(x) =
∑
y

p(x, y)u(y)− [1 + q(x)]u(x)

=[1 + q(x)][A
′ − I]u(x)

where A
′
u(x) =

∑
p
′
(x, y)u(y), p

′
(x, y) = p(x,y)

1+q(x) ≤ p(x, y).

Then the potential theory associated with the Schrödinger operator ∆q depends on A
′
, just

as the potential theory associated with the Laplace operator ∆ depends on the operator
A.

Since A
′
φ(x) ≤ Aφ(x) for any functions φ ≥ 0 on N , the relation between the

Schrödinger potentials and the Laplace potentials is exhibited by the relation between
P

′
= {p′

(x, y)} and P = {p(x, y)}. Here p
′
(x, y) ≤ p(x, y) for any pair x, y and we say

that P
′
is subordinate to P .

In the following sections we investigate this subordinate structure in an abstract setting.

3. Subordinate structure

Definition 7. Let {p′
(x, y)} be a set of transition indices on N such that p(x, y) ≥

p
′
(x, y) ≥ 0 for any pair of states x and y and p

′
(x, y) < p(x, y) for atleast one pair

of x and y. Then we say that P
′
= {p′

(x, y)} defines a submarkov average structure on N
that is subordinate to the average structure defined by P = {p(x, y)}; or simply that P

′
is

subordinate to P on N .
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Remark 1. A Schrödinger operator ∆q defines a subordinate structure on N , when q > 0

and p
′
(x, y) = p(x,y)

1+q(x) . But for a subordinate structure {N,P
′} to define a Schrödinger

operator on N , it is necessary that for every x ∈ N , the quantity p(x,y)

p′ (x,y)
is independent of

y, for any y ∼ x.

Definition 8. A real valued function u on a subset K of N is said to be P
′
-superaverage

( respectively P
′
-subaverage ) on K if and only if ∆

′
u(x) ≤ 0 (∆

′
u(x) ≥ 0 respectively)

or u(x) ≥
∑

y p
′
(x, y)u(y) for every x in K̊. (Here ∆

′
u(x) = [

∑
y p

′
(x, y)u(y)] − u(x) =

(A
′ − I)u(x)).

Definition 9. A real valued function u on a subset K of N is said to be P
′
-average on

K if and only if ∆
′
u(x) = 0 for every x in K̊.

Proposition 1. If P
′
is subordinate to P then for any u ≥ 0 on a subset K of N ,∑

p(x, y)u(y) ≥
∑

P
′
(x, y)u(y), for every x ∈ K̊. Hence

(i) If u ≥ 0 is P -superaverage on K then u is P
′
-superaverage on K.

(ii) If u ≥ 0 is P
′
-subaverage on K then u is P -subaverage on K.

(iii) If u = 0 is P
′
-average on K then u is P

′
-superaverage on K.

Proof. For a P -superaverage function u on K ⊂ N , we have
∑

p(x, y)u(y) ≤ u(x).
Since P

′
is subordinate to P ,∑

p(x, y)u(y) ≥
∑

p
′
(x, y)u(y)

u(x) ≥
∑

p(x, y)u(y) ≥
∑

p
′
(x, y)u(y)

u(x) ≥
∑

p(x, y)
′
u(y)

Thus, if u is P -superaverage on a subset K of N then u is P
′
-superaverage on K ⊂ N .

Similarly the proof follows for (ii) and (iii).

3.1. Properties of P
′
-Superaverage Functions

(i) If s1 and s2 are P
′
-superaverage on a subset K and if α1, α2 are two non-negative

numbers, then α1s1 + α2s2 and inf(s1, s2) are P
′
-superaverage on K.

(ii) If {si} is a lower directed family of P
′
-superaverage functions on K, then s(x) =

infi ui(x) and then s is P
′
-superaverage onK. (A lower directed family F of functions

means that if f, g ∈ F then inf(f, g) is also in F)

(iii) Greatest P
′
-average minorant (g.P

′
-a.m): Suppose u(x) ≥ v(x) on N where

u(x) is P
′
-superaverage and v(x) is P

′
-subaverage on N . Then there exists a P

′
-

average function h(x) on N , u(x) ≥ h(x) ≥ v(x) and if h1 is any other P
′
-average

function on N between u(x) and v(x), then h(x) ≥ h1(x) on N (Section 3.1, [1]).
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Proof. Let {Kn} be an exhaustion of N by finite sets; that is Kn ⊂ K̊n+1 ⊂ Kn+1

and X = ∪Kn. let Dnu denote the P
′
-superaverage function on N , equal to the

Dirichlet solution on Kn with boundary values u and extended by u outside Kn.
Then {Dnu} is a decreasing sequence of P

′
-superaverage functions, each Dnu ≥ v

on N . Hence D[u] = limnDnu is P
′
-superaverage function.

Now for any z in N , z ∈ K̊m for some m. Hence Dn(x) is P
′
-average at x = z for

all n ≥ m. Consequently, D[u](x) is P
′
-average at x = z. This shows that D[u] is

P
′
-average on N .

Thus u ≥ D[u] ≥ v. Moreover if h1 is P -average, u ≥ h1 ≥ v, then Dnu ≥ h1 for
any n so that D[u] ≥ h1. we term D[u] as the greatest P

′
-average minorant of u on

N .

(iv) Riesz representation theorem: Any non-negative P
′
-superaverage function s on

a subsetK can be written as the sum of a P
′
-potential and a non-negative P

′
-average

function on K and this representation is unique.

Proposition 2. If s is a P -potential then it is a P
′
-potential.

Proof. First note that s is P
′
-superaverage on N . Let u ≥ 0 be a P

′
-subaverage

function such that u ≤ s on N . Note that u is P -subaverage function on N and s is a
P-potential, therefore u = 0. Consequently s is a P

′
-potential on N .

3.2. P
′
-Green’s Potential

Though positive P
′
-potentials always exist on N , positive P -potentials may exist (hy-

perbolic random walk) or may not exist (parabolic random walk) on N . Thus on a
hyperbolic random walk N , for a fixed state e, we have the P -Green’s potential Ge(x),
−∆[Ge(x)] = δe(x) and P

′
-Green’s potential G

′
e(x) = −∆

′
[G

′
e(x)] = δe(x). The following

theorem indicates a relation between them.

Lemma 1. Let s ≥ 0 be a P
′
-superaverage function and p be a P

′
-potential on N . If

(−∆
′
)s ≥ (−∆

′
)p, then s ≥ p on N .

Proof. By hypothesis, s = p+u where u is P
′
-superaverage on N . Since s ≥ 0,−u ≤ p

on N . Hence −u ≤ 0 so that s ≥ p on N .

Theorem 1. Let (N,P ) be a hyperbolic network. Let Ge(x) be the P -Green’s function on
N with average support {e}. Then Ge

′
(x) ≤ Ge(x) for every x ∈ N .

Proof. Since any positive P -superaverage function on N is a P
′
-superaverage function

on N , Ge(x) is a P
′
-superaverage function on N .

If x ̸= e,
(−∆

′
)Ge(x) ≥ 0 and (−∆

′
)G

′
e(x) = 0

when x = e,

(−∆
′
)Ge(e) =Ge(e)−

∑
y

p
′
(e, y)Ge(y)
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≥Ge(e)−
∑
y

p(e, y)Ge(y)

=(−∆)Ge(e)

=1

=(−∆
′
)G

′
e(e)

Since for all x ∈ N , (−∆
′
)Ge(x) ≥ (−∆

′
)G

′
e(x)

By the above Lemma 1, Ge
′
(x) ≤ Ge(x) for every x ∈ N .

Lemma 2. If pn is a sequence of P
′
-potentials and if p(x) =

∑
n pn(x) is finite at one

state, then p is a P
′
-potential.

Proof. The P
′
-superaverage function ( actually a P

′
-potential ) sm =

∑m
1 pn intro-

duces a sequence {sm} of increasing P
′
-superaverage functions so that s = lim

m
sm is a

P
′
-superaverage function if s is finite at one state. Hence p(x) =

∑
n pn(x) is a P

′
-

superaverage function.
To show p(x) is a P

′
-potential: Let h(x) be a non-negative P

′
-average and h ≤ p. Then

h −
∞∑
2
pn ≤ p1. Here the left side is P

′
-subaverage and the right side a P

′
-potential, so

that h−
∞∑
2
pn ≤ 0. Continuing this process we find h(x) ≤

∞∑
m

pn(x) for any m. For any z

in N , since
∞∑
1
pn(z) is convergent h(z) ≤

∞∑
m

pn(z) ≤ ϵ for sufficiently large m. This leads

to h(z) = 0, hence h = 0 and consequently p =
∞∑
1
pn is a P

′
-potential on N .

Recall that for any P
′
-superaverage function s ≥ 0 we write by Riesz representation,

s = p+D[s], where D[s] is the greatest P
′
-verage minorant of s.

Theorem 2. Any P
′
-superaverage function s ≥ 0 has a unique representation s(x) =∑

y
[−∆

′
s(y)]G

′
y(x) +D[s](x).

Proof. LetK be a finite set and uk(x) = s(x)−
∑
y∈k

[−∆
′
s(y)]G

′
y(x). Then −∆

′
[uk(x)] =

0 if x ∈ k and −∆
′
[uk(x)] ≥ 0 if x ∈ N\K. Then uk(x) is a P

′
-superaverage function on

N and −uk(x) ≤
∑
y∈K

[−∆
′
s(y)]G

′
y(x). Since the left side is P

′
-subaverage and the right

side is a P
′
-potential; −uk(x) ≤ 0 on N . That is

∑
y∈K

[−∆
′
s(y)]G

′
y(x) ≤ s(x). Allowing K

to grow into N , s(x) ≥
∑
y∈N

[−∆
′
s(y)]G

′
y(x). Note that the right side is a P

′
-potential by

Lemma 2.
Write h(x) = s(x)−

∑
y∈N

[−∆
′
s(y)]G

′
y(x). Note −∆

′
h = 0 so that h is a P

′
-average function

on N . By the uniqueness of Riesz representation, h(x) = D[s](x).
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In the particular case, when s = 1 is the constant function then −∆
′
s(x) = s(x) −∑

y
p
′
(x, y)s(y) = 1− p

′
(x) when p

′
(x) =

∑
y p

′
(x, y). Hence obtain the following result.

Corollary 1. For any x ∈ N , 1 =
∑

y[1− p
′
(y)]G

′
y(x) +D[1](x).

4. Parahyperbolic subordinate structures

Since A
′
u(x) ≤ Au(x) for any non-negative functions u(x), then any non-negative P -

superaverage functions is a P
′
-superaverage function. In particular, the constant function

1 is a P
′
-superaverage function so that 1 = s + h where s > 0 is P

′
-superaverage and

h ≥ 0 is a P
′
-average function. Since h > 0 or h ≡ 0, the constant 1 is a P

′
-potential

or just a positive P
′
-superaverage function that is not a P

′
-potential. This opens up two

possibilities in the study of P
′
-superaverage functions on N , as shown in this section.

In a random walk (N,P ) the constant 1 is P -average. It is possible that any positive
P -superaverage function is constant, hence there may not be any positive P -potential on
N . On the other hand, the constant 1 is P

′
-superaverage but not P

′
-average. Hence there

are always P
′
-potentials on N .

Let P
′
be a subordinate structure to P . Then the constant 1 is a P

′
-superaverage function,

write 1 = v + h where v is a P
′
-potential and h ≥ 0 is a P

′
-average function.

(i) It is possible that h ̸= 0. It means that there are bounded positive P
′
-average

functions N .

(ii) If h = 0, then 1 is a P
′
-potential, hence there is no bounded positive P

′
-average

functions on N .

Definition 10. If the constant 1 is a P
′
-potential, then (N,P

′
) is referred to as parahy-

perbolic. Otherwise (N,P
′
) is termed bounded hyperbolic.

Proposition 3. (Maximum Principle:) The following are equivalent( Theorem 4.3.7, [1]):

(i) (N,P
′
) is parahyperbolic.

(ii) In an arbitrary subset F of N , if u is an upper bounded subaverage function such
that u ≤ 0 on ∂F , then u ≤ 0 on F .

Definition 11. (Perron family:) Let F be the family of all P
′
-subaverage functions u on

N such that for a P
′
-superaverage function v on N , u ≤ v on N . If u1, u2 ∈ F, then

sup(u1, u2) ∈ F, hence is an upper directed family of P
′
-subaverage functions .

Fix a state z and choose any u ∈ F. Then the function

uz(x) =

{
u(x), if x ̸= z∑

p
′
(z, y)u(y), if x = z

(Known as the Poisson modification of u(x) at x = z) also is in F. Note uz ≥ u
and uz(x) is P

′
-average at x = z. Consequently, h(x) = sup

u∈F
u(x) is P

′
-subaverage on
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N and at x = z, h(z) = sup
u∈F

uz(z) is P
′
-average. Since z is arbitrary, we conclude that

h(x) = sup
u∈F

u(x) is P
′
-harmonic on N . We refer to F as the Perron family of P

′
-subaverage

functions.

Theorem 3. The following are equivalent:

(i) Any bounded P
′
-superaverage function u defined outside a finite set is of the form

u = p− q where p and q are bounded P
′
-potentials on N .

(ii) Any bounded P
′
-superaverage function in N is a P

′
-potential.

(iii) 0 is the only bounded P
′
-average function in N .

(iv) The constant function 1 is a P
′
-potential on N , that is N is parahyperbolic.

Proof. (i) implies (ii). Let s be a bounded P
′
-superaverage function in N . Then by

(i), s = p − q outside a finite set A. Hence |s| ≤ p + q on N/A. Since A is a finite set,
s is bounded on A and we select a large constant α > 1 such that |s| ≤ α(p + q) on
A. Consequently, |s| ≤ α(p + q) on N . Since −s ≤ α(p + q), we see that −s ≤ 0, then
0 ≤ s ≤ α(p+ q) so that s is a P

′
-potential on N .

(ii) implies (iii) if h ̸= 0 is a bounded P
′
-average function on N , then by (ii) it is a

P
′
-potential.

(iii) implies (iv) Since 1 is P
′
-superaverage on N , the greatest P

′
-average minorant of 1

is 0. Hence 1 is a P
′
-potential, thus {N,P

′} is parahyperbolic.
(iv) implies i) Let u = p − q outside a finite set in N . Since u is bounded by hypothesis
and q is bounded, it is clear that p is bounded on N . Since 1 is a P

′
-potential by (iv) the

bounded P
′
-superaverage function p is a P

′
-potential.

Theorem 4. If (N,P ) is parabolic, then (N,P
′
) is parahyperbolic.

Proof. For let h
′
be a P

′
-average function on N such that |h′ | ≤ M , where M is a

constant. Then, |h′ | is P ′
-subaverage on N and hence P -subaverage. Since, by assumption

there is no positive P -potential on N , |h| must be a constant thus |h| = c. If c ̸= 0, in
|h| = c, |h| is P

′
-subaverage and c is P

′
-superaverage which is a contradiction. Hence

c = 0 that is h = 0. Thus 0 is the only bounded P
′
-average function on N . Hence the

constant function 1 is a P
′
-potential on N by the Theorem 3.

Theorem 5. If (N,P
′
) is parahyperbolic, then any lower bounded P

′
-superaverage func-

tion is non-negative. Conversely, if any lower bounded P
′
-average function is non-negative,

then (N,P
′
) is parahyperbolic.

Proof. Let (N,P
′
) be parahyperbolic. Suppose s is a P

′
-superaverage function on N

such that s ≥ −M for some M > 0. Since M is P
′
-potential by assumption , −s ≤ M

implies that s ≥ 0. Conversely, suppose any lower bounded P
′
-average function on N is

non-negative. If (N,P
′
) is not parahyperbolic, then by Theorem 4 there exists a P

′
-average

function h on N , 0 < h < 1. Since −h is lower bounded, −h ≥ 0 a contradiction.
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Corollary 2. Suppose h is a P
′
-average function bounded on one side in N . If h takes

both positive and negative values in N , then there exists a bounded P
′
-average function

H, 0 < H < 1, on N , hence N is bounded hyperbolic.

5. Relation between bounded P
′
and P -average functions

In a random walk the constant function 1 is P -average on N . The question is: what
can we say about the existence of bounded or just positive P -average functions on N
that are not constants? We have examples of {N,P} on which there are no non-constant
bounded or just positive P -average functions. In this section we try to assert the existence
of such functions on {X,P} if similar functions exist on {X,P

′} where P
′
is subordinate

to P .
If there are non-zero bounded P

′
-average functions on N , then the constant 1 is not a

P
′
-potential, hence there are bounded positive P

′
-average functions on N . In this section

we investigate the relation between bounded P
′
-average functions and bounded P -average

functions on N .

Theorem 6. Let (N,P ) be hyperbolic with its Green’s potential Gy(x) satisfying the con-
dition supz∈NGz(z) ≤ M . If

∑
x
[1 − p

′
(x)] < ∞, then N has bounded positive P

′
-average

functions on N .

Proof. If 0 is the only bounded positive P
′
-average function on N , then constant 1 is

a P
′
-potential in N and

1 =
∑
y

[1− p
′
(y)]G

′
y(x) for x ∈ N

≤
∑
y

[1− p
′
(y)]Gy(x)

≤
∑
y

[1− p
′
(y)]Gy(y)

≤M
∑
y

[1− p
′
(y)]

<∞.

Hence u(x) =
∑

y[1− p
′
(y)]Gy(x) should be a P -potential. But this is not possible since

u(x) maximizes the P -average function 1.

Theorem 7. Let B (respectively B
′
) be the set of all bounded non-negative P -(respectively

P
′
-) average functions in N . Then there is an injective map S : B

′ → B such that
S(α1h1 + α2h2) = α1S(h1) + α2S(h2) where α1, α2 are non-negative constants and h1, h2
are in B

′
.
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Proof. Let h ∈ B
′
. Then h is a bounded P -subaverage function. Let S(h) be the least

P -average majorant of h. Then S(α1h1+α2h2) = α1Sh1+α2Sh2. Suppose S(h1) = S(h2).
Note that for h ∈ B

′
, S(h) − h is a P -potential and hence a P

′
-potential. Consequently,

if S(h1) = S(h2), then |h1 − h2| = |[S(h1)− h1]− [S(h2)− h2]| ≤ p1 + p2 where p1 and p2
are P

′
-potential on N . since |h1 − h2| is P

′
-subaverage function on N , h1 = h2.

Corollary 3. If there are non-proportional bounded non-negative P
′
-average functions in

N , then there is atleast one non-constant bounded P -average function in N .

Proof. If h1 and h2 are non-proportional in B
′
, then S(h1) and S(h2) are non-

proportional bounded P -average functions in N . Hence atleast one of them is non-
constant.

Lemma 3. Let h be a P
′
-average function in N , such that |h| ≤ s where s is P

′
-

superaverage on N . Then h = h1 − h2 where h1 and h2 are non-negative P
′
-average

functions such that h1 − h+ and h2 − h− are P
′
-potentials. This decomposition is unique.

Proof. Let h1 be the least P
′
-average majorant of h+ and h2 be the least P

′
-average

majorant of h−. Then p1 = h1 − h+ and p2 = h2 − h− are P
′
-potentials on N . Hence

h = h+ − h− = (h1 − h2) − (p1 − p2). Then by the uniqueness of Riesz decomposition,
h = h1 − h2 on N .
Suppose h = u1 − u2 is another such decomposition. Since u1 − h+ and h1 − h+ are
potentials, so u1 = h1 and then u2 = h2.

Theorem 8. If there exists a bounded P
′
-average function on N that takes both positive

and negative values, then there is atleast one bounded non-constant P -average function on
N .

Proof. Let h be a bounded P
′
-average function, write h = h1 − h2 as in Lemma 3,

since h takes both positive and negative values by the assumption, h1 and h2 are positive.
Suppose h1 = λh2. Then h = (λ − 1)h2, contradicting the assumption that h takes both
positive and negative values on N . Since h1 and h2 are non-proportional, by Corollary 3,
there is atleast one non-constant bounded P -average function on N .
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