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Abstract. In a random walk {N,p(z,y)} where N is an infinite graph and {p(z,y)} is a set
of transition probabilities, if {p (z,%)} is another set subordinate to the set {p(z,y)} such that
p,(x,y) < p(z,y) for all pairs (z,y) and p,(x,y) < p(z,y) for atleast one pair (z,y), then
{N,p (z,y)} can be identified as a Schrodinger network. In general, we consider the random
walk {N, P} which is subordinate to { N, P} and discuss the relation between the classes of super-
average functions defined by the transition probabilities sets {p(x y)} and {p (x,y)}. Moreover,
we define {N, P’ } as parahyperbolic if 0 is the only bounded P’ -average function on N and study
various potential-theoretic properties of parahyperbolic networks. We also give equivalent condi-
tions for a random walk to be parahyperbolic. Finally, we discuss the relation between bounded
P’ and P-average functions.
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1. Introduction

In the state space N ={0,1,2,....} with the set P = {p(z,y)} of transition probabili-
ties given by p(n,n + 1) = ay, p(n,n —1) = B, for n > 1, oy, Bn > 0, oy + B, < 1 and
0 < p(0,1) < 1, the transience, the recurrence, the hitting time etc. of the random walk
{N, P} depend on P. For example if p(n,n+1) = p(n,n—1) = % forn > 1 and p(0,1) =1
then {IN, P} is recurrent and any function u(x) on N such that u(n) = su(n+1)+3u(n—1)
for n > 1 and u(0) = u(1) is constant. This example is the motivation for the consider-
ation of the following problem: Let {N, P} be a random walk ([2] and [12]) where N is
an infinite graph which is connected and P = {p(x,y)} is a set of transition probabilities,
p(z,y) > 0 if and only if  and y are neighbours; p(z,y) and p(y,z) may have different
values. Suppose P' = {p (z,y)} is another set of transition probabilities on N such that
P (x,y) < p(x,y) for every pair z,y. The problem is to study how the properties of tran-
sience, recurrence and other probabilistic results in { N, P} get transformed in the random
walk {N, P'}. We refer to P’ as a transition probability structure on N subordinate to P.
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There is an analogy in the context of general infinite networks ([1] and [10]) {X,t(z,y)}.
Here potential-theoretic properties of functions on X are studied using the Laplace op-
erator Au(z) = Y t(z,y)[u(y) — u(z)]. If ¢ > 0 is a function on X, there is another
interesting Schrodinger operator ([4] and [7]) Aju(z) = Au(z) — g(z)u(x). If we write
t(x,y) = % than {X,¢ (z,y)} is another network where ¢ (x,y) < t(z,y) which
provides a convenient base for the study of Schrodinger potentials with a comparable study
of Laplace potentials.

In this article, we discuss the potential-theoretic aspects of functions on N determined
by the original structure P and another structure P’ that is subordinate to P. For related
results, we have referred [6] and [11]. The classification of connected and locally finite in-
finite network into parabolic and hyperbolic of order p is investigated in [13], where as the
same is done for non-locally finite networks in [3]. The concept of recurrent random walks
on countable infinite state spaces is explored by V. R. Manivannan and M. Venkataraman
[5]. In [8] M. Surya priya and N. Nathiya establishes the existence of Green’s function
on non-reversible random walks through the application of potential theoretic techniques.
With reference to the aforementioned, we have looked into the concepts of P'-Green’s
function as well as parahyperbolic and bounded hyperbolic subordinate structures.

S. Sivan and M. Venkataraman [9], says that an infinite network is parahyperbolic if and
only if constant 1 is a potential. They have given neccessary and sufficient condition for a
network to be parahyperbolic. V. Anandam [1] has studied the Schrédinger operators and
subordinate structures on infinite networks. Where as in the present article, we delve into
the potential theory associated to a structure subordinate to a non-locally finite random
walk. We define parahyperbolic random walk and its subordinate structure. Finally a
section is devoted to investigate the relation between bounded P-average functions and
bounded P/—average functions.

2. Preliminaries

Definition 1. Random walk: Let {N,P} be a random walk with a countable infinite
number of states N and P = {p(x,y)} is the probability transition matriz, where p(z,y)
denotes the transition probability from state x to state y. We assume {N, P} is connected
(i.e, for any two distinct states there exists a path connecting them) and without self loops.
As usual, we shall take N as an infinite graph by defining [x,y] as an edge if and only if
p(z,y) > 0. We say two states x and y are neighbours if there exists an edge between them
and it is denoted by x ~ y and p(z) = Zywx p(z,y) =1 for every x € N.

Note: We do not place the condition that the number of neighbours of any state is finite.
Hence we consider only those real-valued functions s on N for which > p(x,y)|s(y)| < oo

y~zT
for any z € N. Write As(z) = > p(x,y)s(y).
Y

Definition 2. Interior and Boundary of a set: We say a state x is an interior state of
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a subset K if and only if x and all its neighbours are in a subset K of N. The set of all
interior states of K is denoted by K and the boundary of K by 0K = K\K.

Definition 3. Laplacian(A): Let s(x) be a real valued function defined on N. For x € K,
K C N, the Laplacian (A) of s at = is defined as

As(z) =Y p(z,y)[s(y) — s(2)] = (A= Ds(x)

y~z

Definition 4. A function u defined on a subset K is said to be P-superaverage (re-
spectively, P-subaverage and P-average) on K if and only if s(x) > As(x) (respectively
s(x) < As(x) and s(x) = As(x)) for every z € K.

Definition 5. If p > 0 is a P-superaverage function such that any P-subaverage function
majorized by p s non-positive, then p s called a P-potential.

Definition 6. If s is a P-superaverage function on N and if K is a subset of N such that
As(x) =0 for each = in N\K, then K is said to be the P-average support of s in N.

If there is a perturbation on Laplace operator indicated by the operator Aju(z) =
Au(z) — q(z)u(x),q > 0, (the operator A, is commonly referred to as a Schrédinger
operator on N) we have

Aqu(e) = pla,y)uly) — [1 +q(@)]u(z)

=[1+q(@)][A" ~ Iu(z)

where A'u(x) = S p'(z, y)uly), p' (z,y) = £225 < p(z,y).

Then the potential theory associated with the Schrédinger operator A, depends on A, just
as the potential theory associated with the Laplace operator A depends on the operator
A.

Since A'p(z) < Ag(z) for any functions ¢ > 0 on N, the relation between the
Schrodinger potentials and the Laplace potentials is exhibited by the relation between
P = {p(2,y)} and P = {p(z,y)}. Here p'(x,y) < p(x,y) for any pair z,y and we say
that P’ is subordinate to P.

In the following sections we investigate this subordinate structure in an abstract setting.

3. Subordinate structure

Definition 7. Let {p (x,y)} be a set of transition indices on N such that p(z,y) >
p(x,y) > 0 for any pair of states x and y and p (x,y) < p(x,y) for atleast one pair
of x and y. Then we say that P = {p/(:c, y)} defines a submarkov average structure on N
that is subordinate to the average structure defined by P = {p(x,y)}; or simply that P’ is
subordinate to P on N.
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Remark 1. A Schrodinger operator A, defines a subordinate structure on N, when g > 0

and p (z,y) = fﬁ;’(y)). But for a subordinate structure {N,P'} to define a Schrédinger

( )
P (z.y)

operator on N, it is necessary that for every x € N, the quantity &
y, for any y ~ .

is independent of

Definition 8. A real valued function u on a subset K of N is said to be Pl—supemvemge
(respectwely P'-subaverage ) on K if and only if A u( ) <0 (A/u( ) > 0 respectively)

or u(w) = 3, p'(z,y)uly) for every w in K. (Here Au(z) = [¥2, 0 (z,y)u(y)] — u(z) =
(A" = Du()).

Definition 9. A real valued function u on a subset K of N is said to be P -average on
K if and only if A’ u(z) =0 for every z in K.

Proposition 1. If P’ is subordinate to P thgn for any v > 0 on a subset K of N,
S p(x.y)uly) = 5P (@, y)uly), for every « € K. Hence

(i) If u > 0 is P-superaverage on K then u is P -superaverage on K.
(ii) If u>0 is Pl-subavemge on K then u is P-subaverage on K.
(11i) If u=0 is Pl-avemge on K then u is P’ -superaverage on K.

Proof. For a P-superaverage function v on K C N, we have Y p(z,y)u(y) < u(z).
Since P’ is subordinate to P,

> (@ y)uly) =D p (z,y)uly
u(z) > plz,y)u(y) = > p (z,y)u(y)

Thus, if u is P-superaverage on a subset K of N then u is P,-superaverage on K C N.
Similarly the proof follows for (ii) and (iii).

3.1. Properties of P'-Superaverage Functions

. / . .
(i) If s; and sy are P -superaverage on a subset K and if ag,ag are two non-negative
. /
numbers, then ajs; + agse and inf(sy, s2) are P -superaverage on K.

(ii) If {s;} is a lower directed family of P’-superaverage functions on K, then s(z) =
inf; u;(z) and then s is P'-superaverage on K. (A lower directed family F of functions
means that if f,g € F then inf(f,g) is also in F)

(iii) Greatest P'-average minorant (g.P'-a.m): Suppose u(z) > v(x) on N where
u(z) is P'-superaverage and v(x) is P'-subaverage on N. Then there exists a P'-
average function h(x) on N, u(z) > h(z) > v(z) and if h; is any other P -average
function on N between u(z) and v(z), then h(z) > hi(z) on N (Section 3.1, [1]).
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Proof. Let {K,} be an exhaustion of N by finite sets; that is K, C IO(nH C Kyt
and X = UK,. let D,u denote the Pl—superaverage function on N, equal to the
Dirichlet solution on K, with boundary values u and extended by u outside K,.
Then {D,u} is a decreasing sequence of Pl—superaverage functions, each D,u > v
on N. Hence D[u] = lim, Dyu is P'-superaverage function.

Now for any z in N, z € K,, for some m. Hence D, () is P'-average at 2 = z for
all n > m. Consequently, D[u](z) is P'-average at & = z. This shows that D[u] is
Pl—average on N.

Thus u > D[u] > v. Moreover if h; is P-average, u > h; > v, then Dyu > h; for
any n so that D[u] > hi. we term D[u] as the greatest P'-average minorant of u on
N.

(iv) Riesz representation theorem: Any non-negative P'-superaverage function s on
a subset K can be written as the sum of a P'-potential and a non-negative Pl—average
function on K and this representation is unique.

Proposition 2. If s is a P-potential then it is a P'-potential.

Proof. First note that s is P/—superaverage on N. Let uw > 0 be a P/—subaverage
function such that v < s on N. Note that u is P-subaverage function on N and s is a
P-potential, therefore u = 0. Consequently s is a P/—potential on N.

3.2. P'-Green’s Potential

Though positive P'-potentials always exist on N, positive P-potentials may exist (hy-
perbolic random walk) or may not exist (parabolic random walk) on N. Thus on a
hyperbolic random walk N, for a fixed state e, we have the P-Green’s potential G.(x),
—A[Ge(z)] = 6.(z) and P'-Green’s potential G.,(z) = —A'[G,(x)] = dc(x). The following
theorem indicates a relation between them.

Lemma 1. Let s > 0 be a P -superaverage function and p be a P'-potential on N. If
(—A/)s > (—=A")p, then s >p on N.

Proof. By hypothesis, s = p+u where u is P'-superaverage on N. Since s > 0, —u < p
on N. Hence —u < 0 so that s > p on N.

Theorem 1. Let (N, P) be a hyperbolic network. Let Ge(x) be the P-Green’s function on
N with average support {e}. Then G, (z) < Ge(x) for every x € N.

Proof. Since any positive P-superaverage function on N is a P'-superaverage function
on N, Ge(z) is a P/—superaverage function on V.
If x # e,

(—=A)Ge(z) > 0 and (—A )G (z) =0

when x = e,
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ZGe(e) - Z p(e, y)Ge(y)
Yy

Since for all z € N, (=A")Ge(z) > (-A)G.(z)
By the above Lemma 1, G, (2) < Ge(x) for every z € N.

Lemma 2. If p, is a sequence of P -potentials and if p(z) = > . Dn(x) is finite at one
state, then p is a P -potential.

Proof. The P'-superaverage function ( actually a P'-potential ) s, = 31 pn intro-
duces a sequence {s,,} of increasing P -superaverage functions so that s = lims,, is a
m

P'-superaverage function if s is finite at one state. Hence p(z) = 3, pu(z) is a P'-

superaverage function.

To show p(z) is a P'-potential: Let h(z) be a non-negative P'-average and h < p. Then
o0

h — gpn < p1. Here the left side is P/—subaverage and the right side a P/—potential, SO
that h — ?pn < 0. Continuing this process we find h(z) < ipn(x) for any m. For any z
m
in N, since i pn(2) is convergent h(z) < f pn(z) < € for sufficiently large m. This leads
m
to h(z) = 0, hence h = 0 and consequently p = i:ipn is a P'-potential on N.

Recall that for any P’-superaverage function s > 0 we write by Riesz representation,
s = p+ D[s], where D[s] is the greatest P'-verage minorant of s.

Theorem 2. Any Pl-supemvemge function s > 0 has a unique representation s(x) =
2 [=Asy)IGy(x) + Dls|(x).
Yy

Proof. Let K be a finite set and uy(z) = s(z)— Y [—A’s(y)]G’y(m). Then —A'[ug ()] =
yek
0if z € k and —A'[ug(z)] > 0 if z € N\K. Then uy(z) is a P'-superaverage function on

N and —ug(z) < 3 [—A/s(y)]G;(a:). Since the left side is P'-subaverage and the right

yeK
side is a P'-potential; —ug(z) <0 on N. Thatis 3 [—A/s(y)]G;(x) < s(z). Allowing K
yeK
to grow into N, s(z) > > [—Als(y)]G;/(x). Note that the right side is a P'-potential by
yeN
Lemma 2.
Write h(z) = s(z)— > [—A/s(y)]G;(ac). Note —A'h = 0 so that h is a P'-average function
yeN

on N. By the uniqueness of Riesz representation, h(z) = D[s](z).
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In the particular case, when s = 1 is the constant function then —A's(z) = s(z) —
S p'(z,y)s(y) =1 —p'(z) when p'(z) = 2y p (,). Hence obtain the following result.
y

Corollary 1. For anyz € N, 1 =3 [1 — p/(y)}G;(x) + D[1](x).

4. Parahyperbolic subordinate structures

Since A'u(z) < Au(z) for any non-negative functions u(z), then any non-negative P-
superaverage functions is a P'-superaverage function. In particular, the constant function
1is a Pl—superaverage function so that 1 = s + h where s > 0 is Pl—superaverage and
h > 0 is a P-average function. Since h > 0 or h = 0, the constant 1 is a P'-potential
or just a positive Pl—superaverage function that is not a P'-potential. This opens up two
possibilities in the study of P'-superaverage functions on N, as shown in this section.

In a random walk (N, P) the constant 1 is P-average. It is possible that any positive
P-superaverage function is constant, hence there may not be any positive P-potential on
N. On the other hand, the constant 1 is Pl—superaverage but not Pl—average. Hence there
are always P -potentials on N.

Let P’ be a subordinate structure to P. Then the constant 1 is a Pl-superaverage function,
write 1 = v + h where v is a P'-potential and h > 0 is a P/—average function.

(i) It is possible that A # 0. It means that there are bounded positive P/—average
functions N.

(ii) If h = 0, then 1 is a P’-potential, hence there is no bounded positive P'-average
functions on N.

Definition 10. If the constant 1 is a P -potential, then (N, Pl) is referred to as parahy-
perbolic. Otherwise (N, P/) is termed bounded hyperbolic.

Proposition 3. (Maximum Principle:) The following are equivalent( Theorem 4.3.7, [1]):
(i) (N, P is parahyperbolic.

(ii) In an arbitrary subset F' of N, if u is an upper bounded subaverage function such
that uw < 0 on OF, then u <0 on F.

Definition 11. (Perron family:) Let F be the family of all P’ -subaverage functions u on
N such that for a P'-superaverage function v on N, u < v on N. If uj,us € F, then
sup(uy,uz) € F, hence is an upper directed family of P/—subavemge functions .

Fiz a state z and choose any uw € F. Then the function

u(x), if v # 2
uz(l‘) = ’ .
2p (z:9)uly), fz=z
(Known as the Poisson modification of u(z) at x = z) also is in F. Note u, > u

and u.(z) is P -average at x = z. Consequently, h(z) = supu(x) is P -subaverage on
uelF
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N and at x = z, h(z) = supu.(2) is P -average. Since z is arbitrary, we conclude that

u€clF
h(z) = supu(x) is P'-harmonic on N. We refer to ¥ as the Perron family ofPl—subavemge
u€clF
functions.

Theorem 3. The following are equivalent:

(i) Any bounded P’ -superaverage function u defined outside a finite set is of the form
u = p— q where p and q are bounded P -potentials on N.

(i) Any bounded Pl—supemvemge function in N is a P’ -potential.
(iii) 0 is the only bounded P -average function in N.

(iv) The constant function 1 is a P -potential on N, that is N is parahyperbolic.

Proof. (i) implies (7). Let s be a bounded P'-superaverage function in N. Then by
(i), s = p — q outside a finite set A. Hence |s| < p+ ¢ on N/A. Since A is a finite set,
s is bounded on A and we select a large constant o > 1 such that |s| < a(p + ¢) on
A. Consequently, |s| < a(p+ ¢) on N. Since —s < a(p + ¢q), we see that —s < 0, then
0 < s < a(p+q) so that s is a P'-potential on N.

(i) implies (ii7) if h # 0 is a bounded P’-average function on N, then by (i) it is a
P'-potential.

(#4) implies (iv) Since 1 is P'-superaverage on N, the greatest P'-average minorant of 1
is 0. Hence 1 is a P'-potential, thus {N, P’} is parahyperbolic.

(iv) implies ¢) Let u = p — ¢ outside a finite set in N. Since u is bounded by hypothesis
and ¢ is bounded, it is clear that p is bounded on N. Since 1 is a P/—potential by (iv) the
bounded P’-superaverage function p is a P -potential.

Theorem 4. If (N, P) is parabolic, then (N, P') is parahyperbolic.

Proof. For let h' be a P'-average function on N such that |h/| < M, where M is a
constant. Then, |h'| is P'-subaverage on N and hence P-subaverage. Since, by assumption
there is no positive P-potential on N, ]h\ must be a constant thus |h| = ¢. If ¢ # 0, in
|h| = ¢, || is P'-subaverage and ¢ is P’ -superaverage which is a contradiction. Hence
¢ = 0 that is h = 0. Thus 0 is the only bounded P’-average function on N. Hence the
constant function 1 is a P'-potential on N by the Theorem 3.

Theorem 5. If (N, P,) 18 parahyperbolic, then any lower bounded P’ -superaverage func-
tion is non-negative. Conversely, if any lower bounded P’ -average function is non-negative,
then (N, P') is parahyperbolic.

Proof. Let (N, P') be parahyperbolic. Suppose s is a P’ -superaverage function on N
such that s > —M for some M > 0. Since M is P'-potential by assumption , —s < M
implies that s > 0. Conversely, suppose any lower bounded P/—average function on N is
non-negative. If (IV, P,) is not parahyperbolic, then by Theorem 4 there exists a P -average
function h on N, 0 < h < 1. Since —h is lower bounded, —h > 0 a contradiction.
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Corollary 2. Suppose h is a Pl-avemge function bounded on one side in N. If h takes
both positive and negative values in N, then there exists a bounded P/—avemge function
H,0< H<1, on N, hence N 1is bounded hyperbolic.

5. Relation between bounded P’ and P-average functions

In a random walk the constant function 1 is P-average on N. The question is: what

can we say about the existence of bounded or just positive P-average functions on N
that are not constants? We have examples of { N, P} on which there are no non-constant
bounded or just positive P-average functions. In this section we try to assert the existence
of such functions on {X, P} if similar functions exist on {X, P’} where P’ is subordinate
to P.
If there are non-zero bounded P’-average functions on N, then the constant 1 is not a
P'-potential, hence there are bounded positive Pl—average functions on N. In this section
we investigate the relation between bounded P'-average functions and bounded P-average
functions on N.

Theorem 6. Let (N, P) be hyperbolic with its Green’s potential Gy(x) satisfying the con-
dition sup.enG.(z) < M. If SJ[1 —p'(x)] < oo, then N has bounded positive P'-average
x

functions on N.

Proof. If 0 is the only bounded positive P'-average function on N, then constant 1 is
a P'-potential in N and

1= [1—p W)IGy(x) forz e N
Szy:[l — P (1)]Gy ()
< zy:[l — P (1)]Gy(y)
SMy > L—p (y)
o

Hence u(z) = >_, [1 — p (y)]Gy(x) should be a P-potential. But this is not possible since
u(x) maximizes the P-average function 1.

Theorem 7. Let B (respectively B/) be the set of all bounded non-negative P-(respectively
PI—) average functions in N. Then there is an injective map S : B — B such that
S(arhi + aghs) = a1S(h1) + asS(ha) where a1, as are non-negative constants and hy, ho
are in B'.
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Proof. Let h € B'. Then h is a bounded P-subaverage function. Let S(h) be the least
P-average majorant of h. Then S(a1hi+ashe) = a1 Shi+a2She. Suppose S(hi) = S(ha).
Note that for h € B, S(h) — h is a P-potential and hence a P'-potential. Consequently,
if S(h1) = S(hg), then [k — ho| = |[S(h1) — ] = [S(h2) = ha]| < p1 + pz where pi and p;
are P -potential on N. since |hy — hs| is P -subaverage function on N, hy = ho.

Corollary 3. If there are non-proportional bounded non-negative P'-average functions in
N, then there is atleast one non-constant bounded P-average function in N.

Proof. If hi and hy are non-proportional in B, then S(h;) and S(hg) are non-
proportional bounded P-average functions in N. Hence atleast one of them is non-
constant.

Lemma 3. Let h be a P'-average function in N, such that |h| < s where s is P'-
superaverage on N. Then h = hy — hy where hy and hy are non-negative P'-average
functions such that hy —h™ and hy — h™ are P -potentials. This decomposition is unique.

Proof. Let hy be the least Pl—average majorant of h™ and hs be the least P/—average
majorant of A~. Then p; = hy — ht and py = hy — h™ are P'-potentials on N. Hence
h =h" —h™ = (hy — ha) — (p1 — p2). Then by the uniqueness of Riesz decomposition,
h= hl — hg on N.

Suppose h = wu; — us is another such decomposition. Since u; — h™ and hy — h™ are
potentials, so u; = hy and then us = hs.

Theorem 8. If there exists a bounded P/—cwemge function on N that takes both positive
and negative values, then there is atleast one bounded non-constant P-average function on

N.

Proof. Let h be a bounded P’-average function, write h = hy — hy as in Lemma 3,
since h takes both positive and negative values by the assumption, h; and ho are positive.
Suppose hy = Ahy. Then h = (XA — 1)hg, contradicting the assumption that h takes both
positive and negative values on N. Since h; and ho are non-proportional, by Corollary 3,
there is atleast one non-constant bounded P-average function on N.
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