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Abstract. This work aims to study and analyze non-linear time-fractional systems that de-
scribe non-linear surface waves propagating and evolution equations utilizing a novel analytic-
approximate technique based upon integrating two schemes with adequacy, high accuracy, straight-
forward of implementation, computations, and elasticity in handling with more sophisticated dif-
ferential equations, which is named the Laplace transform fractional residual power series method
within the Caputo-fractional derivative framework. The proposed technique had been implemented
on Drinfeld-Sokolov-Wilson equation (DS-WE) and coupled viscous Burgers’ equation (CVBE).The
approximation solutions obtained by the LT-RFPS technique are expressed in an infinite conver-
gent fractional series form toward the exact solution for the integer fractional order. To show the
accuracy and efficiency of the proposed method, tabular simulations of the produced approxima-
tions and their absolute errors are performed, along with 2D- and 3D-representative graphs. The
physical interpretation of solution behaviors is also discussed for various ρ values over an adequate
duration. Additionally, a numerical comparison is performed with other existing techniques to
show the superiority of the LT-RFPS technique. Consequently, the findings of the present work
emphasize that the integration between LT and RFPS schemes has led us to a straightforward,
effective, and accurate iterative analytical technique for investigating a wide variety of non-linear
mathematical fractional models.
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1. Introduction

Fractional calculus (FC) theory is not a new mathematical theory, that dates to the
1600s. It is a branch of mathematical analysis that generalizes the concepts of ordinary
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derivatives and integrals to fractional orders. In the last two decades, FC has attained
much concentration in both theoretical and applied sciences and has been thoroughly stud-
ied as a valuable instrument for portraying genetic characteristics, memory effects, and
material transfer processes in various interconnected in physics, engineering, and finance,
including wave propagation, rheology, shallow water flow, bioengineering, acoustic trans-
mission, entropy, thermodynamics,and so on for more details see [14, 29, 34, 35, 38, 40].
The key characteristic of FC is their non-local property, which emphasizes that the fu-
ture state relies on both the present state and all previous states, and hence it provides
a more flexible approach to modeling complicated fractional order systems. In contrast
to ordinary calculus theory, which has a single definition and intelligible geometric and
physical explanations. As FC theory has developed, various operators of derivatives and
integrals of fractional orders have been identified in the literature to characterize the behav-
iors of numerous models structures. Consequently, many researchers have contributed to
this field, proposing various operators, including those of Caputo and Fabrizio, Atangana
and Baleanu, Grünwald, Letnikov, Riemann, Liouville, conformable, Riesz, and Caputo
[12, 16, 17, 26, 39, 43].

Recently, numerous scientific studies have focused on addressing emerging nonlinear
fractional models in physical systems using computer simulations and symbolic program-
ming that allows researchers to model the inherent memory and hereditary properties
better often found in physical systems governed by fractional dynamics which include a
set of differential equations of fractional orders. By these techniques, researchers aim to
understand and predict nonlinear behaviors with greater accuracy,and simplify the deriva-
tion of analytical solutions of the posed systems. In this context, there is no standard,
accurate method that provides a closed-form analytical solution for handling nonlinear
fractional systems. Consequently, there is a pressing need for advanced and effective
methods to investigate analytical solutions for these models, which motivates us to pursue
numerical solutions.

For the past century, finding exact solutions for both linear and nonlinear partial dif-
ferential equations of fractional orders and analyzing them has been a critical challenge.
Scientists have worked to develop and refine new analytical and numerical methods, to
tackle these situations and to handle numerous complex categories of differential equa-
tions of fractional orders appearing in physics and applied mathematics by deriving ana-
lytical solutions that show a high level of accuracy when compared to the exact solutions
[4, 6, 23, 27]. Among these notable methods, homotopy analysis method, homotopy per-
turbation method, Adomian decomposition method, reproducing kernel method, Shehu
transform method, reduced differential transforms method, q-homotopy analysis method,
spectral and collocation methods, sine-Gordon expansion method, tanh-function method,
and fractional power series method, consult [2, 8, 15, 24, 32, 37, 42, 48] for a detailed
discussion.

Solving ordinary, partial, integral, and integro-differential equations frequently involves
the use of integral transformations. Utilizing these transformations enables an efficient
strategyfor resolving initial and boundary value problems. A wide range of scientists have
investigated the effects of various integral transforms on different categories of differential
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equations [11, 33, 47].The literature documents a wide range of integral transformations.
One of the most common is the Laplace transformation (LT) operator which is a crucial
mathematical tool used to tackle problems involving differential equations by altering them
from one shape to another. Overall, it is influential in resolving ordinary or partial DEs
via reducing a target DE into a system of algebraic equations.

The residual fractional power series (RFPS) technique is a highly effective iterative
computational algorithm specifically layouts to generate analytical-approximate solutions
of sophisticated nonlinear fractional orders partial DEs occurring in physics, engineering,
and technology, which is based on combining fractional-residual function with generalizing
of Taylor expansion for an arbitrary order. This approach was applied to view the approx-
imation solution in convergent series expansion for both non-linear and linear ordinary
DEs and fractional-order DEs. Further improvements were made to the RFPS approach
and has been applied in a variety of physical applications where many works have been
published [3, 7, 28, 30, 31].In [3], the RFPS technique is introduced to predict multivari-
able power series solutions for seventh-order, nonlinear fractional-order partial DEs in the
meaning of conformable FD. Using a fuzzy RFPS method [7], the exact and approximation
solutions are derived for a certain class of fuzzy initial value problems of fractional order.
Khalouta and Kadem [28] proposed the RFPS technique for obtaining the approximate
analytical solutions of nonlinear time-fractional wave-like equations with variable coeffi-
cients in the sense of Caputo-FD. Kumar et al. [31] implemented a new technique based
on the generalized Taylor’s series formula to find the approximate analytical solution of
time-fractional diffusion equations.The fractional diffusion model is investigated using es-
timated time and spatial dependency of the concentration of tumor cells in the framework
of the RFPS principle. [30]

Real-world problems can be thoroughly depicted theoretically using ordinary or frac-
tional order partial DEs, which are inherently influenced by numerous external forces that
make their behavior more complex and unpredictable. Therefore, the most effective way
to handle such circumstances is to examine these problems by numerical approximations
to attain the model that provides an acceptable solution. Mostly, there is no conventional
technique that generates an analytical solution or closed-form traveling wave solutions
for nonlinear partial DEs of fractional order. Therefore, it is imperative to investigate
analytical and numerical solutions to these equations using the newest, dependable, and
advanced methods. Instigated by the arguments expressed before, the inspiration for this
analysis is to design and apply an advanced analytical method based on two distinguished
methodologies RFPS algorithm and LT instrument, so-called LT-RFPS method. It was
proposed by El-Ajou [19]and proven as a superb attractive mathematical tool for enhanc-
ing the performance of the RFPS algorithm for constructing exact solitary solutions to
the nonlinear time-fractional dispersive PDEs straightforwardly and effectively. It has ap-
plied to a wide range of problems, including DEs, PDEs of fractional order [5, 20, 21]. In
[21] both linear and nonlinear neutral Caputo-fractional pantograph differential equations
have been considered to create exact and approximate series solutions using the LT-RFPS
method. Utilizing the LT-RFPS [5] different systems of linear and non-linear fractional
initial value problems are solved analytically. El-Ajou and Al-Zhou [20] have applied the
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LT-RFPS method to create series solutions of a hyperbolic system of time-PDEs with
variable coefficients in the light of Caputo FD sense.

The advantages of this method are that it effectively combines the strengths of the
Laplace transform, residual error, and fractional power series expansion, making it highly
accurate for solving linear and nonlinear differential equations. It avoids linearization
and small-parameter assumptions, and it does not require Adomian polynomials or he’s
polynomials. Also, the LT-RFPS method depends basically on the concept of the limit
in discovering the series components, not by using FDs approaches, as the other existing
analytical method. As a result, a recursive formula can be found for the components of the
series, which in turn contributes to reducing the computational iterations and effort spent
in discovering the approximate solution pattern in the form of a fast convergent series. On
the other hand, the proposed method may face convergence issues for fractional equations
with singularities or highly nonlinear terms. Additionally, its accuracy heavily depends
on the proper specification of initial or boundary conditions.

The main objective of the current analysis is to expand the use of the Caputo LT-
RFPS method, which offers an efficient approach to obtain analytical approximate series
solutions for a class of coupled systems that arise in physics. To accomplish this, we
consider the following coupled partial DEs of fractional orders system in the form:

The non-linear Caputo time-fractional order Drinfeld-Sokolov-Wilson equation (DS-
WE):

Dρφ (ς, τ) + nψ (ς, τ)Dςψ (ς, τ) = 0,

Dρψ (ς, τ) + cD3
ςψ (ς, τ) + pφ (ς, τ)Dςψ (ς, τ) + rψ (ς, τ)Dςφ (ς, τ) = 0, ρ ∈ (0, 1] (1)

where n, c , ρ and r are non-zero constants. In the 1980s, Wilson [49] provided a basic
description of DSWE after Drinfeld and Sokolov [18] initially introduced it. DSWE is one
of the special shapes of Lax-paired non-linear partial DEs, which is utilized to elucidate
non-linear surface waves propagating on the horizontal seabed [46]. It has an endless
number of conservation regulations in this system. It is interesting to note that it con-
tains static soliton solutions, which interact with the moving solitons without undergoing
deformation [36].

The non-linear Caputo time-fractional order coupled viscous burgers’ equation (CVBE)
system:

Dρφ (ς, τ)−D2
ςφ (ς, τ)− ωφ (ς, τ)Dςφ (ς, τ) + qDς (φ (ς, τ)ψ (ς, τ)) = 0,

Dρψ (ς, τ)−D2
ςψ (ς, τ)− γψ (ς, τ)Dςψ (ς, τ) + ϑDς (φ (ς, τ)ψ (ς, τ)) = 0, ρ ∈ (0, 1] , (2)

where ω and γ real constants, q and ϑ are arbitrary constants depending on system
parameters. Esipov initially investigated the CVBE system as a mathematics problem of
poly-dispersive sedimentation [22]. It is extremely important to explain ocean waves, which
is considered one of non-linear evolution equation[25]. Additionally, CVBE is employed
to observe the physical issues of hydrodynamic turbulence, vorticity transport, plasma
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physics, shock wave theory in a viscous fluid, and wave processes in a thermoelastic medium
[44].

Herein, both DS-WE and CVBE systems are considered subject to the following initial
conditions:

φ (ς, 0) = φ (ς) and ψ (ς, 0) = ψ (ς) . (3)

The pattern of the present work is structured as follows: In the next Section, a quick
overview of certain essential terms and ideas related to FC theory, LT instrument, and
new fractional series expansion that we will use in present disquisition. In Section 2, the
future recommended technique for prediction analytical-approximate solutions of govern-
ing fractional models is described. Next, applications of the scheme to DS-WE and CVBE
systems in the light of Caputo differentiation with proper initial conditions are stated.
Finally, summarize our essential findings.

2. Preliminaries

In this portion, the most common notion of Caputo-FD is highlighted. It also shortly
states the theory and features of the LT-RFPS under the Caputo-FD instrument to ac-
complish the theoretical side of the present disquisition.

Definition 1. [14] Let φ (ς, τ) : I × [0,∞) → R. The LT of φ is defined as:

Lρ {φ (ς, τ)} = Φ(ς, ξ) =

∫ ∞

0
φ (ς, τ) e−ξτdτ, τ > σ, (4)

where σ is the exponential order of φ. Also, the inverse LT of the new function Φ (ς, ξ)
is defined as:

L−1
ρ {Φ (ς, ξ)} = φ (ς, τ) =

∫ δ+i∞

δ−i∞
Φ (ς, ξ) eξτdξ, δ = Re (ξ) > δ0. (5)

Lemma 1. [19] Suppose that φ (ς, τ),and ψ (ς, τ), are two exponential orders, piecewise
continuous functions on I × [0,∞) . Then, the following characteristics are hold:

(i) lim
ξ→∞

ξΦ (ς, ξ) = φ (ς, 0).

(ii) Lρ {aφ (ς, τ) + bψ (ς, τ)} = aΦ (ς, ξ) + bΨ (ς, ξ), for non-zero constants any a, and
b.

(iii) L−1
ρ {aΦ (ς, ξ) + bΨ (ς, ξ)} = aφ (ς, τ) + bψ (ς, τ).

(iv) Lρ {Dρφ (ς, τ)} = ξρΦ (ς, ξ)−
j−1∑
i=0

ξρ−i−1∂
(i)
t ϕ (ς, 0) , j − 1 < ρ ≤ j, j ∈ N.



M. Alaroud, F. Aldosari / Eur. J. Pure Appl. Math, 18 (1) (2025), 5784 6 of 25

(v) Lρ

{
Dkρφ (ς, τ)

}
= ξkρΦ (ς, ξ)−

k−1∑
i=0

ξ(k−i)ρ−1∂iρτ ϕ (ς, 0) , 0 < ρ ≤ 1, k ∈ N.

where Lρ {φ (ς, ξ)} = Φ(ς, ξ), and Lρ {ψ (ς, ξ)} = Ψ (ς, ξ).

Definition 2. [35, 38] The ρ-th time FD in the Caputo sense of φ (ς, τ) : I× [0,∞) → R,
is given by:

Dρφ (ς, τ) = Jm−ρ
(
∂mς φ (ς, τ)

)
: ρ ∈ (m− 1,m) , m ∈ N, (6)

where Jm−ρis the Riemann-Liouville integral approach [35, 38].

Theorem 1. [19] Let φ (ς, τ) is to exponential order, and piecewise continuous function
on I × [0,∞) , then the new transformation function Φ (ς, ξ), may be formulated as in the
following Laplace fractional power series (LFPS) expansion:

Φ (ς, ξ) =
∞∑
i=0

φi(ς)

ξiρ+1
ξ > 0, ρ ∈ (0, 1] , (7)

where φi(ς) = Diρφ (ς, 0).

Remark 1. [19] The inverse LT of the new LFPS expansion Φ (ς, ξ) in Theorem 1 takes
the following infinite series shape:

φ (ς, τ) =
∞∑
i=0

φi(ς)

Γ (iρ+ 1)
τ jρ, τ ≥ 0, ρ ∈ (0, 1] . (8)

Hereinafter, the road map to design the LT-RFPS method for generating analytical
approximate series solutions of general nonlinear systems of partial DEs of fractional order
considering the Caputo-FD sense.

3. Configuration for the LT-RFPS Technique

A powerful analytical approximation mathematical tool was suggested and proved by
[19] especially to produce convergence series approximate solutions for a set of complex
non-linear partial DEs that occur in physics. The primary idea of the present technique is
based on increasing the effectiveness of FRPS algorithm via blending it with the LT tool.
Numerous physical problems have been studied using the suggested methodology, including
fractional generalized long wave equations [50], fractional Caudrey-Dodd Gibbon equation
[1], fractional Kuramoto-Sivashinsky equation [10], the Buckmaster and Korteweg-de Vries
(KdV) models [41]. The suggested method’s set of guidelines is based on transforming the
governing equation into the LT space, generating an approximation series solution to the
new Laplace equation, and then using the inverse LT to produce an approximation series
solution to the governing problem. The detecting of the expansion parameters can be
carried out through a small number of calculations, with no requiring many iterations of
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FD calculations during the solution stages as in the methodology of the RFPS algorithm.
Our purpose in this portion of the research is to demonstrate the fundamental idea of the
solution approach. In this context, let’s look at the following general nonlinear systems of
partial DEs of fractional order.

Dρφ+ ℓ1 (φ,ψ) +N1 (φ,ψ) = 0,

Dρψ + ℓ2(φ,ψ) +N2(φ,ψ) = 0, ρ ∈ (0, 1] (9)

with the initial conditions

φ (ς, 0) = φ(ς), and ψ (ς, 0) = ψ (ς) , (10)

where φ = φ (ς, τ) and, ψ = ψ (ς, τ) for τ ≥ 0, ς ∈ I are two unknown analytical
functions to be explored, ℓ1, ℓ2 are two linear differential operators and N1,N2 are two
non-linear differential operators, Dρ shows the Caputo-FD of order ρ. It is presumed that
the solution exists and is unique.

The following is a sequential explanation of the main stages of the LT-RFPS technique:
Step I: Running the LT tool Lρ, on the coupled equations in (9) with initial conditions
10 and using Lemma 1, part (iv), we get

Φ (ς, ξ) =
φ (ς)

ξ
− 1

ξρ
Lρ

{
ℓ1L−1

ρ (Φ,Ψ)
}
− 1

ξρ
Lρ

{
N1L−1

ρ (Φ,Ψ)
}
= 0,

Ψ (ς, ξ) =
ψ (ς)

ξ
− 1

ξρ
Lρ

{
ℓ2L−1

ρ (Φ,Ψ)
}
− 1

ξρ
Lρ

{
N2L−1

ρ (Φ,Ψ)
}
= 0. (11)

Step II: According to the methodology of the LT-RFPS technique, the new transfor-
mation functions have the following LFPS expansions:

Φ (ς, ξ) =
∞∑
n=0

φn(ς)

ξnρ+1
ξ > 0,

Ψ (ς, ξ) =

∞∑
n=0

ψn(ς)

ξnρ+1
ξ > 0. (12)

Hither, utilizing the facts lim
ξ→∞

ξΦ (ς, ξ) = φ(ς), and lim
ξ→∞

ξΨ (ς, ξ) =ψ(ς), the j-th trun-

cation LFPS expansions can be expressed as:

Φj (ς, ξ) =
φ(ς)

ξ
+

j∑
n=1

φn(ς)

ξnρ+1
ξ > 0,

Ψj (ς, ξ) =
ψ(ς)

ξ
+

j∑
n=1

ψn(ς)

ξnρ+1
ξ > 0, (13)
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Step III: The unknown functions φn (ς) , and ψn(ς) for n = 1, 2, . . . , j, can be located
throughout resolving of limξ→∞ ξ1+jρLρ (res (Φj (ς, ξ)))= 0, and limξ→∞ ξ1+jρLρ (res (Ψj (ς, ξ)))= 0,
where Lρ

(
resΦj

)
, and Lρ

(
resΨj

)
are recognizing as the jth-Laplace fractional residual

error (L-FRE) functions of (11) and given by:

Lρ (res(Φj(ς, ξ))) = Φj(ς, ξ)−
φ(ς)

ξ
+

1

ξρ
Lρ

{
ℓ1L−1

ρ (Φj ,Ψj)
}
+

1

ξρ
Lρ

{
N1L−1

ρ (Φj ,Ψj)
}
,

Lρ (res(Ψj(ς, ξ))) = Ψj(ς, ξ)−
ψ(ς)

ξ
+

1

ξρ
Lρ

{
ℓ2L−1

ρ (Φj ,Ψj)
}
+

1

ξρ
Lρ

{
N2L−1

ρ (Φj ,Ψj)
}
.

(14)

Indeed, the following is a list of important helpful facts about LFRE functions that
are fundamental to determining the approximated solutions: as stated in [19]:

(i) limj→∞ Lρ (res (Φj (ς, ξ)))=Lρ (res (Φ (ς, ξ))), and limj→∞ Lρ (res (Ψj (ς, ξ)))=Lρ (res (Ψ (ς, ξ))),
ς∈I, ξ > 0.

(ii) Lρ (res (Φ (ς, ξ)))= 0, and Lρ (res (Ψj (ς, ξ))) = 0, ς∈I, ξ > 0.

(iii) limς→∞ ξ1+jρLρ (res (Φj (ς, ξ)))= 0, and limξ→∞ ξ1+jρLρ (res (Ψj (ς, ξ)))= 0, for j= 1, 2 . . ..
and ς∈I, ξ > 0.

Step IV: Substitute the j-th truncation LFPS expansions in Step II into the jth-L-
FRE functions of in Step III such that Lρ (res (Φj (ς, ξ))), and Lρ (res (Ψj (ς, ξ))) could
be expressd in terms of LFPS exapnsions.
Step V: Multiply the resultant algebraic equations in Step IV by the factor ξ1+jρ, and
then looking the solutions of limς→∞ ξ1+jρLρ (res (Φj (ς, ξ)))= 0, and
limξ→∞ ξ1+jρLρ (res (Ψj (ς, ξ)))= 0, for j= 1, 2 . . ., for the requiered unkown functions
φj(ς), and ψj(ς).
Step VI: Collect the obtained results φj(ς), and ψj(ς) from the previous step and replac-
ing them with the j-th truncation LFPS expansions of (13) to attain the j-th approximated
solutions of (11). At j tends to infinity, one can get the approximated closed-form solutions
Φ (ς, ξ), and Ψ (ς, ξ) of (9).
Step VII: The analytical-approximated solutions φ (ς, τ) and, ψ (ς, τ) of the studied prob-
lem (9) can be predicted by performing the invers LT tool of the attained results in Step
VI.

To test our proposed method. The next section shows the applicability and perfor-
mance of the LT-RFPS method of two coupled non-linear fractional evolution systems.

4. Solutions for Governing Models.

In the study of non-linear physical problems occurring in nature, solutions investiga-
tion of non-linear evolution problems of fractional order plays a significant role. In this
portion, the Caputo LT-RFPS technique is applied to solve common coupled non-linear
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fractional evolution systems in physical sciences, including time-fractional DS-WE and
time-fractional CVBE systems. Besides, the simulation of these problems is discussed.
The Mathematica computing system is used to do the calculations and generate a visual
representation of solution behavior.

4.1. Solution of non-linear Caputo time-fractional DS-WE [13] is consid-
ered in the present piece can be investigated along with following
initial conditions:

φ (ς, 0) = 3sech2(ς) , and ψ (ς, 0) = 2sech(ς) (15)

As stated in the last discussion. Considering the posed model (1) along with initial
conditions (3). Then, the Laplace equations of (1) will be in the form:

Φ (ς, ξ)− φ (ς)

ξ
+

c

ξρ
Lρ

(
L−1
ρ {Ψ}DςL−1

ρ {Ψ}
)
= 0,

Ψ (ς, ξ)− ψ (ς)

ξ
+
n

ξρ
Lρ

(
D3

ςL−1
ρ {Ψ}

)
+

p

ξρ
Lρ

(
L−1
ρ {Φ}DςL−1

ρ {Ψ}
)

+
r

ξρ
Lρ

(
L−1
ρ {Ψ}DςL−1

ρ {Φ}
)
= 0. (16)

To obtain the j-th truncation LFPS expansions series solution of (16), we expand the
functions Φj (ς, ξ), and Ψj (ς, ξ) as follows:

Φj (ς, ξ) =
φ (ς)

ξ
+

j∑
n=1

φn(ς)

ξnρ+1
,

Ψj (ς, ξ) =
ψ (ς)

ξ
+

j∑
n=1

ψn(ς)

ξnρ+1
. (17)

Subsequently, the jth-L-FRE functions of (16) will be identified as follows:

Lρ

(
resΦj (ς, ξ)

)
=

j∑
n=1

φn(ς)

ξnρ+1

+
c

ξρ
Lρ

(
L−1
ρ

{
ψ(ς)

ξ
+

j∑
n=1

ψn(ς)

ξnρ+1

}
L−1
ρ

{
Dς

(
ψ(ς)

ξ
+

j∑
n=1

ψn(ς)

ξnρ+1
+

j∑
n=1

ψn(ς)

ξnρ+1

)})
, (18)

Lρ

(
resΨj (ς, ξ)

)
=

j∑
n=1

ψn(ς)

ξnρ+1
+
n

ξρ
Lρ

(
L−1
ρ

{
D3

ς

(
ψ(ς)

ξ
+

j∑
n=1

ψn(ς)

ξnρ+1

)})
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+
b

ξρ
Lρ

(
L−1
ρ

{
φ(ς)

ξ
+

j∑
n=1

φn(ς)

ξnρ+1

}
L−1
ρ

{
Dς

(
ψ(ς)

ξ
+

j∑
n=1

ψn(ς)

ξnρ+1

)})

+
r

ξρ
Lρ

(
L−1
ρ

{
ψ(ς)

ξ
+

j∑
n=1

ψn(ς)

ξnρ+1

}
L−1
ρ

{
Dς

(
φ(ς)

ξ
+

j∑
n=1

φn(ς)

ξnρ+1

)})
.

By multiplying both sides of (18) by ξjρ+1, and by performing a few algebraic simpli-
fications, yields

ξjρ+1Lρ (resΦj (ς, ξ)) = cΓ ((j − 1)ρ+ 1)

j−1∑
i=0

ψi(ς)ψ
′
−i+j−1(ς)

Γ (iρ+ 1)Γ (((j − 1)− i)ρ+ 1)
+ φj(ς),

(19)

ξjρ+1Lρ

(
resΨj (ς, ξ)

)
= nΓ ((j − 1)ρ+ 1)

j−1∑
i=0

φi(ς)ψ
′
−i+j−1(ς)

Γ (iρ+ 1)Γ (((j − 1)− i)ρ+ 1)
+

pΓ ((j − 1)ρ+ 1)

j−1∑
i=0

ψi(ς)φ
′
−i+j−1(ς)

Γ (iρ+ 1)Γ (((j − 1)− i)ρ+ 1)
+ rψ

(3)
j−1(ς) + ψj(ς).

To this end, we can resolve (19) for φj(ς), and ψj(ς), as the following reccurrence relations:

φj (ς) = −cΓ ((j − 1)ρ+ 1)

j−1∑
i=0

ψi(ς)ψ
′
−i+j−1(ς)

Γ (iρ+ 1)Γ (((j − 1)− i)ρ+ 1)
, (20)

ψj (ς) =−

(
nΓ ((j − 1) ρ+ 1)

j−1∑
i=0

φi (ς)ψ
′
−i+j−1 (ς)

Γ (iρ+ 1)Γ ((j − 1− i) ρ+ 1)

)

+ pΓ ((j − 1) ρ+ 1)

j−1∑
i=0

ψi (ς)φ
′
−i+j−1 (ς)

Γ (iρ+ 1)Γ ((j − 1− i) ρ+ 1)

+ rψ
(3)
j−1 (ς) .

Corollary 1. For ρ ∈ (0, 1], the analytical-approximate series solutions of non-linear
Caputo time-fractional DS-WE (1) and (3) can be expressed as follows:

φ (ς, τ) = φ (ς) +
∞∑
j=1

(
−cΓ ((j − 1)ρ+ 1)

j−1∑
i=0

ψi(ς)ψ
′
−i+j−1(ς)

Γ (iρ+ 1)Γ (((j − 1)− i)ρ+ 1)

)
τ jρ

Γ (jρ+ 1)
,
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ψ (ς, τ) =ψ (ς)−
∞∑
j=1

(
nΓ ((j − 1) ρ+ 1)

j−1∑
i=0

φi (ς)ψ
′
−i+j−1 (ς)

Γ (iρ+ 1)Γ ((j − 1− i) ρ+ 1)

+ pΓ ((j − 1) ρ+ 1)

j−1∑
i=0

ψi (ς)φ
′
−i+j−1 (ς)

Γ (iρ+ 1)Γ ((j − 1− i) ρ+ 1)

+ rψ
(3)
j−1 (ς)

) τ jρ

Γ (jρ+ 1)
. (21)

Proof. According to principle of the LT-RFPS scheme for predicting the analytical-
approximate series solution of the governing model, firstly, the LFPS solutions have been
obtained in Laplace space of (20) as follows:

Φ (ς, ξ) =
φ (ς)

ξ
+

∞∑
j=1

(
−cΓ ((j − 1)ρ+ 1)

j−1∑
i=0

ψi(ς)ψ
′
−i+j−1(ς)

Γ (iρ+ 1)Γ (((j − 1)− i)ρ+ 1)

)
1

ξjρ+1
,

Ψ (ς, ξ) =
ψ (ς)

ξ

−
∞∑
j=1

(
nΓ ((j − 1) ρ+ 1)

j−1∑
i=0

φi (ς)ψ
′
−i+j−1 (ς)

Γ (iρ+ 1)Γ ((j − 1− i) ρ+ 1)

+ pΓ ((j − 1) ρ+ 1)

j−1∑
i=0

ψi (ς)φ
′
−i+j−1 (ς)

Γ (iρ+ 1)Γ ((j − 1− i) ρ+ 1)

+ rψ
(3)
j−1 (ς)

) 1

ξjρ+1
. (22)

The analytically approximated series solution φ (ς, τ), and ψ (ς, τ) of (1) and (3) may
be attained in terms of Taylor’s infinite series expansions by running the inverse LT in-
strument into (22) as the following shapes:

φ (ς, τ) = φ (ς) +

∞∑
j=1

(
−cΓ ((j − 1)ρ+ 1)

j−1∑
i=0

ψi(ς)ψ
′
−i+j−1(ς)

Γ (iρ+ 1)Γ (((j − 1)− i)ρ+ 1)

)
τ jρ

Γ (jρ+ 1)
,

ψ (ς, τ) =ψ (ς)

−
∞∑
j=1

(
nΓ ((j − 1) ρ+ 1)

j−1∑
i=0

φi (ς)ψ
′
−i+j−1 (ς)

Γ (iρ+ 1)Γ ((j − 1− i) ρ+ 1)

+ pΓ ((j − 1) ρ+ 1)

j−1∑
i=0

ψi (ς)φ
′
−i+j−1 (ς)

Γ (iρ+ 1)Γ ((j − 1− i) ρ+ 1)
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+ rψ
(3)
j−1 (ς)

) τ jρ

Γ (jρ+ 1)
. (23)

Now, considering the initial conditions (15) into the obtained recurrence relations (20),
set c = 3, n = p = 2, and r = 1, the 3rd- approximated solutions of the posed model (15)
will be formulated as:

φ3 (ς, τ) = 3 sech2(ς)

+
(
12 sech2(ς) tanh (ς)

) τρ

Γ (ρ+ 1)

+
(
24 sech4(ς) (cosh (2ς)− 2)

) τ2ρ

Γ (2ρ+ 1)

+ sech4 (ς) tanh (ς)

(
72Γ (2ρ+ 1)

Γ 2 (ρ+ 1)

+
24Γ (2ρ+ 1) cosh (2ς)

Γ 2 (ρ+ 1)
+ 48 cosh (2ς)− 336

)
τ3ρ

Γ (3ρ+ 1)

ψ3 (ς, τ) = 2 sech(ς)

+ (4 sech(ς) tanh (ς))
τρ

Γ (ρ+ 1)

+
(
4 sech3(ς) (cosh (2ς)− 3)

) τ2ρ

Γ (2ρ+ 1)

+ tanh (ς) sech5 (ς) (438− 232cosh (2ς) + 2cosh (4ς)

−240Γ (2ρ+ 1)

Γ 2 (ρ+ 1)
+

96Γ (2ρ+ 1) cosh (2ς)

Γ 2 (ρ+ 1)

)
τ3ρ

Γ (3ρ+ 1)
(24)

Furthermore, the values of j-th truncation approximate solutions for each j ≥ 4 may
be constructed in a similar manner. In what follows, the achieved j-terms in the shape
of an infinite series guides us to the analytical-approximate solutions φ (ς, τ), and ψ (ς, τ)
for the studied model. Particularly, the solutions of fractional DW-SE (1) at ρ = 1 a can
be expressed in the forms:

φ (ς, τ) = 3 sech2(ς)

+
(
12 sech2(ς) tanh (ς)

)
τ

+
(
24 sech4(ς) (cosh (2ς)− 2)

) τ2
2
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+ sech4 (ς) tanh (ς) (96 cosh (2ς)− 292)
τ3

6
+ . . .

ψ (ς, τ) = 2 sech(ς)

+ (4 sech(ς) tanh (ς)) τ

+
(
4 sech3(ς) (cosh (2ς)− 3)

) τ2
2

+ tanh (ς) sech5 (ς) (2 cosh (4ς) + 40 cosh (2ς)− 48)
τ3

6
+ . . . (25)

which agree with the first three terms of the Maclaurin series of the exact solutions
φ (ς, τ) = 3sech2(ς − 2τ) , and ψ (ς, τ) = 2sech(ς − 2τ) [9].

In what follows, some comparisons of numerical simulations of LT-ERPS outcomes
are provided in Tables 1, and 2. The exact and 4-th approximate solution φ4 (ς, τ), for
the fractional DW-SE (1) as well the absolute errors |φ− φ4| are listed in Table 1 based
on the future our method and MGMLFM [9]. In Table 2, absolute errors |φ− φ4| are
given for different for diverse values of ρ. Here, high precision up to eleven digits in the
outcomes is observed even in four-term approximation, which indicates the validity of
the present procedure. Moreover, some graphic representations achieved by the proposed
approach for the governing DW-SE (1) are displayed in Figures 1, 2 and 3. The acquired
4-th approximate solutions are portrayed in Figure 1 for diverse values of ρ that are
given as: 1, 0.88, and 0.77, respectively with fix ς = 3 over a temporal domain τ ∈
[0, 1], where the moving of fractional curves of the solutions for the target model (1) are
provided in 2D-diagram. From this diagram, one may note the immense impact of the
fractional-order parameter ρ on the solutions’ coincide and homogeneity concerning the
time variable. In Figure 2, 3D-Surface plots of the exact versus the obtained solutions
φ4(ς, τ), and ψ4(ς, τ) behavior’ via our used method over a large enough space-time domain
(ς, τ) = [−5, 5]× [0, 0.1] for ρ ∈ {0.85, 1}, are presented.Further, the coupled 3D-Surface
plots of exact versus obtained solutions φ4(ς, τ), and ψ4(ς, τ) over a large enough space-
time domain (ς, τ) = [−3, 3] × [0, 0.1] for diverse values of ρ are presented in Figure 3.
Clearly, the diagrams highlight that the outcomes of the LT-RFPS approach are almost
identical to one another and align with the exact solutions stated in reference [46] for
the studied fractional DS-WE (1). In summary, the outcomes indicate that even with
fewer iterations, LT-RFPS solutions demonstrate high accuracy and efficiency compared
to other well-known numerical solvers. These are the most crucial features of the presented
technique, which provides more precise and reliable approximations over the considered
domain.



M. Alaroud, F. Aldosari / Eur. J. Pure Appl. Math, 18 (1) (2025), 5784 14 of 25

Table 1: Comparisons of numerical results of the fractional DS-WE (1.1) at ρ = 1.

τ φ(ς, τ)
LT-FRPS MGMLFM [46]

φ4(ς, τ) |φ− φ4| φ4(ς, τ) |φ− φ4|

0.02 0.0005901158348 0.0005901158198 1.50329× 10−11 0.000590116 1.40822× 10−10

0.04 0.0006392596155 0.0006392591279 4.87584× 10−10 0.000639261 1.26010× 10−9

0.06 0.0006929455290 0.0006929417537 3.75334× 10−9 0.000692949 3.70758× 10−9

0.08 0.0007501642395 0.0007501482041 1.60354× 10−8 0.000750173 8.37625× 10−8

0.1 0.0008126347567 0.0008125851368 4.96199× 10−8 0.000812651 1.62924× 10−8

τ ψ(ς, τ)
LT-FRPS MGMLFM [46]

ψ4(ς, τ) |ψ − ψ4| ψ4(ς, τ) |ψ − ψ4|

0.02 0.0280503317828 0.0280503317597 2.28943× 10−11 0.0280504 5.44042× 10−8

0.04 0.0291496797578 0.0291496724634 7.37439× 10−10 0.0291952 2.32744× 10−7

0.06 0.0303863023564 0.0303862947963 7.56003× 10−9 0.0303869 5.60288× 10−7

0.08 0.0316262388864 0.0316262149734 2.29116× 10−8 0.0316273 1.06608× 10−6

0.1 0.0329167587856 0.0329166853227 7.34584× 10−8 0.0329185 1.78351× 10−6

Table 2: Comparisons of |φ− φ4|, for fractional DS-WE (1.1) at different values of ρ = 1 with fix ς = 5.

τ ρ = 1 ρ = 0.95 ρ = 0.85 ρ = 0.75

0.02 1.50329× 10−11 1.1633362824× 10−5 4.5246511821× 10−5 1.0123340205× 10−4

0.04 4.87584× 10−10 2.1232437835× 10−5 8.1287772719× 10−5 1.7985154209× 10−4

0.06 3.75334× 10−9 3.0975754334× 10−5 1.1821394808× 10−4 2.6161210872× 10−4

0.08 1.60354× 10−8 4.1300429669× 10−5 1.5776568399× 10−4 3.5023773725× 10−4

0.1 4.96199× 10−8 5.2433675062× 10−5 2.0083445301× 10−4 4.4753470392× 10−4

[a] [b]
Figure 1: Fractional-order curves of φ4 (ς, τ) and ψ4 (ς, τ) for the time-fractional DS-WE (1) at various values
of ρ, where ς = 5 and τ ∈ [0, 1].

4.2. Solution of non-linear Caputo time-fractional order CVBE system
[13] is considered in the present piece can be investigated along with
following initial conditions:

φ (ς, 0) = ψ (ς, 0) = sin (ς) . (26)
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[a] [b]
Figure 2: Surface plots of exact versus obtained solutions φ4 (ς, τ) and ψ4 (ς, τ) for the time-fractional DS-WE
(1) at various values of ρ, where ς ∈ [−5, 5] and τ ∈ [0, 0.1].

[ρ = 1] [ρ = 0.9]

[ρ = 0.7] [ρ = 0.5]
Figure 3: Surface plots of the obtained solutions φ4 (ς, τ) and ψ4 (ς, τ) for the time-fractional DS-WE (1) at
various values of ρ.

For integer case ρ = 1, the exact solutions of (2) and (26) are φ (ς, τ) = sin(ς) e−τ . Con-
sidering the LT-RFPS layout that was discussed in the earlier application. The governing
model can be solved directly without the requirement for any worthy restrictions on the
model’s structure. Consequently, the jth-L-FRE functions of the converted coupled CVBE
system (2) into Laplace space will be identified as follows:
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Lρ

(
resΦj (ς, ξ)

)
= Φj(ς, ξ)−

φ(ς)

ξ
− 1

ξρ
∂ςςΦj(ς, ξ)

− ω

ξρ
Lρ

(
L−1
ρ {Φj}L−1

ρ {∂ςΦj}
)

+
q

ξρ
(
Lρ

(
L−1
ρ {Φj}L−1

ρ {∂ςΨj}
)

+Lρ

(
L−1
ρ {Ψj}L−1

ρ {∂ςΦj}
))
,

Lρ

(
resΨj (ς, ξ)

)
= Ψj(ς, ξ)−

ψ(ς)

ξ
− 1

ξρ
∂ςςΨj(ς, ξ)

− γ

ξρ
Lρ

(
L−1
ρ {Ψj}L−1

ρ {∂ςΨj}
)

+
ϑ

ξρ
(
Lρ

(
L−1
ρ {Φj}L−1

ρ {∂ςΨj}
)

+Lρ

(
L−1
ρ {Ψj}L−1

ρ {∂ςΦj}
))
. (27)

where the the j-th truncation Φj(ς, ξ), and Ψj (ς, ξ) are provided in (13). After recall
these j-th LFPS expansions into the jth-truncation L-FRE functions in (27), and then
multiply the resultant equations by the factor ξjρ+1, and solving them for the unknown
functions φj (ς), and ψj (ς) one can reach to the following reccurence relations:

φj(ς) = φ′′
j−1(ς)− q Γ ((j − 1)ρ+ 1)

j−1∑
i=0

ψi(ς)φ
′
−i+j−1(ς)

Γ (iρ+ 1)Γ ((−i+ j − 1)ρ+ 1)

− q Γ ((j − 1)ρ+ 1)

j−1∑
i=0

φi(ς)ψ
′
−i+j−1(ς)

Γ (iρ+ 1)Γ ((−i+ j − 1)ρ+ 1)

+ ω Γ ((j − 1)ρ+ 1)

j−1∑
i=0

φi(ς)φ
′
−i+j−1(ς)

Γ (iρ+ 1)Γ ((−i+ j − 1)ρ+ 1)
,

ψj(ς) = ψ′′
j−1(ς)− ϑΓ ((j − 1)ρ+ 1)

j−1∑
i=0

ψi(ς)φ
′
−i+j−1(ς)

Γ (iρ+ 1)Γ ((−i+ j − 1)ρ+ 1)

− ϑΓ ((j − 1)ρ+ 1)

j−1∑
i=0

φi(ς)ψ
′
−i+j−1(ς)

Γ (iρ+ 1)Γ ((−i+ j − 1)ρ+ 1)

+ γ Γ ((j − 1)ρ+ 1)

j−1∑
i=0

ψi(ς)ψ
′
−i+j−1(ς)

Γ (iρ+ 1)Γ ((−i+ j − 1)ρ+ 1)
. (28)

Corollary 2. For ρ ∈ (0, 1], the analytical-approximated series solutions of the non-linear
Caputo time-fractional order coupled CVBE system (2) and (3) can be expressed as follows:

φ(ς, τ) = φ(ς) +

∞∑
j=1

[
φ′′
j−1(ς)− q Γ ((j − 1)ρ+ 1)

j−1∑
i=0

ψi(ς)φ
′
−i+j−1(ς)

Γ (iρ+ 1)Γ ((−i+ j − 1)ρ+ 1)
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− q Γ ((j − 1)ρ+ 1)

j−1∑
i=0

φi(ς)ψ
′
−i+j−1(ς)

Γ (iρ+ 1)Γ ((−i+ j − 1)ρ+ 1)

+ ω Γ ((j − 1)ρ+ 1)

j−1∑
i=0

φi(ς)φ
′
−i+j−1(ς)

Γ (iρ+ 1)Γ ((−i+ j − 1)ρ+ 1)

]
τ jρ

Γ (jρ+ 1)
.

ψ(ς, τ) = ψ(ς) +
∞∑
j=1

[
ψ′′
j−1(ς)− ϑΓ ((j − 1)ρ+ 1)

j−1∑
i=0

ψi(ς)φ
′
−i+j−1(ς)

Γ (iρ+ 1)Γ ((−i+ j − 1)ρ+ 1)

− ϑΓ ((j − 1)ρ+ 1)

j−1∑
i=0

φi(ς)ψ
′
−i+j−1(ς)

Γ (iρ+ 1)Γ ((−i+ j − 1)ρ+ 1)

+ γΓ ((j − 1)ρ+ 1)

j−1∑
i=0

ψi(ς)ψ
′
−i+j−1(ς)

Γ (iρ+ 1)Γ ((−i+ j − 1)ρ+ 1)

]
τ jρ

Γ (jρ+ 1)
. (29)

Proof. Based upon the methodology of the LT-RFPS approach in creating the
analytical-approximated series solution of the target problem(2), we find out the LFPS
approximate solutions of the new converted Laplace equation of the posed model in the
Laplace space as follows:

Φ(ς, ξ) =
φ(ς)

ξ
+

∞∑
j=1

[
φ′′
j−1(ς)− qΓ ((j − 1)ρ+ 1)

j−1∑
i=0

ψi(ς)φ
′
−i+j−1(ς)

Γ(iρ+ 1)Γ ((−i+ j − 1)ρ+ 1)

− qΓ ((j − 1)ρ+ 1)

j−1∑
i=0

φi(ς)ψ
′
−i+j−1(ς)

Γ(iρ+ 1)Γ ((−i+ j − 1)ρ+ 1)

+ ωΓ ((j − 1)ρ+ 1)

j−1∑
i=0

φi(ς)φ
′
−i+j−1(ς)

Γ(iρ+ 1)Γ ((−i+ j − 1)ρ+ 1)

]
1

ξjρ+1
.

Ψ(ς, ξ) =
ψ(ς)

ξ
−

∞∑
j=1

 ∞∑
j=1

(
ψ′′
j−1(ς)− ϑΓ ((j − 1)ρ+ 1)

j−1∑
i=0

ψi(ς)φ
′
−i+j−1(ς)

Γ(iρ+ 1)Γ ((−i+ j − 1)ρ+ 1)

− ϑΓ ((j − 1)ρ+ 1)

j−1∑
i=0

φi(ς)ψ
′
−i+j−1(ς)

Γ(iρ+ 1)Γ ((−i+ j − 1)ρ+ 1)

+ γΓ ((j − 1)ρ+ 1)

j−1∑
i=0

ψi(ς)ψ
′
−i+j−1(ς)

Γ(iρ+ 1)Γ ((−i+ j − 1)ρ+ 1)

]
1

ξjρ+1
. (30)



M. Alaroud, F. Aldosari / Eur. J. Pure Appl. Math, 18 (1) (2025), 5784 18 of 25

The analytical-approximate series solutions φ (ς, τ), and ψ (ς, τ) of (2) along with (3)
may be attained in terms of Taylor’s infinite series expansions via running the inverse LT
instrument into (30) as the following shapes:

φ(ς, τ) = φ(ς) +

∞∑
j=1

[
φ′′
j−1(ς)− qΓ ((j − 1)ρ+ 1)

j−1∑
i=0

ψi(ς)φ
′
−i+j−1(ς)

Γ(iρ+ 1)Γ ((−i+ j − 1)ρ+ 1)

− qΓ ((j − 1)ρ+ 1)

j−1∑
i=0

φi(ς)ψ
′
−i+j−1(ς)

Γ(iρ+ 1)Γ ((−i+ j − 1)ρ+ 1)

+ ωΓ ((j − 1)ρ+ 1)

j−1∑
i=0

φi(ς)φ
′
−i+j−1(ς)

Γ(iρ+ 1)Γ ((−i+ j − 1)ρ+ 1)

]
τ jρ

Γ(jρ+ 1)
.

ψ(ς, τ) = ψ(ς) +

∞∑
j=1

(
ψ′′
j−1(ς)− ϑΓ ((j − 1)ρ+ 1)

j−1∑
i=0

ψi(ς)φ
′
−i+j−1(ς)

Γ(iρ+ 1)Γ ((−i+ j − 1)ρ+ 1)

− ϑΓ ((j − 1)ρ+ 1)

j−1∑
i=0

φi(ς)ψ
′
−i+j−1(ς)

Γ(iρ+ 1)Γ ((−i+ j − 1)ρ+ 1)

+ γΓ ((j − 1)ρ+ 1)

j−1∑
i=0

ψi(ς)ψ
′
−i+j−1(ς)

Γ(iρ+ 1)Γ ((−i+ j − 1)ρ+ 1)

)
τ jρ

Γ(jρ+ 1)
. (31)

Now, considering the initial conditions (26) into the obtained recurrence relations (28),
set ω = γ = 2, and q = ϑ = 1 the analytical-approximate solutions of (2) will be formulated
as:

φ(ς, τ) = sin(ς)− sin(ς)
τρ

Γ(ρ+ 1)
+ sin(ς)

τ2ρ

Γ(2ρ+ 1)
− sin(ς)

τ3ρ

Γ(3ρ+ 1)
. . .

= sin(ς)

∞∑
j=0

(−1)jτ jρ

Γ(jρ+ 1)

= sin(ς)Eρ(−τρ),

ψ(ς, τ) = sin(ς)− sin(ς)
τρ

Γ(ρ+ 1)
+ sin(ς)

τ2ρ

Γ(2ρ+ 1)
− sin(ς)

τ3ρ

Γ(3ρ+ 1)
. . .

= sin(ς)
∞∑
j=0

(−1)jτ jρ

Γ(jρ+ 1)

= sin(ς)Eρ(−τρ). (32)
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In case ρ = 1, the obtained analytical-approximate solutions of the non-linear Caputo
time-fractional order coupled CVBE system (2) along with (26) reduces to the following
infinite Maclaurin series expansions:

φ (ς, τ) = sin(ς)

(
1− τ +

τ2

Γ (3)
− τ3

Γ (4)
+

τ4

Γ (5)
+ . . .

)
= sin (ς)

∞∑
j=0

(−)jτ j

Γ (j + 1)
,

ψ (ς, τ) = sin(ς)

(
1− τ +

τ2

Γ (3)
− τ3

Γ (4)
+

τ4

Γ (5)
+ . . .

)
= sin (ς)

∞∑
j=0

(−)jτ j

Γ (j + 1)
,

(33)

which concur with the analytical solution gained by Laplace decomposition method (CLDM)
[13], and Laplace Homotopy perturbation method (LPM) [45], so that φ (ς, τ) = ψ (ς, τ) =
sin(ς) e−τ .

Numerical and graphical simulations were performed to demonstrate the effectiveness
and reliability of the proposed approach in resolving the coupled CVBE system (2). The
results are presented in Table 3, as well as Figures 4 and 5. Specifically, Table 3 lists the
jth-approximate solutions for various values of ρ inclding {0.7, 0.8, 0.9, 1} with fix values
of ς over the time domain τ ∈ [0, 2]. Also, the table shows the absolute errors |φ− φ6|
which displays superb solutions within a small iterationsand which confirm the validity,
and efficiency of the present procedure. Figure 5 illustrates how the number of iterations of
approximate solutions affects on the behavior of the acquired findings at different values of
the fractional order parameter with exact solutions. Also, ρth-time Caputo-FD of the 6-th
truncation approximate solutions φ6 (ς, τ) and ψ6(ς, τ) at various values of ρ are displayed
in 2D-diagrams as shown in Figure 4 for different values of ρ∈ {0.8, 0.9, 1}. It is noted
from this simulation clearly shows that the behavior of the LT-RFPS solutions for various
ρ-levels provide more precise and reliable approximations over the considered domain in
harmony with one another and tends constantly to the classical ordered ρ = 1 in a
consistency manner. Particularly when the approximation solutions’ terms are increased.
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Table 3: Comparisons of numerical results of the fractional coupled CVBE system (1.2).

ςi τi φ(ς, τ) φ6(ς, τ) |φ− φ6| φ6(ς, τ)

ρ = 0.9 ρ = 0.8 ρ = 0.7

3 0.5 0.0855936116 0.08559381738 2.5081× 10−7 0.08221970849 0.07936203908 0.07706652200

1.0 0.0519151497 0.05194000296 2.4853× 10−5 0.05316525164 0.05493971096 0.05746574405

1.5 0.0314881299 0.03188981432 4.01684× 10−4 0.03720797799 0.03449808776 0.05198482368

2.0 0.0190985163 0.02195200125 2.85348× 10−3 0.03217494285 0.04573073471 0.06505821149

5 0.5 -0.581616973 -0.5816183713 1.39844× 10−6 -0.5586909710 -0.5392728274 -0.5236745461

1.0 -0.352768526 -0.3529374066 1.68881× 10−4 -0.3612630913 -0.3733207162 -0.3904853814

1.5 -0.213964927 -0.2166944112 2.72948× 10−3 -0.2528318543 -0.2955737661 -0.3532419768

2.0 -0.129776288 -0.1491659987 1.93897× 10−2 -0.2186318875 -0.3107448207 -0.4420769182

[a] [b]

[c] [d]
Figure 4: Profile solutions of the exact and different j-th approximate solutions of φ(ς, τ) at various values of
ρ: (a) j = 6, (b) j = 5, (c) j = 4, and (d) j = 3, where ς = 3 and τ ∈ [0, 1].
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[a] [b]
Figure 5: Profile solutions of the 6-th truncation approximate solutions φ6 (ς, τ) and ψ6 (ς, τ) at various values
of ρ, with fixed τ = 3 and −5 ≤ ς ≤ 5

5. Conclusions

In the present disquisition, the LT-RFPS technique was proposed to investigate the
non-linear time-fractional DS-WE and CVBE systems. The Caputo-FD as a time-fractional
approach was used for the mathematical formalism of these models. The strategy of the
projected technique is regarded as more effective than other analytical schemes because
of its limited number of approximations. The employed technique involves performing
the LT explicitly to the governing models and then simulating the FRPS algorithm in a
new space. The inverse LT is then implemented to find out the approximate solutions of
the studied models. The capabilities of the proposed approach have been demonstrated
through numerical simulation. This simulation finds that the target model’s solutions
are astonishingly near to the provided exact solutions when the time value is decreased.
Additionally, the amplitude of the model’s solitary wave increases as the value of param-
eter ρ is lessened. As well, the results show that for small values of the time variable,
the absolute error becomes fewer with increasing the space variable values. On another
aspect, the impact of varied values of the parameter ρ, and changing the values of space
and time considered domain on the posed models has been discussed graphically. From
these representations, it is seen that the behavior of the obtained solutions is consistent
with the integer value and harmonious for various fractional values of ρ. As a result, it
can be claimed that the LT-RFPS technique is indeed effective and suitable to solve such
models. Consequently, due to its accuracy, and straightforwardness and minimal calcula-
tion effort, we recommend employing the future technique in investigations of fractional
models in mathematical physics and engineering. Ideally, this investigation will be helpful
to scholars, in the future, to treat higher dimensions complex nonlinear spacetime partial
DEs in the framework of the conformable RFPS technique methodology and linking it to
one of the well-known integral transformations.
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