
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
2025, Vol. 18, Issue 1, Article Number 5779
ISSN 1307-5543 – ejpam.com
Published by New York Business Global

1

On Length and Mean Fuzzy Ideals of Sheffer Stroke2

Hilbert Algebras3

Neelamegarajan Rajesh1, Tahsin Oner2, Aiyared Iampan3,∗, Ibrahim Senturk24

1 Department of Mathematics, Rajah Serfoji Government College, Thanjavur-613005, Tamil5

Nadu, India6

2 Department of Mathematics, Faculty of Science, Ege University, 35100 Izmir, Turkey7

3 Department of Mathematics, School of Science, University of Phayao, Mae Ka, Mueang,8

Phayao 56000, Thailand9

10

Abstract. This paper presents a detailed exploration of Sheffer stroke Hilbert algebras, introduc-
ing the innovative concepts of length fuzzy ideals and mean fuzzy ideals within an interval-valued
fuzzy framework. These new constructs extend classical ideal theory by incorporating fuzzy logic,
providing precise mathematical tools to analyze and measure membership gradations. Specifically,
the study establishes critical relationships between length fuzzy ideals and mean fuzzy ideals, their
hierarchical subsets, and their implications for algebraic consistency and computational logic. Key
findings demonstrate that length fuzzy ideals align closely with interval-valued fuzzy subsets, while
mean fuzzy ideals offer a unique averaging perspective for understanding ideal structures. These
contributions significantly advance the field of fuzzy algebra, offering theoretical insights and po-
tential applications in computational logic, uncertainty modeling, and algorithmic design.
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1. Introduction15

Hilbert algebras, often referred to as implicative algebras, are algebraic structures16

that extend the classical operations of logic. These algebras are typically defined by a17

set of axioms involving a binary operation, the Sheffer stroke, which is a generalization18

of the NAND operation in propositional logic. The study of Hilbert algebras is integral19

to understanding non-classical logics, modal logics, and lattice theory, offering essential20

insights into the foundational structure of logical systems [3].21

The Sheffer stroke is a fundamental element in both classical and non-classical logic22

due to its property as a functionally complete operation [13]. This means it can operate by23
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itself without requiring any other logical operators to form a comprehensive logical system.24

In simpler terms, every logical axiom can be restated using just the Sheffer stroke. This25

capability greatly simplifies the manipulation and control of various properties within26

the logical system it creates. Moreover, it is noteworthy that the axioms of Boolean27

algebra, which correspond to classical propositional logic, can be entirely represented28

using the Sheffer stroke. This highlights the Sheffer stroke’s foundational importance and29

its versatility within both logical and algebraic systems.30

The Sheffer stroke has been utilized in various algebraic structures, such as Boolean31

algebras, basic algebras, MV-algebras, BCK-algebras, MTL-algebras and ortholattices,32

among others, and is also explored within fuzzy contexts (see [1, 4–7, 9–12]). In 2021,33

Oner et al. [6] extended the Sheffer stroke to Hilbert algebras, defining the Sheffer stroke34

Hilbert algebra and studying its various properties. In [5], they introduced the concepts35

of a deductive system and filter for Sheffer stroke Hilbert algebras and explored their36

fuzzification. Additionally, Oner et al. [6] presented the idea of an ideal in Sheffer stroke37

Hilbert algebras and analyzed its properties.38

The field of fuzzy logic, introduced by [15], broadens classical logic by incorporating39

truth values that range continuously between 0 and 1, rather than being restricted to40

binary true/false values. This flexibility makes fuzzy logic particularly useful in scenarios41

involving uncertainty and imprecision. Integrating fuzzy logic with Hilbert algebras results42

in the concept of fuzzy ideals, where the elements of an ideal can have varying degrees of43

membership rather than being limited to crisp values. This extension offers a more refined44

approach to analyzing the algebraic properties of Hilbert algebras [2].45

A recent innovation in the theory of fuzzy ideals is the introduction of length-fuzzy46

ideals. This concept enhances the classical definition of an ideal in Sheffer stroke Hilbert al-47

gebras by associating a fuzzy function that measures the “length” or degree of membership48

of elements within an ideal. This new perspective provides a more nuanced understanding49

of the structure and behavior of these algebras, enriching the classical theory with elements50

of fuzzy logic [8]. The application of length-fuzzy ideals allows for a more refined analysis51

of ideals with fuzzy characteristics, enabling better modeling of systems with inherent52

uncertainty or imprecision. By using fuzzy functions to measure membership degrees, this53

approach is applicable in decision-making processes under ambiguity, the design of algo-54

rithms for complex computations, and the study of structures in systems with incomplete55

or vague data. Integrating fuzzy logic into classical theory not only deepens its theoretical56

base but also extends its applicability to fields such as computer science, engineering, and57

areas involving uncertain or imprecise information processing.58

This paper examines the properties and characteristics of length-fuzzy ideals in Sheffer59

stroke Hilbert algebras. By investigating these properties, the goal is to provide fresh per-60

spectives on the theoretical foundation of Hilbert algebras and their potential applications61

in fields such as logic, computer science, and beyond. The concepts of length fuzzy ideals62

and mean fuzzy ideals are introduced in the context of Sheffer stroke Hilbert algebras, and63

their properties are analyzed. The paper further explores the relationships between length64

fuzzy ideals (and mean fuzzy ideals) and traditional ideals. Additionally, it discusses how65

length fuzzy ideals (and mean fuzzy ideals) are related to upper and lower level subsets66
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based on the length (or mean) of a fuzzy structure within Sheffer stroke Hilbert algebras.67

2. Preliminaries68

Sheffer stroke Hilbert algebras represent an important algebraic system in the study69

of logic and lattice theory. These algebras are characterized by the inclusion of the Sheffer70

stroke (NAND) operation, a fundamental logical connectives in Boolean algebra. By71

extending classical Hilbert algebras with this operation, Sheffer stroke Hilbert algebras72

provide a powerful framework for investigating logical structures, with applications in73

fuzzy logic, decision-making, and computational theory. Their study enhances both the74

theoretical understanding of algebraic systems and their practical applications in modeling75

uncertainty and imprecision.76

Definition 1. [13] The operation | in a groupoid A = (A, |) is referred to as the Sheffer77

stroke or Sheffer operation if it satisfies the following condition: for all c, b, d ∈ A,78

(S1) c|b = b|c,
(S2) (c|c)|(c|b) = b,
(S3) c|((b|d)|(b|d)) = ((c|b)|(c|b))|b,
(S4) (c|((c|c)|(b|b)))|(c|((c|c)|(b|b))) = c.

To improve the clarity of this manuscript on Sheffer stroke Hilbert algebras, we will79

adopt the following notation throughout:80

p|(q|q) = pq.

Definition 2. [6] A Sheffer stroke Hilbert algebra (abbreviated SHA) refers to a groupoid81

A = (A, |, 0) equipped with a Sheffer stroke operation | and 0 is the fixed element in A,82

and it must satisfy the following conditions: for all p, q, r ∈ A,83

(1) (p|(qr|pq))|((pq)(pr)|(pq)(pr)) = pp,84

(2) pq = qp ⇒ p = q.85

Proposition 1. [6] Let A = (A, |, 0) be an SHA. Then the binary relation p ≤ q if and86

only if pq = 1 is a partial order on A.87

Definition 3. [6] Let A = (A, |, 0) be an SHA. A nonempty subset G of A is called an88

ideal of A if for all p, q ∈ A,89

(1) 0 ∈ G,90

(2) pq ∈ G and q ∈ G ⇒ p ∈ G.91
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3. Length fuzzy ideals of Sheffer stroke Hilbert algebras92

This paper introduces the concept of length fuzzy ideals in Sheffer stroke Hilbert93

algebras and examines their associated properties. It establishes the connections between94

length fuzzy ideals and conventional ideals. Furthermore, it explores the relationships95

between length fuzzy ideals and the upper and lower level subsets of the length in an96

interval-valued fuzzy structure within Sheffer stroke Hilbert algebras.97

From now on, unless stated otherwise, we denote an SHA by A = (A, |, 0).98

Definition 4. A fuzzy structure (A, f) of A is defined as:99

(1) a fuzzy ideal of A of type 1 (simply a 1-fuzzy ideal of A) if100

(∀p ∈ A)(f(0) ≥ f(p)), (1)

(∀p, q ∈ A)(f(p) ≥ min{f(pq), f(q)}). (2)

(2) a fuzzy ideal of A of type 2 (simply a 2-fuzzy ideal of A) if101

(∀p ∈ A)(f(0) ≤ f(p)), (3)

(∀p, q ∈ A)(f(p) ≤ min{f(pq), f(q)}). (4)

(3) a fuzzy ideal of A of type 3 (simply a 3-fuzzy ideal of A) if102

(∀p ∈ A)(f(0) ≥ f(p)), (5)

(∀p, q ∈ A)(f(p) ≥ max{f(pq), f(q)}). (6)

(4) a fuzzy ideal of A of type 4 (simply a 4-fuzzy ideal of A) if103

(∀p ∈ A)(f(0) ≤ f(p)), (7)

(∀p, q ∈ A)(f(p) ≤ max{f(pq), f(q)}). (8)

Definition 5. [14] Given an interval-valued fuzzy structure (A, f̃) over A, we define a
fuzzy structure (A, f̃l) on A as follows:

f̃l : A → [0, 1]; p 7→ f̃sup(p)− f̃inf(p),

which is referred to as the length of f̃ .104

Definition 6. An interval-valued fuzzy structure (A, f̃) over A is referred to as a length105

1-fuzzy (resp., 2-fuzzy, 3-fuzzy, 4-fuzzy) ideal of A if the fuzzy structure (A, f̃l) is a 1-fuzzy106

(resp., 2-fuzzy, 3-fuzzy, 4-fuzzy) ideal of A.107

Proposition 2. Given an interval-valued fuzzy structure (A, f̃) on A, the following state-108

ments hold.109



N. Rajesh, T. Oner, A. Iampan, I. Senturk / Eur. J. Pure Appl. Math, 18 (1) (2025), 5779 5 of 18

(1) If (A, f̃) is a length k-fuzzy ideal of A for k ∈ {1, 3}, then

(∀p, q ∈ A)(p ≤ p ⇒ f̃l(p) ≥ f̃l(p)).

(2) If (A, f̃) is a length k-fuzzy ideal of A for k ∈ {2, 4}, then

(∀p, q ∈ A)(p ≤ q ⇒ f̃l(p) ≤ f̃l(q)).

Proof. Let p, q ∈ A be such that p ≤ q. If (A, f̃) is a length k-fuzzy ideal of A for110

k ∈ {1, 3}, then111

f̃l(p) ≥ min{f̃l(pq), f̃l(q)}
= min{f̃l(0), f̃l(q)}
= f̃l(q)

and112

f̃l(p) ≤ max{f̃l(pq), f̃l(q)}
= max{f̃l(0), f̃l(q)}
= f̃l(q).

If (A, f̃) is a length k-fuzzy ideal of A for k ∈ {2, 4}, then113

f̃l(p) ≥ min{f̃l(pq), f̃l(q)}
= min{f̃l(0), f̃l(q)}
= f̃l(q)

and114

f̃l(p) ≤ max{f̃l(pq), f̃l(q)}
= max{f̃l(0), f̃l(q)}
= f̃l(q).

Theorem 1. For any interval-valued fuzzy structure (A, f̃) on A, the following assertions115

are true:116

(1) Every length 3-fuzzy ideal of A is also a length 1-fuzzy ideal of A.117

(2) Every length 2-fuzzy ideal of A is also a length 4-fuzzy ideal of A.118

Proof. (1) Let (A, f̃) be a length 3-fuzzy ideal of A and p, q ∈ A. Then119

f̃l(p) ≥ max{f̃l(pq), f̃l(q)}
≥ min{f̃l(pq), f̃l(q)}.

Hence, (A, f̃) is a length 1-fuzzy ideal of A.120

(2) Let (A, f̃) be a length 2-fuzzy ideal of A and p, q ∈ A. Then121

f̃l(p) ≤ min{f̃l(pq), f̃l(q)}
≤ max{f̃l(pq), f̃l(q)}.

Hence, (A, f̃) is a length 4-fuzzy ideal of A.122
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Theorem 2. Given an ideal S of A and B1, B2 ∈ P ([0, 1]), let (A, f̃) be an interval-valued
fuzzy structure over A given by

f̃ : A → P ([0, 1]); p 7→
{
B2 if p ∈ S,
B1 otherwise.

(1) If B1 ⊂ B2, then (A, f̃) is a length 1-fuzzy ideal of A.123

(2) If B2 ⊂ B1, then (A, f̃) is a length 4-fuzzy ideal of A.124

Proof. If p ∈ S, then f̃(p) = B2 and so

f̃l(p) = f̃sup(p)− f̃inf(p) = sup f̃(p)− inf f̃(p) = supB2 − inf B2.

If p /∈ S, then f̃(p) = B1 and so

f̃l(p) = f̃sup(p)− f̃inf(p) = sup f̃(p)− inf f̃(p) = supB1 − inf B1.

(1) Assume that B1 ⊂ B2. Then supB2 − inf B2 ≥ supB1 − inf B1. Since 0 ∈ I,125

f̃l(0) = f̃sup(0)− f̃inf(0) = supB2 − inf B2 ≥ f̃l(p) for all p ∈ A.126

Case 1: Let pq, q ∈ S. Then f̃l(p
q) = supB2 − inf B2 and f̃l(q) = supB2 − inf B2.127

Thus, min{f̃l(pq), f̃l(q)} = supB2 − inf B2. Since S is an ideal of A, p ∈ S and so128

f̃l(p) = supB2 − inf B2. Thus, f̃l(p) = supB2 − inf B2 = min{f̃l(pq), f̃l(q)}.129

Case 2: Let pq, q /∈ S. Then f̃l(p
q) = supB1 − inf B1 and f̃l(q) = supB1 − inf B1, so130

min{f̃l(pq), f̃l(q)} = supB1 − inf B1. Thus, f̃l(p) ≥ supB1 − inf B1 = min{f̃l(pq), f̃l(q)}.131

Case 3: Let pq /∈ S and q ∈ S. Then f̃l(p
q) = supB1 − inf B1 and f̃l(q) = supB2 −132

inf B2, so min{f̃l(pq), f̃l(q)} = supB1−inf B1. Thus, f̃l(p) ≥ supB1−inf B1 = min{f̃l(pq), f̃l(q)}.133

Case 4: Let pq ∈ S and q /∈ S. Then f̃l(p
q) = supB2 − inf B2 and f̃l(q) = supB1 −134

inf B1, so min{f̃l(pq), f̃l(q)} = supB1−inf B1. Thus, f̃l(p) ≥ supB1−inf B1 = min{f̃l(pq), f̃l(q)}.135

Hence, f̃l is a 1-fuzzy ideal of A and so (A, f̃) is a length 1-fuzzy ideal of A.136

(2) Assume that B2 ⊂ B1. Then supB2 − inf B2 ≤ supB1 − inf B1. Since 0 ∈ I,137

f̃l(0) = f̃sup(0)− f̃inf(0) = supB2 − inf B2 ≤ f̃l(p) for all p ∈ A.138

Case 1: Let pq, q ∈ S. Then f̃l(p
q) = supB2 − inf B2 and f̃l(q) = supB2 − inf B2.139

Thus, max{f̃l(pq), f̃l(q)} = supB2 − inf B2. Since S is an ideal of A, x ∈ S and so140

f̃l(p) = supB2 − inf B2. Thus, f̃l(p) = supB2 − inf B2 = max{f̃l(pq), f̃l(q)}.141

Case 2: Let pq, q /∈ S. Then f̃l(p
q) = supB1 − inf B1 and f̃l(q) = supB1 − inf B1, so142

max{f̃l(pq), f̃l(q)} = supB1 − inf B1. Thus, f̃l(p) ≤ supB1 − inf B1 = max{f̃l(pq), f̃l(q)}.143

Case 3: Let pq /∈ S and q ∈ S. Then f̃l(p
q)) = supB1 − inf B1 and f̃l(q) =144

supB2 − inf B2, so max{f̃l(pq), f̃l(q)} = supB1 − inf B1. Thus, f̃l(p) ≤ supB1 − inf B1 =145

max{f̃l(pq), f̃l(q)}.146

Case 4: Let pq ∈ S and q /∈ S. Then f̃l(p
q) = supB2 − inf B2 and f̃l(q) = supB1 −147

inf B1, so max{f̃l(pq), f̃l(q)} = supB1−inf B1. Thus, f̃l(p) ≤ supB1−inf B1 = max{f̃l(pq), f̃l(q)}.148

Hence, f̃l is a 4-fuzzy ideal of A and so (A, f̃) is a length 4-fuzzy ideal of A.149
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Definition 7. Let (A, f) be a fuzzy structure in A. For any t ∈ [0, 1], the sets

U(f, t) = {p ∈ A : f(p) ≥ t},

L(f, t) = {p ∈ A : f(p) ≤ t},

are called upper t-level subset and lower t-level subset of f , respectively.150

Theorem 3. An interval-valued fuzzy structure (A, f̃) over A is a length 1-fuzzy ideal of151

A if and only if the set U(f̃l, t) is an ideal of A for all t ∈ [0, 1] with U(f̃l, t) ̸= ∅.152

Proof. Assume that an interval-valued fuzzy structure (A, f̃) over A is a length 1-fuzzy153

ideal of A and let t ∈ [0, 1] be such that U(f̃ , t) is nonempty. Obviously, 0 ∈ U(f̃ , t). Let154

p, q ∈ A be such that pq ∈ U(f̃ , t) and q ∈ U(f̃ , t). Then f̃l(p
q) ≥ t and f̃l(q) ≥ t, which155

imply from (2) that f̃l(p) ≥ min{f̃l(pq), f̃l(q)} ≥ t. Hence, p ∈ U(f̃ , t), and therefore156

U(f̃ , t) is an ideal of A.157

Conversely, suppose that U(f̃l, t) is an ideal of A for all t ∈ [0, 1] with U(f̃l, t) ̸= ∅. If158

f̃l(0) < f̃l(k) for some k ∈ A, then k ∈ U(f̃l, f̃l(k)) and hence U(f̃l, f̃l(k)) is an ideal of A.159

Thus, 0 ∈ U(f̃l, f̃l(k)), and so f̃l(0) ≥ f̃l(k). This is a contradiction, and thus f̃l(0) ≥ f̃l(p)160

for all p ∈ A. Assume that there exist k, l ∈ A such that f̃l(k) < min{f̃l(kl), f̃l(l)}.161

Taking t = min{f̃l(kl), f̃l(l)} implies that k ∈ U(f̃l, t). Since U(f̃l, t) is an ideal of A,162

a ∈ U(f̃l, t). Hence, f̃l(k) ≥ t = min{f̃l(kl), f̃l(l)}, which is a contradiction. Hence,163

f̃l(p) ≥ min{f̃l(pq), f̃l(q)} for all p, q ∈ A. Therefore, (A, f̃) is a length 1-fuzzy ideal of A.164

Corollary 1. If (A, f̃) is a length 3-fuzzy ideal of A, then the set U(f̃l, t) is an ideal of A165

for all t ∈ [0, 1] with U(f̃l, t) ̸= ∅.166

Proof. It is straightforward by Theorems 1 and 3.167

Theorem 4. An interval-valued fuzzy structure (A, f̃) over A is a length 4-fuzzy ideal of168

A if and only if the set L(f̃l, t) is an ideal of A for all t ∈ [0, 1] with L(f̃l, t) ̸= ∅.169

Proof. Assume that an interval-valued fuzzy structure (A, f̃) over A is a length 4-fuzzy170

ideal of A and let t ∈ [0, 1] be such that L(f̃ , t) is nonempty. Obviously, 0 ∈ L(f̃ , t). Let171

p, q ∈ A be such that pq ∈ L(f̃ , t) and q ∈ L(f̃ , t). Then f̃l(p
q) ≤ t and f̃l(q) ≤ t, which172

imply from (8) that f̃l(p) ≤ min{f̃l(pq), f̃l(q)} ≤ t. Hence, p ∈ L(f̃ , t), and therefore173

L(f̃ , t) is an ideal of A.174

Conversely, suppose that L(f̃l, t) is an ideal of A for all t ∈ [0, 1] with L(f̃l, t) ̸= ∅. If175

f̃l(0) > f̃l(k) for some k ∈ A, then k ∈ L(f̃l, f̃l(k)) and hence L(f̃l, f̃l(k)) is an ideal of A.176

Thus, 0 ∈ L(f̃l, f̃l(k)), and so f̃l(0) ≤ f̃l(k). This is a contradiction, and thus f̃l(0) ≤ f̃l(p)177

for all p ∈ A. Assume that there exist k, l ∈ A such that f̃l(k) > max{f̃l(kl), f̃l(l)}.178

Taking t = max{f̃l(kl), f̃l(l)} implies that k ∈ L(f̃l, t). Since L(f̃l, t) is an ideal of A,179

k ∈ L(f̃l, t). Hence, f̃l(k) ≤ t = max{f̃l(kl), f̃l(l)}, which is a contradiction. Hence,180

f̃l(p) ≤ max{f̃l(pq), f̃l(q)} for all p, q ∈ A. Therefore, (A, f̃) is a length 4-fuzzy ideal of A.181
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Corollary 2. If (A, f̃) is a length 2-fuzzy ideal of A, then the set L(f̃l, t) is an ideal of A182

for all t ∈ [0, 1] with L(f̃l, t) ̸= ∅.183

Proof. It is straightforward by Theorems 1 and 4.184

Theorem 5. If (A, f̃) is an interval-valued fuzzy structure over A in which (A, f̃inf) is185

constant and (A, f̃sup) is a 1-fuzzy ideal of A, then (A, f̃) is a length 1-fuzzy ideal of A.186

Proof. Assume that (A, f̃) is an interval-valued fuzzy structure over A in which (A, f̃inf)187

is constant and (A, f̃sup) is a 1-fuzzy ideal of A. Let p, q ∈ A. Since (A, f̃inf) is constant,188

f̃inf(p) = f̃inf(0) for all p ∈ A. Since (A, f̃sup) is a 1-fuzzy ideal of A,189

(∀p ∈ A)(f̃sup(0) ≥ f̃sup(p)), (9)

(∀p, q ∈ A)(f̃sup(p) ≥ min{f̃sup(pq), f̃sup(q)}). (10)

Let p ∈ A. Then190

f̃l(0) = f̃sup(0)− f̃inf(0)

≥ f̃sup(p)− f̃inf(0)

= f̃sup(p)− f̃inf(p)

= f̃l(p).

Let p, q ∈ A. Then191

f̃l(p) = f̃sup(p)− f̃inf(p)

= f̃sup(p)− f̃inf(0)

≥ min{f̃sup(pq), f̃sup(q)} − f̃inf(0)

= min{f̃sup(pq)− f̃inf(0), f̃sup(q)− f̃inf(0)}
= min{f̃sup(pq)− f̃inf(p

q), f̃sup(q)− f̃inf(q)}
= min{f̃l(pq), f̃l(q)}.

Hence, (A, f̃l) is a 1-fuzzy ideal of A, that is, (A, f̃) is a length 1-fuzzy ideal of A.192

Theorem 6. If (A, f̃) is an interval-valued fuzzy structure over A in which (A, f̃inf) is193

constant and (A, f̃sup) is a 4-fuzzy ideal of A, then (A, f̃) is a length 4-fuzzy ideal of A.194

Proof. Assume that (A, f̃) is an interval-valued fuzzy structure over A in which (A, f̃inf)195

is constant and (A, f̃sup) is a 4-fuzzy ideal of A. Let p, q ∈ A. Since (A, f̃inf) is constant,196

we have f̃inf(p) = f̃inf(0) for all p ∈ A. Since (A, f̃sup) is a 4-fuzzy ideal of A, we have197

(∀p ∈ A)(f̃sup(0) ≤ f̃sup(p)), (11)

(∀p, q ∈ A)(f̃sup(p) ≤ max{f̃sup(pq), f̃sup(q)}). (12)
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Let p ∈ A. Then198

f̃l(0) = f̃sup(0)− f̃inf(0)

≤ f̃sup(p)− f̃inf(0)

= f̃sup(p)− f̃inf(p)

= f̃l(p).

Let p, q ∈ A. Then199

f̃l(p) = f̃sup(p)− f̃inf(p)

= f̃sup(p)− f̃inf(0)

≤ max{f̃sup(pq), f̃sup(p)} − f̃inf(0)

= max{f̃sup(pq)− f̃inf(0), f̃sup(q)− f̃inf(0)}
= max{f̃sup(pq)− f̃inf(p

q), f̃sup(q)− f̃inf(q)}
= max{f̃l(pq), f̃l(q)}.

Hence, (A, f̃l) is a 4-fuzzy ideal of A, that is, (A, f̃) is a length 4-fuzzy ideal of A.200

Corollary 3. If (A, f̃) is an interval-valued fuzzy structure over A in which (A, f̃inf) is201

constant and (A, f̃sup) is a 2-fuzzy ideal of A, then (A, f̃) is a length 4-fuzzy ideal of A.202

Proof. It is straightforward by Theorems 1 and 6.203

Corollary 4. For j ∈ {2, 4}, every (2(3), j)-hyperfuzzy ideal of A is a length 4-fuzzy ideal.204

Proof. It is straightforward by Theorem 6 and Corollary 3.205

Theorem 7. If (A, f̃) is an interval-valued fuzzy structure over A in which (A, f̃sup) is206

constant and (A, f̃inf) is a 4-fuzzy ideal of A, then (A, f̃) is a length 1-fuzzy ideal of A.207

Proof. Assume that (A, f̃) is an interval-valued fuzzy structure over A in which208

(A, f̃sup) is constant and (A, f̃inf) is a 4-fuzzy ideal of A. Let p, q ∈ A. Since (A, f̃sup) is209

constant, we have f̃sup(p) = f̃sup(0) for all p ∈ A. Since (A, f̃inf) is a 4-fuzzy ideal of A,210

we have211

(∀p ∈ A)(f̃inf(0) ≤ f̃inf(p)), (13)

(∀p, q ∈ A)(f̃inf(p) ≤ max{f̃inf(pq), f̃inf(q)}). (14)

Let p ∈ A. Then212

f̃l(0) = f̃sup(0)− f̃inf(0)

≥ f̃sup(0)− f̃inf(p)

= f̃sup(p)− f̃inf(p)

= f̃l(p).
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Let p, q ∈ A. Then213

f̃l(p) = f̃sup(p)− f̃inf(p)

= f̃sup(0)− f̃inf(p)

≥ f̃sup(0)−max{f̃inf(pq), f̃inf(q)}
= min{f̃sup(0)− f̃inf(p

q), f̃sup(0)− f̃inf(q)}
= min{f̃sup(pq)− f̃inf(p

q), f̃sup(q)− f̃inf(q)}
= min{f̃l(pq), f̃l(q)}.

Hence, (A, f̃l) is a 1-fuzzy ideal of A, that is, (A, f̃) is a length 1-fuzzy ideal of A.214

Corollary 5. If (A, f̃) is an interval-valued fuzzy structure over A in which (A, f̃sup) is215

constant and (A, f̃inf) is a 2-fuzzy ideal of A, then (A, f̃) is a length 1-fuzzy ideal of A.216

Proof. It is straightforward by Theorems 1 and 7.217

Corollary 6. For i ∈ {2, 4}, every (i, 2(3))-hyperfuzzy ideal of A is a length 1-fuzzy ideal.218

Proof. It is straightforward by Theorem 7 and Corollary 5.219

Theorem 8. If (A, f̃) is an interval-valued fuzzy structure over A in which (A, f̃sup) is220

constant and (A, f̃inf) is a 1-fuzzy ideal of A, then (A, f̃) is a length 4-fuzzy ideal of A.221

Proof. Assume that (A, f̃) is an interval-valued fuzzy structure over A in which222

(A, f̃sup) is constant and (A, f̃inf) is a 1-fuzzy ideal of A. Let p, q ∈ A. Since (A, f̃sup) is223

constant, we have f̃sup(p) = f̃sup(0) for all p ∈ A. Since (A, f̃inf) is a 1-fuzzy ideal of A,224

we have225

(∀p ∈ A)(f̃inf(0) ≥ f̃inf(p)), (15)

(∀p, q ∈ A)(f̃inf(p) ≥ min{f̃inf(pq), f̃inf(q)}). (16)

Let p ∈ A. Then226

f̃l(0) = f̃sup(0)− f̃inf(0)

≤ f̃sup(0)− f̃inf(p)

= f̃sup(p)− f̃inf(p)

= f̃l(p).

Let p, q ∈ A. Then227

f̃l(p) = f̃sup(p)− f̃inf(p)

= f̃sup(0)− f̃inf(p)

≤ f̃sup(0)−min{f̃pinf(pq), f̃inf(q)}
= max{f̃sup(0)− f̃inf(p

q), f̃sup(0)− f̃inf(q)}
= max{f̃sup(pq)− f̃inf(p

q), f̃sup(qq)− f̃inf(q)}
= max{f̃l(pq), f̃l(q)}.

Hence, (A, f̃l) is a 4-fuzzy ideal of A, that is, (A, f̃) is a length 4-fuzzy ideal of A.228
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4. Mean fuzzy ideals of Sheffer stroke Hilbert algebras229

In this section, we introduce the concept of the mean of an interval-valued fuzzy230

structure within Sheffer stroke Hilbert algebras. We also define the notion of mean fuzzy231

ideals in these algebras and investigate their related properties. Furthermore, we establish232

the relationships between mean fuzzy ideals and traditional fuzzy ideals.233

Definition 8. [14] Given an interval-valued fuzzy structure (A, f̃) over A, we define a
fuzzy structure (A, f̃m) in A as follows:

f̃m : A → [0, 1]; p 7→ f̃sup(p) + f̃inf(p)

2
,

which is called the mean of f̃ .234

Definition 9. An interval-valued fuzzy structure (A, f̃) over A is called a mean 1-fuzzy235

(resp., 2-fuzzy, 3-fuzzy and 4-fuzzy) ideal of A if the fuzzy structure (A, f̃m) is a 1-fuzzy236

(resp., 2-fuzzy, 3-fuzzy and 4-fuzzy) ideal of A.237

Proposition 3. If (A, f̃) is a mean k-fuzzy ideal of A for k = 1, 3, then

(∀p ∈ A)(f̃m(0) ≥ f̃m(p)).

Proof. Let (A, f̃) be a mean k-fuzzy ideal of A for k = 1, 3 and p ∈ A. Then238

f̃m(0) =
f̃sup(0) + f̃inf(0)

2

≥ f̃sup(p) + f̃inf(p)

2
= f̃m(p).

Proposition 4. If (A, f̃) is a mean k-fuzzy ideal of A for k = 2, 4, then

(∀p ∈ A)(f̃m(0) ≤ f̃m(p)).

Proof. Let (A, f̃) be a mean k-fuzzy ideal of A for k = 2, 4 and p ∈ A. Then239

f̃m(0) =
f̃sup(0) + f̃inf(0)

2

≤ f̃sup(p) + f̃inf(p)

2
= f̃m(p).

Theorem 9. Every mean 3-fuzzy ideal of A is a mean 1-fuzzy ideal of A.240
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Proof. Let (A, f̃) be a mean 3-fuzzy ideal of A and p, q ∈ A. Then241

f̃m(p) =
f̃sup(p) + f̃inf(p)

2

=
f̃sup(p)

2
+

f̃inf(p)

2

≥ max

{
f̃sup(p

q)

2
,
f̃sup(q)

2

}
+max

{
f̃inf(p

q)

2
,
f̃inf(q)

2

}

≥ min

{
f̃sup(p

q)

2
,
f̃sup(q)

2

}
+min

{
f̃inf(p

q)

2
,
f̃inf(q)

2

}

= min

{
f̃sup(p

q) + f̃inf(p
q)

2
,
f̃sup(q) + f̃inf(q)

2

}
= min{f̃m(pq), f̃m(q)}.

Hence, (A, f̃) is a mean 1-fuzzy ideal of A.242

Theorem 10. Every mean 2-fuzzy ideal of A is a mean 4-fuzzy ideal of A.243

Proof. Let (A, f̃) be a mean 2-fuzzy ideal of A and p, q ∈ A. Then244

f̃m(p) =
f̃sup(p) + f̃inf(p)

2

=
f̃sup(p)

2
+

f̃inf(p)

2

≤ min

{
f̃sup(p

q)

2
,
f̃sup(q)

2

}
+min

{
f̃inf(p

q)

2
,
f̃inf(q)

2

}

≤ max

{
f̃sup(p

q)

2
,
f̃sup(q)

2

}
+max

{
f̃inf(p

q)

2
,
f̃inf(q)

2

}

= max

{
f̃sup(p

q) + f̃inf(p
q)

2
,
f̃sup(q) + f̃inf(q)

2

}
= max{f̃m(pq), f̃m(q)}.

Hence, (A, f̃) is a mean 4-fuzzy ideal of A.245

Theorem 11. Mean 2-fuzzy ideal and mean 3-fuzzy ideal of A coincide.246

Proof. It is straightforward by Theorems 9 and 10.247

Theorem 12. Given an ideal S of A and B1, B2 ∈ P ([0, 1]), let (A, f̃) be an interval-
valued fuzzy structure over A given by

f̃ : A → P ([0, 1]); p 7→
{
B2, if p ∈ S
B1, otherwise.
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(1) If supB2 ≥ supB1 and inf B2 ≥ inf B1, then (A, f̃) is a mean 1-fuzzy ideal of A.248

(2) If supB2 ≤ supB1 and inf B2 ≤ inf B1, then (A, f̃) is a mean 4-fuzzy ideal of A.249

Proof. If p ∈ S, then f̃(p) = B2 and so

f̃m(p) =
f̃sup(p) + f̃inf(p)

2
=

sup f̃(p) + inf f̃(p)

2
=

supB2 + inf B2

2
.

If p /∈ S, then f̃(p) = B1 and so

f̃m(p) =
f̃sup(p) + f̃inf(p)

2
=

sup f̃(p) + inf f̃(p)

2
=

supB1 + inf B1

2
.

(1) Assume that supB2 ≥ supB1 and inf B2 ≥ inf B1. Then

supB2 + inf B2

2
≥ supB1 + inf B1

2
.

Case 1: Let pq, q ∈ S. Then f̃m(pq) =
supB2 + inf B2

2
and fm(q) =

supB2 + inf B2

2
.250

Thus, min{f̃m(pq), f̃m(q)} =
supB2 + inf B2

2
. Since S is an ideal of A, we have p ∈ S and251

so f̃m(p) =
supB2 + inf B2

2
. Thus, f̃m(p) =

supB2 + inf B2

2
= min{f̃m(pq), f̃m(q)}.252

Case 2: Let pq, q /∈ S. Then f̃m(pq) =
supB1 + inf B1

2
and f̃m(q) =

supB1 + inf B1

2
, so253

min{f̃m(pq), f̃m(q)} =
supB1 + inf B1

2
. Thus, f̃m(p) ≥ supB1 + inf B1

2
= min{f̃m(pq), f̃m(q)}.254

255

Case 3: Let pq /∈ S and q ∈ S. Then f̃m(pq) =
supB1 + inf B1

2
and f̃m(q) =256

supB2 + inf B2

2
, so min{f̃m(pq), f̃m(q)} =

supB1 + inf B1

2
. Thus, f̃m(p) ≥ supB1 + inf B1

2
=257

min{f̃m(pq), f̃m(q)}.258

259

Case 4: Let pq ∈ S and q /∈ S. Then f̃m(pq) =
supB2 + inf B2

2
and f̃m(q) =260

supB1 + inf B1

2
, so min{f̃m(pq), f̃m(q)} =

supB1 + inf B1

2
. Thus, f̃m(p) ≥ supB1 + inf B1

2
=261

min{f̃m(pq), f̃m(q)}.262

Hence, f̃m is a 1-fuzzy ideal of A and so (A, f̃) is a mean 1-fuzzy ideal of A.263

(2) Assume that supB2 ≤ supB1 and inf B2 ≤ inf B1. Then

supB2 + inf B2

2
≤ supB1 + inf B1

2
.

Case 1: Let pq, q ∈ S. Then f̃m(pq) =
supB2 + inf B2

2
and f̃m(q) =

supB2 + inf B2

2
,264

so max{f̃m(pq), f̃m(q)} =
supB2 + inf B2

2
. Since S is an ideal of A, we have p ∈ S and so265

f̃m(p) =
supB2 + inf B2

2
. Thus, f̃m(p) =

supB2 + inf B2

2
= max{f̃m(pq), f̃m(q)}.266
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Case 2: Let pq, q /∈ S. Then f̃m(pq) =
supB1 + inf B1

2
and f̃m(q) =

supB1 + inf B1

2
, so267

max{f̃m(pq), f̃m(q)} =
supB1 + inf B1

2
. Thus, f̃m(p) ≤ supB1 + inf B1

2
= max{f̃m(pq), f̃m(q)}.268

Case 3: Let pq /∈ S and q ∈ S. Then f̃m(pq) =
supB1 + inf B1

2
and f̃m(q) =269

supB2 + inf B2

2
, so max{f̃m(pq), f̃m(q)} =

supB1 + inf B1

2
. Thus, f̃m(p) ≤ supB1 + inf B1

2
=270

max{f̃m(pq)), f̃m(q)}.271

Case 4: Let pq ∈ S and q /∈ S. Then f̃m(pq) =
supB2 + inf B2

2
and f̃m(q) =272

supB1 + inf B1

2
, so max{f̃m(pq), f̃m(q)} =

supB1 + inf B1

2
. Thus, f̃m(p) ≤ supB1 + inf B1

2
=273

max{f̃m(pq), f̃m(q)}.274

Hence, f̃m is a 4-fuzzy ideal of A and so (A, f̃) is a mean 4-fuzzy ideal of A.275

Theorem 13. An interval-valued fuzzy structure (A, f̃m) over A is a mean 1-fuzzy ideal276

of A if and only if the set U(f̃m, t) is an ideal of A for all t ∈ [0, 1] with U(f̃m, t) ̸= ∅.277

Proof. Assume that an interval-valued fuzzy structure (A, f̃m) over A is a mean 1-fuzzy278

ideal of A and let t ∈ [0, 1] be such that U(f̃m, t) is nonempty. Obviously, 0 ∈ U(f̃m, t).279

Let p, q ∈ A be such that pq ∈ U(f̃m, t) and q ∈ U(f̃m, t). Then f̃m(pq) ≥ t and f̃m(q) ≥ t,280

which imply from (2) that f̃m(p) ≥ min{f̃m(pq), f̃m(q)} ≥ t. Hence, p ∈ U(f̃m, t), and281

therefore U(f̃m, t) is an ideal of A.282

Conversely, suppose that U(f̃m, t) is an ideal of A for all t ∈ [0, 1] with U(f̃m, t) ̸= ∅.283

If f̃m(0) < f̃m(k) for some k ∈ A, then k ∈ U(f̃m, f̃m(k)) and hence U(f̃m, f̃m(k)) is an284

ideal of A. Thus, 0 ∈ U(f̃m, f̃m(k)), and so f̃m(0) ≥ f̃m(k). This is a contradiction,285

and thus f̃m(0) ≥ f̃m(p) for all p ∈ A. Assume that there exist k, l ∈ A such that286

f̃m(k) < min{f̃m(kl), f̃m(l)}. Taking t = min{f̃m(kl), f̃m(l)} implies that k ∈ U(f̃ , t). Since287

U(f̃m, t) is an ideal of A, we have k ∈ U(f̃ , t). Hence, f̃m(k) ≥ t = min{f̃m(kl), f̃m(k)},288

which is a contradiction. Hence, f̃m(p) ≥ min{f̃m(pq), f̃m(q)} for all p, q ∈ A. Therefore,289

(A, f̃m) is a mean 1-fuzzy ideal of A.290

Corollary 7. If (A, f̃) is a mean 3-fuzzy ideal of A, then U(f̃m, t) is an ideal of A for all291

t ∈ [0, 1] with U(f̃m, t) ̸= ∅.292

Proof. It is straightforward by Theorems 9 and 13.293

Theorem 14. An interval-valued fuzzy structure (A, f̃) over A is a mean 4-fuzzy ideal of294

A if and only if the set L(f̃m, t) is an ideal of A for all t ∈ [0, 1] with L(f̃m, t) ̸= ∅.295

Proof. Assume that an interval-valued fuzzy structure (A, f̃m) over A is a mean 4-fuzzy296

ideal of A and let t ∈ [0, 1] be such that L(f̃m, t) is nonempty. Obviously, 0 ∈ L(f̃m, t).297

Let p, q ∈ A be such that pq ∈ L(f̃m, t) and q ∈ L(f̃m, t). Then f̃m(pq) ≤ t and f̃m(q) ≤ t,298

which imply from (8) that f̃m(p) ≤ max{f̃m(pq), f̃m(q)} ≤ t. Hence, p ∈ L(f̃m, t), and299

therefore L(f̃m, t) is an ideal of A.300
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Conversely, suppose that L(f̃m, t) is an ideal of A for all t ∈ [0, 1] with L(f̃m, t) ̸= ∅.301

If f̃m(0) > f̃m(k) for some k ∈ A, then k ∈ L(f̃m, f̃m(k)) and hence L(f̃m, f̃m(k)) is an302

ideal of A. Thus, 0 ∈ L(f̃m, f̃m(k)), and so f̃m(0) ≤ f̃m(k). This is a contradiction, and303

thus f̃m(0) ≤ f̃m(p) for all p ∈ A. Assume that there exist k, l ∈ A such that f̃m(k) >304

max{f̃m(kl)), f̃m(l)}. Taking t = max{f̃m(kl), f̃m(l)} implies that k ∈ L(f̃m, t). Since305

L(f̃m, t) is an ideal of A, we have k ∈ L(f̃m, t). Hence, f̃m(k) ≤ t = max{f̃m(kl), f̃m(l)},306

which is a contradiction. Hence, f̃m(p) ≤ max{f̃m(pq), f̃m(q)} for all p, q ∈ A. Therefore,307

(A, f̃m) is a mean 4-fuzzy ideal of A.308

Corollary 8. If (A, f̃) is a mean 2-fuzzy ideal of A, then L(f̃m, t) is an ideal of A for all309

t ∈ [0, 1] with L(f̃m, t) ̸= ∅.310

Proof. It is straightforward by Theorems 1 and 14.311

Theorem 15. If (A, f̃) is an interval-valued fuzzy structure over A in which (A, f̃inf) is312

constant and (A, f̃sup) is a 1-fuzzy ideal of A, then (A, f̃) is a mean 1-fuzzy ideal of A.313

Proof. Assume that (A, f̃) is an interval-valued fuzzy structure over A in which (A, f̃inf)314

is constant and (A, f̃sup) is a 1-fuzzy ideal of A. Let p, q ∈ A. Since (A, f̃inf) is constant,315

we have f̃inf(p) = f̃inf(0) for all p ∈ A. Since (A, f̃sup) is a 1-fuzzy ideal of A, we have316

f̃sup(p) ≥ min{f̃sup(p), f̃sup(q)}. Thus,317

f̃m(p) =
f̃sup(p) + f̃inf(p)

2

=
f̃sup(p)

2
+

f̃inf(0)

2

≥ min

{
f̃sup(p

q)

2
+

f̃inf(q)

2

}
+

f̃inf(0)

2

= min

{
f̃sup(p

q)

2
+

f̃inf(0)

2
,
f̃sup(q)

2
+

f̃inf(0)

2

}

= min

{
f̃sup(p

q)) + f̃inf(p)

2
,
f̃sup(q) + f̃inf(q)

2

}
= min{f̃m(pq), f̃m(q)}.

Hence, (A, f̃m) is a 1-fuzzy ideal of A, that is, (A, f̃) is a mean 1-fuzzy ideal of A.318

Theorem 16. If (A, f̃) is an interval-valued fuzzy structure over A in which (A, f̃inf) is319

constant and (A, f̃sup) is a 4-fuzzy ideal of A, then (A, f̃) is a mean 4-fuzzy ideal of A.320

Proof. Assume that (A, f̃) is an interval-valued fuzzy structure over A in which (A, f̃inf)321

is constant and (A, f̃sup) is a 4-fuzzy ideal of A. Let p, q ∈ A. Since (A, f̃inf) is constant,322
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we have f̃inf(p) = f̃inf(0) for all p ∈ A. Since (A, f̃sup) is a 4-fuzzy ideal of A, we have323

f̃sup(p) ≤ max{f̃sup(p), f̃sup(q)}. Thus,324

f̃m(p) =
f̃sup(p) + f̃inf(p)

2

=
f̃sup(p)

2
+

f̃inf(0)

2

≥ min

{
f̃sup(p

q)

2
+

f̃inf(q)

2

}
+

f̃inf(0)

2

= min

{
f̃sup(p

q)

2
+

f̃inf(0)

2
,
f̃sup(q)

2
+

f̃inf(0)

2

}

= min

{
f̃sup(p

q) + f̃inf(p
q)

2
,
f̃sup(q) + f̃inf(q)

2

}
= min{f̃m(pq), f̃m(q)}.

Hence, (A, f̃m) is a 4-fuzzy ideal of A, that is, (A, f̃) is a mean 4-fuzzy ideal of A.325

Theorem 17. If (A, f̃) is an interval-valued fuzzy structure over A in which (A, f̃sup) is326

constant and (A, f̃inf) is a 4-fuzzy ideal of A, then (A, f̃) is a mean 4-fuzzy ideal of A.327

Proof. Assume that (A, f̃) is an interval-valued fuzzy structure over A in which328

(A, f̃sup) is constant and (A, f̃inf) is a 4-fuzzy ideal of A. Let p, q ∈ A. Since (A, f̃sup) is329

constant, we have f̃sup(p) = f̃sup(0) for all p ∈ A. Since (A, f̃inf) is a 4-fuzzy ideal of A,330

we have f̃inf(p) ≤ max{f̃inf(p), f̃inf(q)}. Thus,331

f̃m(p) =
f̃sup(p) + f̃inf(p)

2

=
f̃sup(0) + f̃inf(p)

2

=
f̃sup(0)

2
+

f̃inf(p)

2

≤ f̃sup(0)

2
+ max

{
f̃sup(p

q)

2
,
f̃inf(q)

2

}

= max

{
f̃sup(0)

2
+

f̃inf(p
q)

2
,
f̃sup(0)

2
+

f̃inf(q)

2

}

= max

{
f̃sup(p

q)) + f̃inf(p
q)

2
,
f̃sup(q) + f̃inf(q)

2

}
= max{f̃m(pq), f̃m(q)}.

Hence, (A, f̃m) is a 4-fuzzy ideal of A, that is, (A, f̃) is a mean 4-fuzzy ideal of A.332
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Theorem 18. If (A, f̃) is an interval-valued fuzzy structure over A in which (A, f̃sup) is333

constant and (A, f̃inf) is a 1-fuzzy ideal of A, then (A, f̃) is a mean 1-fuzzy ideal of A.334

Proof. Assume that (A, f̃) is an interval-valued fuzzy structure over A in which335

(A, f̃sup) is constant and (A, f̃inf) is a 1-fuzzy ideal of A. Let p, q ∈ A. Since (A, f̃sup) is336

constant, we have f̃sup(p) = f̃sup(0) for all p ∈ A. Since (A, f̃inf) is a 1-fuzzy ideal of A,337

we obtain f̃inf(p) ≥ min{f̃inf(p), f̃inf(q)}. Thus,338

f̃m(p) =
f̃sup(p) + f̃inf(p)

2

=
f̃sup(0) + f̃inf(p)

2

=
f̃sup(0)

2
+

f̃inf(p)

2

≥ f̃sup(0)

2
+ min

{
f̃inf(p

q)

2
,
f̃inf(q)

2

}

= min

{
f̃sup(0)

2
+

f̃sup(p
q)

2
,
f̃sup(0)

2
,
f̃sup(q)

2

}
= min{ f̃sup(0) + f̃sup(p

q)

2
,
f̃sup(0) + f̃sup(q)

2
}

= min{f̃m(pq), f̃m(q)}.

Hence, (A, f̃m) is a 1-fuzzy ideal of A, that is, (A, f̃) is a mean 1-fuzzy ideal of A.339

5. Conclusion340

This study extends the theoretical foundation of Sheffer stroke Hilbert algebras by341

introducing and analyzing the notions of length fuzzy ideals and mean fuzzy ideals within342

an interval-valued fuzzy structure. By defining these concepts, the research provides a343

more nuanced understanding of fuzzy logic applications in algebraic structures, empha-344

sizing the relationships between fuzzy ideals and traditional ideals. The characterizations345

and properties of length fuzzy ideals and mean fuzzy ideals demonstrate their alignment346

with upper and lower level subsets, offering a framework to explore the gradations of347

membership functions. Furthermore, the findings highlight the potential of these fuzzy348

constructs in bridging algebraic theory with practical applications in logic, computer sci-349

ence, and uncertainty modeling. Future studies could investigate the applicability of these350

ideas in more complex fuzzy systems or extend the analysis to other algebraic frameworks,351

broadening the impact and utility of these innovative concepts.352
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