
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
2025, Vol. 18, Issue 1, Article Number 5787
ISSN 1307-5543 – ejpam.com
Published by New York Business Global

The Asymmetric Periodically Forced Van Der Pol
Oscillator

Ibrahim Alraddadi

Department of Mathematics, Faculty of Science, Islamic University of Madinah,
Medina 42210, KSA

Abstract. We review geometric singular perturbation theory (GSPT) which has been used to
explain the behaviour of the singular slow-fast system near the singular limit. In particular, we
follow the analysis of Guckenheimer et al. [10] for the periodically forced symmetric van der Pol
oscillator (β = 0), then we constructed the Poincaré return map for studying the bifurcation
phenomena of this model. We generalise to a asymmetric forced van der Pol oscillator for β ̸= 0.
We show that the forced asymmetric van der Pol oscillator can become frequency locked due to
the forcing. Then, we extend this analysis to show how the symmetry breaking parameter β in
a periodically forced van der Pol oscillator influences the width of Arnold tongues (also known
as frequency locking regions), and we find these frequency locking regions in the parameter space
(a, ω).
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Slow-fast nonlinear oscillator models can have periodic orbits with alternating slow
and fast motion that are called relaxation oscillations [11]. These oscillations occur at
different times in slow-fast dynamical systems. Relaxation oscillators have been used to
understand a wide range of biological problems such as heartbeat (van der Mark and van
der Pol model [29]), neuronal activity (the Fitz-Hugh-Nagumo model and the Morris-Lecar
model [13]), and population cycles of predator-prey type [23].

Since 1920, the van der Pol oscillator was introduced to illustrate the behaviour ob-
served in electrical circuits by Balthazar van der Pol and van der Mark [27]. The van
der Pol oscillator is a type of a relaxation oscillator. Van der Pol and Mark investigated
that the relaxation oscillation of the van der Pol oscillator is influenced by external peri-
odic forcing. They found that the period of the relaxation oscillation was a proportion of
the forcing period over wide parameter regimes, called “Frequency demultiplication” [28].
This phenomenon is now known as frequency locking, phase locking, entrainment or mode
locking [16]. There has been a lot of significant research done on the forced van der Pol
oscillator (see e.g.[5, 10, 18]). The van der Pol oscillator is applied in several fields, such
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as oscillatory processes in physics, electronics, neurobiology, and the dynamics of glacial
cycles [3, 6–8, 12, 14, 20].

Forced nonlinear oscillator models can reproduce the oscillations in the climate record.
Examples of two-dimensional Pleistocene ice age models are the forced van der Pol and
the forced van der Pol Duffing oscillators [2]. Crucifix used in [6] a forced van der Pol
oscillator (VDP) to consider astronomical forcing and asymmetry between the phases
of ice forming and melting during the late Pleistocene. Additionally, the van der Pol
oscillator has been modified to explain the different levels of ice volume that indicate a
glacial or interglacial case by the signal of oscillates[7]. De Saedeleer et al. [7] used the van
der Pol oscillator as a possible low-order model for the first time identification generalised
synchronisation (see more [1, 20, 24]) between ice age cycles and astronomical forcing. The
forced VDP oscillator is used by Ditlevsen and Ashwin as a conceptual model to describe
the dynamics of glacial cycles and possible dynamical causes of the middle Pleistocene
transition (MPT)[8].

In this paper, we use geometric singular perturbation theory (GSPT) to explain the
behaviour of the singular slow-fast oscillator near the singular limit (see more [19]). In
particular, we followed the analysis of Guckenheimer et al. [10] for the periodically forced
symmetric van der Pol oscillator (β = 0). Section 3 constructs the Poincaré return map
for studying the bifurcation phenomena of this model. In Section 4, we show how the
symmetry breaking parameter β in a periodically forced van der Pol oscillator influences
the width of Arnold tongues (also known as frequency locking regions).

1. The asymmetric van der Pol Oscillator

We consider the modified van der Pol oscillator [2] which was proposed as a low-order
model of the ice-age cycles in [6, 7]. The generalised van der Pol model has the following
form [2]:

τ2κ2
d2y

dt2
− ατκ(1− y2)

dy

dt
+ y − γF (t) + β = 0 (1)

oscillations occur even in the unforced case γ = 0. The term −ατκ(1− y2) increases the
oscillations when y2 < 1 and damps the oscillations when y2 > 1. For large enough α, the
van der Pol (1) has relaxation oscillations as can be seen in the system of equations. By

using the Liénard transformation x = y − y3

3 − ẏ/τκα, we transform (1) into the system

ẋ =
1

τκ
(γk sin(2πωt)− β − y)

ẏ =
α

τκ
(y − y3

3
+ x)

(2)

which is a slow-fast system if α ≫ 1 . The dynamics of (2) involves that the slow
variable x represents the deviation of ice volume and the fast variable represents some
feedback mechanism with hysteresis. In Table 1, the default parameters used for the
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(a) (b)

Figure 1: Phase portrait (a) and time series (b) showing periodically forced van der Pol
oscillator (3) which has relaxation oscillations with slow variable x and fast variable y.
The parameters values are given in Table 1. The green line is the y−nullcline, and the blue
line is the x−nullcline. In (a), there is an unstable equilibrium point which is surrounded
by stable limit cycle. The arrows show the direction of the vector field of (3).

forced van der Pol oscillator (2) are taken from [2], ω is the frequency (obliquity forcing
is ω ≈ 1

41) and k represents the amplitude of the forcing.

2. Applications to the symmetric forced van der Pol equation

2.1. The periodically forced van der Pol oscillator

Note that the van der Pol oscillator for small ε has a periodic orbit with attracting
and slow and fast motions. Geometric singular perturbation theory was used in [10] to
understand the full system. The following discussion is based on [10, 11, 30, 31]. Here, we
consider the symmetric van der Pol oscillator (2) where (β = 0) with periodic forcing [2]:

ẋ =
1

τκ
(γk sin(2πωt)− β − y)

ẏ =
α

τκ
(y − y3

3
+ x)

(3)

is a non-autonomous system as shown in Figure 1. We set τκ = 1 through a suitable
rescaling of time. We define a new parameter ε = 1

α , a = γ, k1 = 1 and θ = ωt of the form

ẋ = a sin(2πθ)− y − β

εẏ = y − y3

3
+ x

θ̇ = ω

(4)

where ẋ ≡ dx
dt , ẏ ≡ dy

dt and θ̇ ≡ dθ
dt . When 0 < ε ≪ 1, the system has a relaxation oscillation

as shown in Figure 1. The slow variable is x and the fast variable is y. We transform the
slow time scale t to fast time scale T by rescaling the time t = εT
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dx

dT
= ε(a sin(2πθ)− y − β)

dy

dT
= y − y3

3
+ x

dθ

dT
= εω.

(5)

We now study the two systems in the singular limit ε = 0 as follows - namely the slow
subsystem:

ẋ = a sin(2πθ)− y − β

0 = y − y3

3
+ x

θ̇ = ω

(6)

and the fast subsystem:

dx

dT
= 0

dy

dT
= (y − y3

3
+ x− β)

dθ

dT
= 0

(7)

2.2. The slow system

The flow of (6) is called the slow flow on the critical/slow manifold. The critical
manifold is in this case given by

S := {(x, y, θ) ∈ R3| y − y3

3
+ x = 0} (8)

It is apparent that x = y3

3 − y defines the critical manifold which is the set of equilibrium
points for the fast subsystem (7). Note that (4) has a repelling sheet Sr = S∩{−1 < y < 1}
and two attracting sheets Sa = S ∩ {y < −1}, Sa = S ∩ {y > 1}, and trajectories of the
DAEs on the critical manifold are the slow trajectories that are wholly defined up to the
time when a trajectory hits a fold on the critical manifold. There are fold points on the
two lines:

L− = {
(
− 1, 2/3, θ) : θ ∈ (0, 2πn)} and L+ = {

(
1,−2/3, θ) : θ ∈ (0, 2πn)},

where n is positive integer Z+.

2.3. The layer problem

The family of differential equations (7) is called the layer problem. The solutions of
differential equations dx

dT = 0 and dθ
dT = 0 can solved analytically to give:

x(T ) = C1, θ(T ) = C2 ∀C1,2 ∈ R (9)
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Figure 2: Three-dimensional view of the periodically forced van der Pol equation for β = 0.
The surface represents a two-dimensional critical manifold S. A typical trajectory (blue)
of (4) remains close to the stable branch (y ≤ −1) of S before jumping to other stable
branch (y ≥ 1) at the lines of fold points L±.

The trajectories of the fast subsystem (layer) problem (7) are computed to

dy

dT
= g(y), where g(y) = y − y3

3
+ x (10)

with x acting as a parameter (see Figure 3). It is simple to find the equilibrium points
of g(y) since it is dependent on the variable y. The equilibria of the equation is given by

the solutions of the equation g(y) = 0 ⇐⇒ x = y3

3 − y. At the bifurcation points, the

derivative of g(y) with respect to y is ∂
∂y
g(y) = 0 ⇐⇒ (1− y2) = 0. Hence, the bifurcation

points (called singular points) are (x, y) = (±2
3 ,∓1).

2.4. The desingularised reduced system

For ε = 0, the system (6) can be reduced to the system of ODEs on normally hyperbolic
critical manifolds. The trajectories of the reduced system are good approximations to the
solutions of the full system (4) near these manifolds. The projection of the system can be
defined as x = φ(y, θ) on the critical manifold and the slow flow represented in the terms

(y, θ). Since the critical manifold S is a curve with the function x = φ(y, θ) = y3

3 − y one
can see that this curve has fold points when y = ±1. By differentiating the critical manifold
to obtain ẋ = (y2 − 1)ẏ, the Implicit Function Theorem means that g(φ(y, θ), y, θ) = 0.
This implies that a chain rule gives the relationship
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Figure 3: Phase Portrait showing the solutions of the fast system (7) (sold line and dashed
line) and the fast flow subsystem indicated by the arrows. The blue line and dashed red
line are the critical manifold S of VDP. For −1 < y < 1, there is an unstable submanifold
(f ′(y) > 0) of S while the stable submanifolds (f ′(y) < 0) of S are two disjoint branches
where y < 1 and y > 1. If |x| < 2

3 , then a system (7) has a single stable equilibrium point
at the origin point (0, 0). In this figure, there are two stable equilibrium points (black
circle) (±2

3 ,∓1) and one unstable equilibrium point (blue circle) (0, 0) for |x| > 2
3 . Note

this phase portrait is independent of the slow evolution of θ.

∂g

∂y
ẏ +

∂g

∂x
ẋ+

∂g

∂θ
θ̇ = 0

Since gy is non zero, this equation can be solved for ẏ.

gyẏ = −(gxf(x, y, θ) + gθω),

where gy = 1− y2, gx = 1, gθ = 0 and f(x, y, θ) = a sin(2πθ)− y − β. Then,

(1− y2)ẏ = −(a sin(2πθ)− y − β) (11)

We rescale the time by t = (y2 − 1)s and substitute into the RHS of (4) to obtain the
reduced system as follows:

dθ

ds
= −ωgy,

dy

ds
= gxf(x, y, θ) + gθω.

we rewrite the system as

dθ

ds
= ω(y2 − 1),

dy

ds
= a sin(2πθ)− y − β.

(12)

which is called the desingularised reduced system of forced van der Pol equation (4). The
desingularised reduced system is a time-reparameterised slow flow. The time t and the
time s both move in the same direction on the stable branch of the critical manifold, but
they move in opposite directions on the unstable branch of the critical manifold. In this
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section we focus on the symmetric VDP (4) when β = 0, following the analysis in [10].
The equilibria of (12) are folded singularities which lie on the fold lines L±. Trajectories of
(12) are located on the slow flow along stable sheets of the critical manifold until it reaches
the boundary of this stable sheet on (θ,±1). These points (y = ±1) are the boundaries
of two stable sheets. Then, the trajectories jump from the fold line to another stable
sheet and they are crossing with y > 1 or y < −1. The equilibrium points (called folded

singularities) of (12) are θ∗ =
sin−1(±1

a
)

2π and y∗ = ±1.
There is no solution for a < 1 as shown in Figure 5(a). We get two folded singularities

on the line L±1 at (y, θ) = (±1, 1/4) for a = 1, and we have four folded singularities for
a > 1 on the line L±1 as shown below

p1,2(θ
∗
1,2, y

∗) =

(
sin−1( 1a)

2π
, 1

)
and

(
sin−1(−1

a )

2π
,−1

)
,where θ∗1,2 < 1/4

p3,4(θ
∗
3,4, y

∗) =

(
sin−1( 1a)

2π
, 1

)
and

(
sin−1(−1

a )

2π
,−1

)
,where θ∗3,4 > 1/4

To analyse the stability of the equilibrium points, we calculate the Jacobian matrix of (12)
at (θ∗, y∗):

J(θ∗, y∗) =

[
0 2ωy

2πa cos(2πθ) −1

]
and the eigenvalues of (J − λI) at (θ, y) where I is the identity matrix:

λ1,2 =
−1±

√
1 + 16ωπa cos(2πθ)

2

The classification of equilibria according to λ1,2 : a = 1 and θ = 1/4, J has λ1 = 0
and λ2 = −1 of which the equilibrium points are folded saddle-nodes on the line L1 or
L−1. For a > 1, two equilibrium points p1,4 are folded saddles (see Figure 4). When

1 < a <
√
1 + ( 1

16πω )
2, two other equilibrium points p2,3 are stable node (see Figure

5(b)). For a =
√

1 + ( 1
16πω )

2, these equilibrium points p2,3 are folded nodes, and for

a >
√
1 + ( 1

16πω )
2 p2,3 are folded foci. Also, we compute stable and unstable manifolds

Ws and Wu of the folded saddle (θs,±1) in the desingularised slow flow system (12) for
β = 1.2 as shown in Figure 6. A trajectory Wu denotes the first intersection with y = ±1.
In the backward time on the stable manifold branch, a trajectory Ws denotes the first
intersection with y = ±2. In this following analysis, we compute a Poincaré map for (4)
that has a return mechanism via a folded critical manifold.



I. Alraddadi / Eur. J. Pure Appl. Math, 18 (1) (2025), 5787 8 of 23

(a) (b)

Figure 4: Trajectories of the desingularised slow flow (12) for β = 0. (a) The parameter
values are a = 2.3 and ω = 1, (b) a = 20 and ω = 5. There are four folded singularities
obtained in both cases. The two folded saddles equilibria (θs,±1) are indicated by the
cross and the two folded foci equilibria (θn,±1) are indicated by the circle. The stable
Ws (green) and unstable Wu (blue) manifolds of the folded saddles are on the fold lines
y = ±1.

(a) (b)

Figure 5: Trajectories of the desingularised slow flow (12) for β = 0 and ω = 0.54559.
(a) shows no folded equilibria for a = 0.9. (b) Four folded singularities obtained for
a = 1.00041. The two folded saddles equilibria (θs,±1) indicated by the cross and the
two folded nodes equilibria (θn,±1) indicated by the circle. The stable Ws (green) and
unstable Wu (blue) manifolds of the folded saddles are on the fold lines y = ±1. This case
shows the connection between the folded saddle and the folded node.
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(a) (b)

(c)

Figure 6: Trajectories of the desingularised slow flow (12) for β = 1.2. (a-b) show the
four folded saddle equilibria on the fold lines y = ±1. The two folded saddles equilibria
(θs,±1) are indicated by the cross and the two folded foci equilibria (θn,±1) are indicated
by the circle. In (c), there are only two folded equilibria on the fold line y = −1. These
folded equilibria are folded saddles and folded foci. The stable Ws (green) and unstable
Wu (blue) are manifolds of the folded saddles on the fold lines y = ±1.

3. Return Map for the periodically forced singular VDP oscillator

The dynamics of return map in slow-fast systems were studied by Szmolyan and Wech-
selberger [26], and Guckenheimer[9–11]. In this section we study the bifurcation analysis
of periodic orbits of (12) via a Poincaré return map. These bifurcations correspond to the
bifurcation of periodic orbits in the periodically forced singular (VDP) oscillator (4). We
follow the construction of the return map of the desingularised slow flow system as found
in [10], together with our analysis of (12) in subsection (2.4). We defined the first return
map from y = 2 (S2(θ, 2)) to itself for the desingularised slow flow system (12):

F : S2 → S2
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by the flow of (12), S2(θ, 2) as the Poincaré section where the first intersection of the
trajectory starting at S2(θ, 2) with θ being mod 1. The map F can be decomposed into
four maps (discontinuous):

F = J− ◦ P− ◦ J+ ◦ P+ (13)

where
P+ : S2 → S1,

J+ : S1 → S−2,

P− : S−2 → S−1,

J− : S−1 → S2,

Note that S±1 = L±. Two maps P±(θ, y) are well defined on the stable slow manifold
S±2 (from y = ±2 to the fold lines y = ±1) and J±(θ, y) represent the transition map
from fold lines L± to S∓2. In Figure 2, we note that trajectories of the periodically forced
singular (VDP) oscillator (4) continue on the stable branch of the critical manifold S
until it reaches a fold line L±1, then jump to another stable branch of S . This jumping
behaviour is well defined by the maps: J+(θ, 1) = (θ,−2) and J−(θ,−1) = (θ, 2).

In the singular case where ε → 0, there are regions where no trajectories arrive at the
fold line L±1, while for sufficiently small ε, some trajectories of the nonsingular system (4)
cross the fold lines near the folded saddle equilibria and continue on the unstable branch
of the critical manifold S. These trajectories are called canards [15], and can appear in
attractors near the folded singularity. The properties of canard trajectories in Forced
van der pol systems were studied by Guckenheimer, Hoffman and Weckesser and later by
Szmolyan and Wechselberger [4, 25, 26, 31]. Moreover, Guckenheimer et al. observed that
there can be can be chaotic attractors for return map F (13) by analysing the behaviour
associated with canard trajectories [10]. They examined various aspects of the dynamics
of the return map.

3.1. Numerical approximation of the first return map

The first return map F (13) is computed by using a Matlab numerical approximation
scheme [17]. Following the computation technique of the first return map, we compute P+

and P− separately, while J+ and J− are explicit as known in (13). These maps P+ and
P− are approximated by solving system (12): starting at y = ±2 and finishing at an event
where y = ±1. we use the Matlab numerical ode45 solver with an associated termination
event that stops the integration of (12) where the flow intersects y = −1 or y = 1. The
map F (13) depends on three parameter values a, ω and β because they are found by
solving (12). For some parameter value a (given that |a| is big enough), the map P−(θ, y)
or P+(θ, y) may not be defined because it evolves towards a periodic orbit on the stable
branch of the critical manifold and it can never reach the fold again. The Matlab code
catches this case as special by using a break.
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3.2. Dynamics and bifurcations of the first return map

The return map discussed above can be iterated to understand the dynamics of tra-
jectories in this singular system (4) in the limit ε → 0. These trajectories are governed by
θn+1 = F (θn) for a given initial condition on S2. The intersection point of the flow (12)
with Poincaré section S2 is a fixed point for the return map F (13). In particular, there
will be fixed points of the Poincaré return map where F (θ) = θ. As in Figure 8, fixed
points of the Poincaré return map occur where the graph of F (θ) and the diagonal line
intersect point F (θ) = θ. This figure shows an example of the stability of the fixed point
which is indicated by the cobwebs converging to the stable fixed point.

More generally, a periodic orbit of the original ODE gives a periodic orbit of the
Poincaré return map. In other words, periodic orbits of the map F correspond to periodic
orbits of (4). Recall that θ will be a periodic point for F of period n if Fn(θ) = θ.
Moreover, stable fixed point or stable periodic orbits for the return map that correspond
to a stable periodic orbit of the flow.

Figure 10 shows two examples of the first return map (13) for β = 0 and ω = 0.54559.
For a < 1, the return map (13) becomes an invertible circle map (Figure 10(a)). For
a > 1, the return map (13) become noninvertible (Figure 10(b)). The flow of (13) starts
at S2 for various initial conditions θ. For a < 1, the graph of the first return map (13)
is the smooth curve that appears in (Figure 10(a)). Whereas for a > 1, there is a gap
region in the graph of F because of the presence of folded equilibria in S±1 as shwon in
Figure 9. In this case the trajectories cannot leave the folded equilibria region between
the folded saddle and unstable manifold of the folded saddle (see Figure 7) . This creates
a discontinuity in the graph of the first return map (13) (Figure 10(b)).
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(a) (b)

Figure 7: Schematic diagram shows vector field of the desingularised system (12) on the
upper stable part of manifold for any trajectory starts at y = 2. (a) for a < 1, there is no
folded equilibria, trajectory can reach everywhere on the line y = 1. In this case the map
from y = 2 to y = 1 is a homeomorphism. (b) for a > 1, A is folded saddle equilibria and
B is folded sink, and C where is the unstable manifold of the folded saddle hits the fold.
Note that trajectories reach everywhere on the line y = 1 except the region between A
and C, this creating a gap. The reason for this gap is due to the folded equilibria region
where no trajectory exits. This region is located between folded saddle equilibria (A) and
the unstable manifold of the folded saddle equilibria (C).

Figure 11 shows a saddle-node bifurcation of the first return map (13) for a = 1.02 and
three different value of ω = 0.18, 0.19, 0.20. we see a saddle-node bifurcation of the first
return map that is passing through a saddle point in (b). The saddle-node bifurcation of
the periodic orbit occurs on the boundary of the frequency locking region as discussed in
more details (see section 3.3). Also, the saddle-node bifurcation of the first return map
(13) occurs as β varies (see Figure 13).
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(a) (b)

Figure 8: (a) The first return map F (13) for a = 1.1, ω = 0.35 and β = 0. The red points
are the graph of the first return map and the black line is the diagonal line. The two fixed
points of (13) are indicated by the intersection points of F (θ) (red) with the diagonal θ
(black). The stability of these fixed points depends on the slope of the function F (θ). (b)
A cobweb diagram shows a blue trajectory attracted to a stable fixed point of F (13).

(a) (b)

Figure 9: The first return map F (13) for β = 0. (a) corresponds to the parameter choice
a = 2.3, ω = 1 in the desingularised system (12) in Figure 4(a), and (b) to a = 20, ω = 5
in Figure 4(b). Note the presence of fixed points and discontinuities.
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(a) (b)

Figure 10: The first return map F (13) for β = 0 and ω = 0.54559. (a) Corresponds
to a = 0.9, the parameter choice in the desingularised system (12) in Figure 5(a), and
(b) to a = 1.00041, the parameter choice in Figure 5(b). The first return map (13) is an
invertible circle map in (a). (b) The first return map (13) becomes noninvertible. Note the
gap appearing in (b). The reason for this gap is due to the folded equilibria region where
no trajectory exits. This region is located between the folded saddle and the unstable
manifold of the folded saddle.

(a) (b) (c)

Figure 11: The first return map F (13) for ω = 0.35 with different values of a (a-c) where
a = 1.05, a = 1.08 and a = 1.1 respectively. There is a saddle-node bifurcation of the first
return map at a = 1.08 where the red curve of F becomes tangent to the diagonal line
(black).

3.3. Frequency locking in the iteration of the return map

Frequency locking can occur for iterations of the Poincaré map and there are transitions
between periodic (also called phase locking) and quasiperiodic motion [22]. Both types
of behaviour can be distinguished by computing the rotation number N [20]. If we find
that the rotation number N of the Poincaré return map is rational, i.e. N = p/q with p
and q integers, then we say the motion is phase-locked. Otherwise, we say the motion is
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quasiperiodic. Frequency locking regions (also called Arnold tongues) identify a periodic
solution which generically persists as the amplitude a and the frequency ω of the forcing
are varied [22]. Boundaries of Arnold tongues correspond to saddle-node bifurcations of
these N -periodic orbits[21].

In this subsection, we show the frequency locking regions (or Arnold tongues) in the
parameter space (a, ω). Subsequently, we show that a periodic solution persists for varying
a and ω and that this solution is frequency locked (forming Arnold tongue). As shown in
Figure 11, the saddle-node bifurcation of the first return map occurs on the boundary of
frequency locking in a parameter space (a, ω) of the system for relatively weak forcing. In
parameter space (a, ω), frequency locking regions exist where the period N of the oscillator
remains constant under perturbation.

We identify the frequency locking by estimating the iterations of the Poincaré return
map F and we numerically solved the desingularised system (4) to construct the return
map F . From our computation, shown in Figure 12, we show the iterations of the Poincaré
return map for a typical point after ignoring a transient of 100 iterations so as to identify
the period N of the oscillator to get an attractor point of the system. We describe our
method as the following:

(i) For different values of a and ω, we numerically solved the desingularised system (4)
to construct the Poincaré return map F .

(ii) Pick a random initial condition θ∗.

(iii) We set θ0 = Fnt(θ∗) mod 1, where nt iterates 500 times for the Poincaré return
map F (13).

(iv) We use the iterations of the Poincaré return map for a typical point after ignoring a
transient of 100 iterations so as to identify a trajectory attractor of the system.

(v) We try to find the average period of θi where i ≤ nmax by searching for smallest
i ∈ {1, . . . , nmax} such that

|(F i(θ0) mod 1)− θ0| < ϵ

(a) If this is satisfied, then we set N = F i(θ0)− θ0.

(b) If it is not satisfied, then we set N = 0.

4. Symmetry breaking

In Sections 2 and 3 we reviewed the results of [10], the symmetric forced van der Pol
oscillator (4) for β = 0. Here we generalise to a asymmetric forced van der Pol oscillator
for β ̸= 0. In this section, we show that the forced asymmetric van der Pol oscillator can
become frequency locked due to the forcing. We also show how the symmetry breaking
parameter β in a periodically forced van der Pol oscillator influences the width of Arnold
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Figure 12: (a, ω) parameter plane showing regions of the existence of a stable period of
N orbits for the return map F in (13) for the symmetric van der Pol oscillator. The
colorbar indicates the rotation numbers N of the return map. Observe in this case β = 0,
(from down to up) there are phase-locking regions in N -periodic orbits of (13) (in differ-
ent colours). These regions correspond well with standard Arnold tongues type pictures
(frequency-locking): the frequency ratio is ω and the forcing amplitude is a. The large
regions correspond to Arnold tongues for frequency-locking 1:1 (black), 3:1(light blue),
5:1(pink), 7:1(dark blue). Note that there are bistability regions between these tongues
depending on the initial conditions. The boundary of the Arnold tongues is typically the
saddle-node bifurcation of a periodic point of map F (13) (compare to [10, Figure 7.1]).

tongues (also known as frequency locking regions), and we find these frequency locking
regions in the parameter space (a, ω).

(a) (b) (c)

Figure 13: The first return map F (13) when a = 1.02 and ω = 1.19 with different values
of β. (a-c) show β = 0.8, 0.81 and 0.82 respectively, a saddle-node bifurcation of the first
return map F (13).

Figure 14 illustrates the frequency-locking regions of the iteration of F (13) in the
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two-parameter plane (a, ω) for different values of β = 0.25, 0.5, 0.8, 1. The Arnold tongue
regions appear in this case β ̸= 0. Note that the width of Arnold tongues depends on the
parameter β. There are large Arnold tongue regions of period 1, 3, 5, 8 for small β = 0.5
(Figure 14(a)). Increasing β to 1, leads to slightly smaller Arnold tongue regions of
periods between 1 and 25 as shown in Figure 14(b-d). Moreover, (Figure 14(d)) shows the
bistability regions, but these regions are very narrow as compared with β = 0 in Figure
12. There is a reason for the white wedge, where no rotation numbers are shown. In other
words, trajectories start to get non returning points in the white wedge.

(a) (b)

(c) (d)

Figure 14: The (a, ω) parameter plane showing regions of the stable periodic orbit of the
return map F (13) as β ̸= 0. The colorbar indicates the rotation period N of (13) for
β = 0.5, 0.8, 1 and 1.2. The Arnold tongues regions appear for β ̸= 0. (a) The large regions
correspond to Arnold tongues for frequency-locking 1:1 (brown), 3:1 (purple), 5:1 (light
blue) and 8:1 (brown). As β increases, (b-d) there are smaller Arnold tongues regions
for frequency-locking between periods 1 and 15 as a region where the return is no longer
defined appears for small a. (d) there are bistability regions but these regions are very
narrow as compared with β = 0 in Figure 12.

Figure 15 shows the graph of the first return map (13) for β = 1 and a with different
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values of ω. The saddle-node bifurcation of the first return map (13) occurs as ω varies. In
Figure 14(c), this case corresponds to the attractor point of periodic orbits moving forward
from inside a frequency locking region to the outside of the frequency locking region. As
ω increases in Figure 16(a), we note this discontinuity in the first return map F (13) hits
the periodic orbit. In Figure 17, the black circle corresponds to the value of (a, ω, β) in
Figure 16.

(a) (b) (c)

Figure 15: The graph of the first return map F (13) for β = 1 and a = 1.65 with different
values of ω. (a-c) shows a saddle-node bifurcation of the first return map for β = 1 as ω
presents throughout ω = 1.81.
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(a) (b)

Figure 16: (a) The graph of the first return map F (13) for β = 1 and a = 1.65 and
ω = 1.92. (b) The flow of (13) on the desingularised slow flow system (12) for two different
initial values of θ. The value of θ is 0.271 (blue) and 0.273 (red). For (a) θ = 0.271 is
on the left curve of the diagonal line, and θ = 0.273 is on the right curve. For (b) The
blue and red trajectories start close together, hit the upper fold line, and then jump to
another branch. The red trajectory goes to the left of the folded saddle in the lower folded
line. While the blue trajectory comes close to the folded saddle. Vertical lines indicate
the endpoint of the red and blue trajectories. (b) corresponds to the black circle in Figure
17. (b) For periodic orbits at discontinuity where ε → 0. While periodic orbits at the
discontinuity for sufficiently small ε > 0, some layer trajectories of the nonsingular system
(4) cross the fold lines near the folded saddle equilibria and continue the unstable branch
of the critical manifold S then move to another stable branch of the critical manifold S.
Periodic orbits without discontinuity where ε ̸= 0, there is a region of canard trajectory
where no trajectories jump at the fold line.



I. Alraddadi / Eur. J. Pure Appl. Math, 18 (1) (2025), 5787 20 of 23

parameter value description
α 11.11 Fast/slow timescale separation
β 0.25 Symmetry breaking
γ 0.75 Effective forcing amplitude
κ 35.09 Unforced oscillation timescale has period 100 kyr for time scaling τ = 1
τ 1 Time scaling

Table 1: shows the default parameters for the forced van der Pol oscillators (2) (taken
from [2]).

(a) (b)

Figure 17: The (a, ω) parameter plane showing regions of the stable periodic orbit of the
return map F (13) for β = 1 as shown in Figure 14(c). (b) shows a small range region
for a and ω. Note the white region is not identified as a low period periodic orbit of the
system as shown between frequency-locking regions 4:1 (yellow) and 5:1 (pink). The black
circle represents a = 1.65 and ω = 1.92 as shown in Figure 16.

5. Conclusion

We use geometric singular perturbation theory (GSPT) to explain the behaviour of the
singular slow-fast system near the singular limit. In particular, we followed the analysis
of Guckenheimer et al. [10] for the periodically forced symmetric van der Pol oscillator
(β = 0), then we construct a Poincaré return map to study the bifurcation phenomena of
this model. Subsequently, we show that a periodic solution persists for varying a and ω and
that this solution is frequency locked (forming Arnold tongues). As shown in Figure 11, we
show that the saddle-node bifurcation of the first return map occurs on the boundary of
frequency locking in a parameter space (a, ω) of the system for relatively weak forcing. In
parameter space (a, ω), frequency locking regions exist where the period N of the oscillator
remains constant under perturbation. In this thesis, we identify the frequency locking by
estimating the iterations of the return map F and we numerically solve the desingularised
system (12) to construct the return map F . From our computations such as shown in
Figure 12, we can identify the rotation numbers of attractors of the system. For β ̸= 0, we
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show that the forced asymmetric van der Pol oscillator can become frequency locked due to
the forcing. We also show how the symmetry breaking parameter β in a periodically forced
van der Pol oscillator influences the width of Arnold tongues (also known as frequency
locking regions), and we showed the frequency locking regions (or Arnold tongues) in the
parameter space (a, ω).

Data availability statement:

All data generated or analysed during the research investigation have been included in
the paper.
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