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Abstract. In this study, explicit bounds for the midpoint type inequalities for functions whose
twice differentiable in absolute value raised to positive real powers are (p,s) and (p,s,m)-
convexities are explored through the integral fractional operator. Several estimate for special
functions including Fuler gamma, incomplete Beta and hypergeometric functions are presented
in the study.
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1. Introduction

Fractional calculus — whose impact on both pure and applied sciences substantially
increased in the last two decades — captures the attention of many researchers. In ad-
dition, this area of interest invariably remains one of the few disciplines that immensely
contribute to not only different areas of mathematics, but also to other natural sciences.
One of such examples is associated to the existence of many fractional operators in
those disciplines, most of which occur through different formulations differential equa-
tions. This area has been developed through the contributions of many researchers; for
example, Kilbas et al. [9] gave the background of fractional differential equations, Xing
et al. [22] extended Hermite-Hadamard inequalities using fractional integrals, Zhang
et al.[7] generalized the inequalities for strongly (s,m)-convexities, and Noor and Awan
[11] established the inequalities with two different convexities. These operators have
been used to understand many problems, such as the propagation of sound, vibrations
of strings and waves in liquids. This leads to the establishment of numerous fractional
operators — including Riemann Liouville, Caputo and Atangana Baleanu Caputo — as
well as studying many vital concepts for investigating these operators. For example,
the existence of unique solution of many fractional differential and integral equations —
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for initial and boundary value problems — have been reported through these fractional
operators. For further studies, see [10, 13-15, 17].

Fractional calculus, whose broad contents have been rapidly developing in mathe-
matical analysis, plays a vital role in approximation theory. One example of this is the
frequent use of integral operators in the study of inequalities. Consider an integrable
function n : [k1, ko] — R over [k1, k2]. This function is belonging to a space L [k1, k2] rep-
resenting the set of Lebesgue integrable over the same interval. Using Riemann-Liouville
fractional integrals, Sarikaya et al. [19] studied the following new integral inequalities.

Theorem 1. [19] Let n : [ki, k2] — R be a positive function with 0 < ki < ko and
n € Li[k1,ka]. If n is a convex function on [ki,ks], then the following inequalities for
fractional integrals hold:

ki + & T(p+1)
77< 12 2) S2(762*151)

Due to vital roles played by this inequality in both science and engineering [2, 4],
many authors improve, extend and generalize inequality (1) through various types of
convexities and fractional integrals. For example, Agarwal et al. [1] established new
Hermite-Hadamard type inequalities via generalized k-fractional integrals; Almutairi [3]
explored fractional inequalities using Euler’s beta function; Budak et al. [5] developed
Hermite-Hadamard-type inequalities for interval-valued functions; Du and Peng [6] ex-
tended the idea to report Hermite-Hadamard type inequalities involving multiplicative
Riemann-Liouville fractional integrals.

Noor and Awan [11] established new results related to the left hand side of (1) for
twice differentiable s-convex functions using the following lemma.

n(k1) +n(ka)
5

JP n(ke) + J7_n(k1)| < p>0. (1)
p |7k k;

Lemma 1. Letn : [k1, ko] — R be a twice differentiable function on (k1, ka) with k1 < ko.
Also, let " € Llki, ka]. Then the following identity holds true:

20710 (p+ 1) ky + ko
=k th;@)n(lﬁlHJE’h;kQ)m(b)]—n( 5 )

(/@—kl)?/l il (1+w l—w g (14w l—w

== [ 1-w)" k k k ky )| d

8(p+1) 0( @) n 5 1+ 5 2 +n 9 2+ 5 M w
(2)

Even though a classical convexity - which was later replaced by s-convexity [11] -
has been previously used to establish integral inequalities [19], the central idea of our
study lies in establishing more generalized integral inequalities through two different
classes of convexities. Motivated by these two mentioned independent studies, we opt
to obtain new bounds for the midpoint inequalities via fractional integral operator.
Two generalized convexities (p, s) and (p, s, m)-convexity are used to establish the new
bounds. Some of our findings - which can be reduced to different inequalities through
various convexities - are obtained. The other parts of this paper are organized as follows.
Preliminary studies are presented in Section 2. Section 3 presents integral inequalities
involving (p, s) and (p, s,m) convex functions via fractional integral operators. Section
4 concludes the study.




O. B. Almutairi / Eur. J. Pure Appl. Math, 18 (1) (2025), 5834 3 of 12

2. Preliminaries

Some basic results of different classes of convex functions, Riemann Liouville frac-
tional integral operator and special functions are presented in this section. These pre-
liminary results and definitions can be later used to establish our main results.

Therefore, the definitions of some types of convexities are given as follows.

Definition 1. [20] A function n : [0,d] — Ry = [0,00) is said to be m-convezx on [0,d]
for some m € (0,1], if

n(@ky +m(l — w)ka) < (ki) +m(l —w)n(ks),
for all ki, ke € [0,d] and w € [0, 1].

Definition 2. [8] A function n : [k1, k2] C R — R is said to be s-convex function of the
second kind if
(1 = @)k + wka) < (1 —@)*n(k1) + @*n(ka),

for all k1, ke € (0,00],w € [0,1] and s € (0, 1].

Definition 3. [21] For some s € [-1,1] and p € (0,1], a functionn: I CR — R is said
to be (p, s)-convez if

D@k + (1 — @)ks) < wPn(ks) + (1 - w)° 5(ka),
for all ky,ke € I and @ € (0,1).
Definition 4. [21] The function n : [0,d] — R is said to be (p, s, m)-convez, if we have
n(@ky + m(l — @)ks) < @”nk1) +m (1 —@")" n(ks),
where k1, ks € [0,d], @ € (0,1) and for some s € [—1,1], (p,m) € (0,1]2.
Different special cases are considered in the following remark.

Remark 1. Definition 4 produces the following:
i. If s =1 in Definition 4, then we get the class of (p, m)-convez function.
it. If p =1, then Definition 4 reduces to the definition for (s, m)-convex function.
wi. If p=m =1 in Definition 4, then we have the class of extended s-convex function.

w. If p=s=m =1 in Definition 4, then we obtain the classical convex function.
We know present the defintions of Riemann-Liouville integrals as follows.

Definition 5. [18] Let n € Li[ki, ko). The Riemann-Liouville fractional integrals Jg
and Ji _mn of order p > 0 with k1 > 0 are defined by

J,f;rn(l") = 11(1p) /:(m — )’ y(w)dw, z > k
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and
I .
F(p)/ (w—x)/" n(w)dw,x < ko

respectively. Here, I'(p) is the Gamma function and J,81+7](x) = J,gz_n(a:) =n(z).

14 _

We further, present the definitions of some special functions as follows.

Definition 6. [9] For any complex numbers and nonpositive integers ki, ko such that
Re(k1) > 0 and Re(kz) > 0. The beta function is defined by

['(k1)T (ko)

1
B(ky, k :/ MLl — )l = 2

where I' is the Gamma function.

Definition 7. [12] For any complex numbers ki, ky with Re (k1),Re(k2) > 0, the in-
complete beta function is defined as

By(k1, ko) = / w11 — @) ldw, 0<a< 1.
0

Definition 8. [9] The integral representation of the hypergeometric function is defined
for ki,ky € C and k3 € C\Z, , Re(k3) > Re(k2) > 0, and |ks| < 1, as follows

1 b e ke _
2F1(k1,k2,k3;k4):B(k2kng)/O wkz 1(1—W)k3 k2 1(1—k4W) kldw,

where B(.,.) is the beta function.

3. Main Result

In this section, we first present some generalized midpoint type inequalities for (p, s)-
convex functions.

Theorem 2. Suppose that 1 : [k1, k] — R is a twice differentiable function on (k1,k2)
with ky < ko. If "] is (p,s) convex function, where (p,s) € (0,12 and n" € L[ki, k2],
then the following

207 (p+1) |, o k1 + k2
W J(k1;k2>*n(k1) + J(k1;k2)+77(k2) ) < B )
ko — k1)? Fi(1,—ps; 3+ ky;—1
= 2r(wi3(p—1%)1) [W(kl)‘Q - bz L (k)] 20,5, )
" F(/)S +p+2) "
Q .

where

holds.
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Proof. We now use identity (2) and (p, s)-convexity of |n”| to obtain the following

20710 (p + 1)
(/fz - /ﬁ)”

k1 + ko
JEk1J2rk2>J7(k1) + ka1;k2)+77(k2)] - < 5 > ‘

2l 1 1— 1— 1
/(1w)p+1 [ﬁ’( RGP 2wk2>+77”< i+ J;wkg)]dw'
0

1

8(p+1 2
S oo ()
S oo (o)
(l;?p—ﬁ;? [/01(1 oyt [ 1+2W>p I (ke)| + (1— (1;),,) " (k )}] de

2
_ 2 1 1
= 25)]:3_3(/)1{1)1) |:‘77”(k1)| /0 (1- w)p+1(l + @) dw + ‘77”(1@)! /0 (1- w)p+1(2p —(1-w)")’dw

1
()| / 1 = )+ )] [ (- - 14 w)ﬂ)&dw]
_ —ps: . 1
_ 21()];2_3(,016_1’_)1) |:‘77”(k1)| 2 F1(1, ],:1 ,—i);-kh 1) 4 ‘77”(]@)‘/0 (1— w)p+1(2p — (1 - @)")*dw
S 1
+ [ (k)| m + |n" (k2)| /0 (1+w)P 2 — (1+ w)p)sdw]

(kg — k1)? 2F1(1, —ps; 3+ ki3 —1)
< oo |1 (k)|

2053 (p+ 1) ki +2
}F(PS‘f‘P"‘Q)
T(ps+p+3)

+ |n" (k2)| Qp, s, @)

e Tl (h)| 20, s,w>] .

Theorem 3. Letn : [k1, ko] — R be twice differentiable function on (k1, ka) with k1 < ko.
If " € Llk1,ka] and |n"|? is (p, s)-convex function of second kind, then, we have the
following inequality for fractional integrals:

2 T(p+1) ki + ko
=) ZW)JI(W + J‘(’kl;kz)w(kg)] =1 <2>‘

< ) (27)+ (220 o o

Qe
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Proof. Applying Holder’s inequality, (p, s)-convex of |”|? and Lemmal, we get

2p—1r(p + 1) o B ]4}1 + ]{:2
(ks — k1) J'(Dh_gk?)—n(leJ(W)m(kz)] 77( 5 )

ko — k)2 [t l+w l-w l1-w l1+w
:'(8§a+11)) /(1—w)a+1 [77”( 5 k1 + k2> ( 5 k1 + 5 kz)] dw’
0

ko — k 1 1-—
bl o (s ) e

ke —ky [* 1-— 1
+ |2 (1—W)p+177//< 2wk1+ +wk2>dw‘

i), 2
1 1-—
( +wk1+ 2wk2>

< {(Loeree) ([ (5

H([fu-eree) ([ (520520 )|

<ok () {(rr [ (52) b [ (- (57 ) 0e)’
(oroar () serrr [ (- (452) ) o)

S () [(rwor (57 s (7)Y

(oo i)+ o ()} |

(

i (o) (Co) + () wrwor ot

Using power-mean inequality, we obtain the following integral inequalities.

1
q q
dw>

IN

+

IN

Theorem 4. Letn : [k1, ko] — R be twice differentiable function on (k1, ka) with k1 < ko.

If " € Llki,ka] and |n"|? is (p, s)-convexr function of second kind, then, we have the
following inequality for fractional integrals:

207 1T (p+1) k1+k
W [JE)k1+k2)_n(k:1) + JEk1+k2b)+n(k2)] - 77 ( 1 2)
2 2
ky—k1)? 7 = psi3tki;—
< Qe ()7 (" ()| 2RO E) (1), 5, ) )

+ (101 (HE223) + )l 25,5,

Qe
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Proof. Applying Lemma 1, power-mean inequality and the fact that |n”|? is (p, s)-
convex function, we have

27 'T(p+1) ky + ko
(ko — k1) ']I(]klfzrkg) (k1) + (k1+kg)+77(k2):| —77( D) )

ky — k1) [ 1 1- 1-
_| ke =) /(1717)9“ [n”<7—;wk1+ . k2>+n’< 2wk1+1—;wk2>}dw‘
0

8(p+1)
(kg—kl)Q/l 1 1+w 1-w
< 1 — )Pt .
S 0( w)fP iy 5 k1 + 3 ko | dw

_ 1
+ k24k1/ (1— )Pt /’(1 D+ L
kz — kl ( ” 1 14+w 1—w
< _ p+1) _ o\ (p+1) [
S ) {(/ (1 dw) (/ (1-w) 7 3 k1 + 5 ko
1 —-w 1+w 1 v
+</ (1 — )t dw) (/ (1—o)eth ( 5kt k2> dw)
0

2
(ks — k)2 [ 1 \'"4 o F1 (1, —ps; 3 + ko; — a
S 23(p+ 1) p+2 ‘q kl +2 + }77”(k2)|q52(p757w)

Now, we present generalized integral inequalities via Riemann-Liouville operators for
mappings whose twice differentiable are (p, s, m).

wk2> dw‘

Theorem 5. Let 7 : [k1, ko] — R be twice differentiable function on (ki, k2) with k1 < ka.
If " € Liky, ko] and |n"| is (p, s,m) convex function, where (p,m) € (0,1]%, s € (—1,1]
then, we have the following inequality for fractional integrals:

20710 (p + 1) ki +k
e — k)P J( k)~ n(k (k1+k2)+n(kz)] —77( : 5 2)‘
ko —k Fi(1,—ps; 3+ ky; — e
2,(0842r3(p41_)1) D (kl)‘ 2 F1(1, gl+; 1 )+m n (;)‘Q(p,s,w)
" F(ps—l—p—i—Q) ko
+ |0 (k ‘m m |1’ (m>‘Q(P78,W)],

where
1
Qp,s,w) = / (1 - @) (2 — (1 + w)")*dw.
0

Proof. Using Lemma 1 and the fact that |n”| is (p, s, m)-convexity, we get the fol-
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lowing
277" T(p+1) | , ) ki + ko
W J<k1;k2>*77(k1) +J(k1;k2>+77(k2) _77( 9
_ .2 gl 1 1 1 .
= ‘(kip-i-ki; / (1 —w)rtt {77” ( —;wlﬁ + 2wk‘2> +n" < 2wk‘1 + _;wk‘2>] dw'
0
(/€2—]€1)2/1 1 1+w 1—w
< p+1,_1
_‘ (p+1) 0 ( w) Ui 5 ]{31 9 ]{32 dwo
(kg—k1)2/1 o1y (1—w@ l+w
+‘8(p+1) 0(1 w) n ) k1 + 5 ko | dw
(kg — k1)? /1 pt1 | n(1t+@ 1—-w
ST /) (1—-w) n 5 k1 + 5 ko || dw
(kz—]ﬂ)z/l pt1 | n(l-—w 1+w
PES (1—-w) n 5 k1 + 5 ko || dw
_ 2 1 ps _ P\ S
2 oo (57 ot (- (7)) i ()
0
' 1—w\” 1+ @\”\* k
_ p+1 " . n( k2
+/0 (1 —-w) K 5 > \77 (k1)|+m<1 ( 5 > > n <m>H dw}

ko — k ? " ! S " k

n”(fj) /01(1 — )Pt 2P — (14 w)P)de]

k
e

/1(1 — @)’ (20 — (1 — w)’)’dw
0

] S ———

_W[‘ //< >|2F1( —pS; 3—|—k1,—1)
)

/1(1 B w)p+l(2p o (1 o ’W)p>sdw
0

2 (p+1 k1 +2
P + +2 k !
(kQ—kl) 2F1 (1, —ps; 3+ ky; —1) i k2
- 295+3(p+1) ‘77 ( 1)| k.1+2 n m <p787w)
/" F(ps + 14 + 2) " k2
- _“ Q .
I }F(08+p+3) min G ) | K5 )

Theorem 6. Let n : [k1, ko] — R be twice differentiable function on (k1,ks) with k1 <
ko. If 0" € Llk1, ko) and |n"|? is (p,s,m) is convex function, where (p,m) € (0,1]%,
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€ (—1,1], then, we have the following inequality for fractional integrals:
B ki + ko
"\ T2
27 G [ C22) )
< k —
=80p+1) \pp+r)+1 [ (ko) psr1 ) T

fprwar (22 e () (2]

Proof. Applying Holder’s inequality, Lemma 1 and the fact that |n”|? is (p, s, m)-
convex function, we have

20710 (p+ 1)
(k2 — k1)?

(m)—n(kl) + JEM)HK]%)

q 2 _9-ps é
(ot}

20711 (p + 1) o ) kL + o

CEE J(@)*”(kl)%](my”(kz) ”’( 5 )

(k2k1)2/1 1 1+w 1-w 1-w 14w
== -7 1— P+ /" /

’S(p—i—l) == kit =k ) o (—h+ —ks ) | de

(k2—k1)2/1 o (lt+w 1-w
< | = _ =)
—‘ 8(p+1) Jo (I—@)"n B k1 + 5 ko | dw

+

ko — k1 1 l—-w 1+w
1— p+1, 1 k
1 /0( @)’y 5 1+ 5 ko | dw
1+w 1l—w
k
( 5 1+ 7 kz)

q dw) ;}

P l—w 1+ w
k k
n//(

1
q q
dw>

(f-=rer) ([
A8 ) (o (5 om0 (- (5 )
(i [ (57w G [ (- (52) ) o)}
= (l;?p_jif <p(p +11) + 1) E [{ I () (2/)_8 i_fs) ( ) (QP;i fs)}

e () e ()] o)

3\3
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20710 (p+ 1) o ) - kL + ko
(ko — k1) J(’”é’“?)_n(kIHJ(’“l;’%)*”(kQ)I 77< 5 >‘

(kg—k1)2/1 1 1+w l-w l-w 1+w

= | 1 — )Pt /" /

‘8(p+1) 0( w) n 9 k1 + 9 ko | +1 5 k1 + 5 ko || dw
+
2

(ko — k1)? [/1 . 14+ w l-—w >
<2z 1 —w)Ptt |y k k
1— 1
< “ky + +wk2>’dw}
s ol
p(p+1)dw> </
0
1
q q
< w1+1+wk2> dw)
2
2—2 ps o | ko
ps—i—l m
1
278 7
()| <ps+1)}]-

4. Conclusion

dw

1
T / (1— )t |y
0

l14+w l—-w
/! k k
n < 5 1+ 5 2)

o
()

(kg — k1)? (
~ 8(p+1) p+1

i x
([o-eroee)
y

_l’_

(kg — k1)
=B+l < ,0—|—1 +1

o (25) o

{[(fo
([
[{re

Fractional calculus plays a vital role in understanding problems in pure and applied

sciences due to its possession of many interesting integral and differential operators. In
this study, therefore, we employed a Riemann-Liouville operator to establish some new
fractional integral inequalities for mappings whose second derivatives, raised to positive
powers, exhibit (p, s)-convexity and (p, s, m)-convexities. Our study established new
inequalities of midpoint type involving fractional operators through generalized classes
of convexities. Several estimates of special functions including incomplete Beta, FEuler
gamma and hyperglycemic functions are reported in this study. Our findings can enhance
the techniques by which the properties of convexity along with their generalizations can
be thoroughly studied through Fractional Calculus.
The findings of this study can be relevant in different areas of interest where the fractional
calculus is extensibility used. Our inequalities can be specifically used to estimate the
error bounds for numerical integration by improving the accuracy of quadrature methods.
Future studies should include the use of different fractional integral operators, such as the
generalized fractional integral operator unifying two existing fractional integral operators
[16], together with other classes of convexities to establish different inequalities.
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