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Abstract. This paper explores the recognition capacity of both unitary and non-unitary Abelian
graph automata through the algebraic structure of graphoids. We investigate for the first time
in the literature the recognition mechanism of non-unitary Abelian graph automata and prove
that they can recognize graph languages which are beyond the recognition power of unitary graph
automata. Consequently, we establish that the class of graph languages recognized by unitary
automata is strictly contained within the class of those recognized by Abelian graph automata.
These results manifest a proper hierarchy among graph automata classes and provide new insights
into the recognition capabilities of graph automata.
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1. Introduction

Graphs serve as powerful tools for modeling relationships and dependencies across var-
ious fields from network analysis to artificial intelligence [21], [25], [26], [1]. Automata
theory, with its robust framework for recognizing structured data (see [11–14]), can be
naturally extended into graph theory, enabling a systematic verification of graph charac-
teristics [18],[8]. Central to this approach is the algebraic representation of graphs through
magmoids, where the operations of graph product and graph sum are employed to represent
graph structures (see [7], [9]) playing a role similar to monoids in string generation. A mag-
moid is defined as a doubly ranked set equipped with two operations that are associative,
unitary, and canonically distributed [5].

As Engelfriet and Vereijken showed in [15], every graph can be represented in an infinite
number of different ways inside a magmoid. To overcome this ambiguity, the algebraic
structure of graphoids was introduced in [10] by considering the quotient magmoid obtained
via a finite set equivalences.

By employing a special type of graphoid, called here unitary graphoid, automata op-
erating on graphs were defined for the first time in [10]. As it was shown in [19], uni-
tary graphoids are the simplest kind of abelian relational graphoids. The class of abelian
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graphoids is in turn included in a larger class of graphoids called relational graphoids which
are obtained by appropriately structuring the set of all relations on the state set of the
graph automaton into a graphoid [19].

The definition of graph automata given in [10], implies that the recognition capacity
of graph automata may vary with respect to the specific graphoid employed in their con-
struction. However, this remains an open question, since the recognition mechanism of
the various types of graph automata with respect to their underlying graphoid has not
been further investigated besides unitary graphoids. Regarding the recognition ability of
unitary graph automata, i.e., graph automata employing unitary graphoids, we know that
they recognize for every positive integer k, the set of all directed k-colorable graphs with-
out inputs and outputs [20]. Graph colorability and the associated chromatic number of
a graph is a fundamental concept in graph theory, representing the minimum number of
colors required to color the vertices of a graph such that no two adjacent vertices share
the same color (see [2–4, 6, 16]). In this respect, it is manifested that graph automata
can recognize complex algebraic structures even when operating on the simplest type of
graphoid.

In this paper, we investigate further unitary graph automata and we prove that the
set of directed graphs of length at most k is recognized automata of this type and hence
belongs to the associate class of graph languages denoted here by Urec(Σ). Using a similar
construction, we also generalize the result of [20] by showing that, for every k, the set of
all directed graphs with chromatic number at most k belongs to Urec(Σ).

Moreover, in this paper, we examine, for the first time in the literature, abelian non-
unitary graph automata. We show that the set of all graphs with an odd number of edges
belongs to the class Arec(Σ) of all graph languages recognized by abelian relational graph
automata. This is proved by constructing an abelian non-unitary graph automaton with
two states that can be structured into a group via the operation of modulo 2 addition, as
dictated by the classification theorem of [19]. In addition to that, we prove that unitary
graph automata can not recognize this graph language. As a consequence it is proved that
Urec(Σ) is properly contained in Arec(Σ).

In the next section, we review the fundamental definitions of magmoids and hyper-
graphs. Section 3 presents the basic algebraic structures employed for the construction of
graph automata and introduces the notions of relational, abelian and unitary graphoids. In
the next section, we provide the formal definition of a graph automaton and the different
types of graph automata corresponding to the introduced graphoids. Moreover, in this
section we construct a unitary graph automaton recognizing the set of all directed graphs
with a given chromatic number.

In Section 5 we introduce a type of abelian non-unitary graph automaton which recog-
nizes all graphs with an odd number of edges. It is then proved that this graph language
can not be recognized by a unitary graph automaton establishing the proper hierarchy of
the corresponding classes.
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2. Magmoids and Hypergraphs

In this section we first introduce the algebraic structure of magmoids and then we define
directed graphs with specified inputs and outputs. We also present two graph operations,
called graph sum and graph product. It turns out that these two operations organize the
set of graphs can into a magmoid.

Given a set S we denote by S∗ the set of all strings constructed from the elements of
S, we denote by ε the empty string, and we set S+ = S∗ − {ε}. A doubly ranked set
A = (Am,n)m,n∈N, consists of a set A along with a function

rank : A → N× N

and is defined as Am,n = {a ∈ A | rank(a) = (m,n)}. For simplicity, we will omit the
subscript and denote a doubly ranked set by A = (Am,n).

A magmoid is a doubly ranked set M = (Mm,n) equipped with two operations

◦ : Mm,n ×Mn,k → Mm,k, □ : Mm,n ×Mm′,n′ → Mm+m′,n+n′

that are associative in the usual way and satisfy the distributive law

(f ◦ g)□ (f ′ ◦ g′) = (f □ f ′) ◦ (g □ g′)

whenever the operations are defined. Additionally, there exists a sequence of constants
en ∈ Mn,n, called units, such that

em ◦ f = f = f ◦ en, e0 □ f = f = f □ e0, em □ en = em+n

for all f ∈ Mm,n and all m,n ∈ N. The final equation implies that the elements en are
uniquely determined by e1, which we shall denote simply by e. The free magmoid mag(Σ)
generated by a doubly ranked set Σ is constructed in [7]. The sets Relm,n(Q) of all relations
from Qm to Qn are defined as

Relm,n(Q) = {R | R ⊆ Qm ×Qn}

and can be structured into a magmoid with ◦ as the usual relational composition and □
defined as follows: for R ∈ Relm,n(Q) and S ∈ Relm′,n′(Q),

R□ S = {(u1u2, v1v2) | (u1, v1) ∈ R and (u2, v2) ∈ S},

where u1 ∈ Qm, u2 ∈ Qm′ , v1 ∈ Qn, v2 ∈ Qn′ . Here, Q0 = {ε}, with ε as the empty word
of Q∗. The units are defined as

e0 = {(ε, ε)} and e = {(g, g) | g ∈ Q}.

We denote by Rel(Q) = (Relm,n(Q)) the magmoid constructed in this manner, referred to
as the relational magmoid of Q.
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An (m,n)-(hyper)graph G = (V,E, s, t, l, begin, end) with edge labels from a doubly
ranked set Σ = (Σm,n) is a structure consisting of a finite set of vertices V , a finite set
of edges E, the source and target functions s : E → V + and t : E → V +, the labeling
function l : E → Σ such that rank(l(e)) = (|s(e)|, |t(e)|) and sequences of begin and end
nodes, begin ∈ V ∗ and end ∈ V ∗, with |begin| = m and |end| = n. Note that vertices may
repeat in the begin and end sequences, as well as in edge sources and targets. The set of all
(m,n)-graphs over Σ is denoted by GRm,n(Σ), and we define GR(Σ) = (GRm,n(Σ))m,n∈N.

A path of length n inside a graph G is a sequence of edges e1, . . . , en, such that, for
every i < n − 1, there exists a node vi of G, that appears in both the strings t(ei) and
s(ei+1). We say that a path e1, . . . , en inside G is a cycle, if there exists a node v of G,
that appears in both the strings s(e1) and t(en). The length of a graph G is defined as the
length of the longest path inside G, see [17, 24, 27, 28]. Note that if a graph G has a cycle
then there will be a path of length n inside G for any n ∈ N. Hence the length of a graph
is finite if and only if the graph is acyclic.

Ordinary graphs are obtained as a special case of hypergraphs, where each hyperedge
is binary, i.e. for every edge e of the graph it holds |s(e)| = |t(e)| = 1. A graph is
called unlabeled if every edge has the same label. An ordinary, unlabeled graph is called
conventional graph. A graph has no input (resp. output) if the begin (resp. end) sequence
is ε. A graph without input and output is by definition a (0, 0)-graph. Conventional
(0, 0)-graphs is the most commonly examined type of directed graphs in the literature.

The product and the sum of two graphs where introduced by Engelfriet and Vereijken
in [15], see also [7, 10, 19]. For an (m,n)-graph G and an (n, k)-graph H, the product G◦H
is the (m, k)-graph obtained by taking the disjoint union of the two graphs and identifying
the ith end node of G with the ith begin node of H for all i. The begin and end sequences
of the product are respectively the begin sequence of G and the end sequence of H. The
sum G □ H of two arbitrary graphs G and H is obtained by taking their disjoint union
and concatenating their begin and end node sequences. For each n ∈ N, let En represent
the discrete graph of rank (n, n) with nodes x1, . . . , xn and begin = end = x1 · · ·xn; we
denote E1 simply by E. It is straightforward to verify that GR(Σ) = (GRm,n(Σ)) forms a
magmoid with operations product and sum, the units are the graphs En.

3. Graphoids

In this section, we explore graph automata by utilizing the algebraic structure of
graphoids as defined in [10]. Let Ip,q denote the discrete (p, q)-graph that has a single
node x with begin and end sequences both formed by x repeated p and q times, respec-
tively. We also let Π be the discrete (2, 2)-graph with two nodes, x and y, whose begin
sequence is xy and end sequence is yx. For each σ ∈ Σm,n, we denote by σ the (m,n)-graph
with a single edge and m+ n nodes labeled x1, . . . , xm, y1, . . . , yn. The edge is labeled σ,
with the begin (resp. end) sequence of the graph as the sequence of sources (resp. targets)
of the edge: x1 · · ·xm (resp. y1 · · · yn).

Engelfriet and Vereijken, in [15], proposed an algorithm that inductively constructs any
graph G ∈ GR(Σ) from the set Σ∪{Π, I01, I21, I10, I12} by using graph product and graph
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sum. However, a given graph can be constructed in infinitely many ways. This issue was
addressed by identifying a finite set E of equations with the property that two expressions
represent the same graph if and only if one can be transformed into the other using these
equations [7]. Thus, the equations in E are valid in GR(Σ), and magmoids satisfying this
property are referred to as graphoids.

Formally, a graphoid M = (M,DM ) consists of a magmoid M and a set DM =
{s, d01, d21, d10, d12}, where s ∈ M2,2 and dκλ ∈ Mκ,λ, such that the following equations
hold:

s ◦ s = e2, (1)
(s□ e) ◦ (e□ s) ◦ (s□ e) = (e□ s) ◦ (s□ e) ◦ (e□ s) , (2)

(e□ d21) ◦ d21 = (d21 □ e) ◦ d21, (3)
(e□ d01) ◦ d21 = e, (4)

s ◦ d21 = d21, (5)
(e□ d01) ◦ s = (d01 □ e) , (6)

(s□ e) ◦ (e□ s) ◦ (d21 □ e) = (e□ d21) ◦ s, (7)
d12 ◦ (e□ d12) = d12 ◦ (d12 □ e) , (8)
d12 ◦ (e□ d10) = e, (9)

d12 ◦ s = d12, (10)
s ◦ (e□ d10) = (d10 □ e) , (11)

(d12 □ e) ◦ (e□ s) ◦ (s□ e) = s ◦ (e□ d12) , (12)
d12 ◦ d21 = e, (13)

(d12 □ e) ◦ (e□ d21) = d21 ◦ d12, (14)
sm,1 ◦ (p□ e) = (e□ p) ◦ sn,1, for all p ∈ Mm,n. (15)

where sm,1 is defined inductively by s and represents the graph associated with the permu-
tation that interchanges the last n numbers with the first one [7]. Notably, Equation (15)
only needs to hold for elements of Σ to be valid for every element of a magmoid generated
by Σ (see [7]). Hence, the pair (GR(Σ), DGR(Σ)) with

D = {Π, I01, I21, I10, I12},

is a graphoid and is, in fact, the free graphoid generated by Σ as illustrated in [10].
For graphoids (M,DM ) and (M ′, DM ′), a magmoid morphism H : M → M ′ that

preserves D-sets, i.e., H(s) = s′ and H(dκλ) = d′κλ, is called a morphism of graphoids.
A graphoid (Rel(Q), DRel(Q)) formed from the magmoid of relations Rel(Q) is called

relational graphoid. If the element s ∈ DRel(Q) of a relational graphoid is

s = {(g1g2, g2g1) | g1, g2 ∈ Q}, (16)

then the pair (Rel(Q), DRel(Q)) is called abelian graphoid (see [19]).
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The unitary graphoid U(Q) = (Rel(Q), DU
Rel(Q)), which was used for introducing graph

automata in [10], is an abelian graphoid constructed by defining, in addition to s as above,
the elements d01, d21, d10, d12 as follows

d01 = {(ε, g) | g ∈ Q}, (17)
d21 = {(gg, g) | g ∈ Q}, (18)
d10 = {(g, ε) | g ∈ Q}, (19)
d12 = {(g, gg) | g ∈ Q}. (20)

In [19] it is proved that a set of states Q can be structured into an abelian graphoid
if and only if it can be partitioned into disjoint abelian groups with operations derived
from d21 and unit derived from d10 (or equivalently from d12 and d01). In this setup the
unitary graphoid U(Q), introduced above, corresponds to the partition of the state set
Q = {q1, q2, . . . , qk} into k singleton sets Q = {qi} which can then be structured into k
trivial groups.

4. Graph Automata

In this section we introduce different types of relational automata operating on graphs,
corresponding to different types of relational graphoids.

A relational graph automaton, as introduced in [10], is a structure

A = (Σ, Q, (Rel(Q), DRel(Q)), δA, IA, TA),

where Σ is the doubly ranked set of hyperedge labels, Q is a finite set of states, δA : Σ →
Rel(Q) is the doubly ranked transition function, and IA, TA are initial and final rational
subsets of Q∗.

According to Theorem 3 of [10], the function δA is uniquely extended to a morphism
of graphoids

δ̄A : GR(Σ) → (Rel(Q), DRel(Q)),

where δ̄A(Iij) = dij and δ̄A(Π) = s. The behavior of A is defined by

|A| = {F | F ∈ GRm,n(Σ), δ̄A(F ) ∩ (I
(m)
A × T

(n)
A ) ̸= ∅, m, n ∈ N},

where I
(m)
A = IA ∩Qm and T

(n)
A = TA ∩Qn. Notice that, due to the use of the relational

graphoid, the resulting graph automata are non-deterministic.
Graph automata can be obtained similarly to the above definition using non-relational

graphoids, although this has never been examined in the literature. In the particular
case that the relational graphoid satisfies Eq. 16, then the corresponding relational graph
automaton is called abelian graph automaton. In addition, if it satisfies Eq. 16 and Eqs.17-
20, it is called unitary graph automaton.

The set of all graph languages over the doubly ranked set Σ, recognized by a relational
graph automaton is denoted by Rrec(Σ). Analogously, we denote by Arec(Σ) the set of
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Figure 1: The class hierarchy of graph automata

graph languages recognized by abelian graph automata and by Urec(Σ) the set of graph
languages recognized by unitary graph automata.

In [20] it was shown that the set of conventional k-colorable graphs without inputs and
outputs belongs to Urec(Σ) for every positive integer k. This was achieved by constructing
a unitary graph automaton able to read all ordinary (0, 0)-graphs with identical edge labels,
and recognize those that can be assigned a proper k-coloring.

Next we will construct a unitary graph automaton recognizing all conventional graphs
of length at most k.

Proposition 1. Given k ∈ N, the set of conventional graphs of length at most k belongs
to Urec(Σ).

Proof. We are first going to construct a graph automaton recognizing all ordinary
unlabeled (0, 0)-graphs of length at most k. Consider the unitary graph automaton

Ak
len = (Σ, Q,U(Q), δAk

len
, IAk

len
, TAk

len
)

with Σ = Σ1,1 = {a}, state set Q = {1, 2, ..., k + 1}, transition function given by

δAk
len

(a) = {(i, j) | i, j ∈ Q, i < j},

and IAk
len

= TAk
len

= {ε}.
From this construction we see that any successful transition inside this automaton will

increase the state index for each edge of the graph it reads. As a result, by taking into
account the path length definition, there will be not successful transition for any graph
that has a path of length larger than k but every graph of smaller length will be recognized.

H1 H2 H3

Figure 2: Three unlabeled (0, 0)graphs with binary edges
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We will illustrate this by examining the three ordinary graphs shown in Figure 2,
starting with H1, a graph of length 3. We know that GR(Σ) is the free graphoid, hence
the operation of any automaton does not depend to the specific representation of H1 we
will employ. Below is a representation of H1 where graph product and graph sum are
denoted, for simplicity, by horizontal and vertical concatenation.

H1 = I01 a I12

(
a
a

)(
a
E

)
I21 I10

The image of H1 by the transition function of A3
len is

δA3
len

(H1) = d01 δA3
len

(a) d12

(
δA3

len
(a)

δA3
len

(a)

)(
δA3

len
(a)

e

)
d21 d10

and an accepting state map for it will be

{ε}d01{1}δA3
len

(a){2}d12
{
2
2

}(
δA3

len
(a)

δA3
len

(a)

){
3
4

}(
δA3

len
(a)

e

){
4
4

}
d21{4} d10{ε}

where the states are indicated in brackets. Hence the graph is recognized by A3
len. Repre-

sented on the graph, the states that the automaton reaches at each vertex are

1
2

3

4

The graph H2 of Figure 2 has length 4. We can employ the below representation

H2 = I01 a I12

(
a
a

)(
a
a

)
I21 a I10

and observe that this graph can not be accepted by A3
len since any possible transition can

reach at most to the last δA3
len

(a) before halting as seen below.

{ε}d01{1}δA3
len

(a){2}d12
{
2
2

}(
δA3

len
(a)

δA3
len

(a)

){
3
3

}(
δA3

len
(a)

δA3
len

(a)

){
4
4

}
d21{4} δA3

len
(a)

The third graph of Figure 2 has a cycle and hence its length is infinite. A possible
representation of H3 is given below.

H3 = I01 a I12

(
a
E

)(
a
E

)(
a
E

)
I21 I10
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From this representation, we see that H3 can not be accepted by A3
len since any transition

will halt when reaching d21 as illustrated below.

{ε}d01{1}δA3
len

(a){2}d12
{
2
2

}(
δA3

len
(a)

e

){
3
2

}(
δA3

len
(a)

e

){
4
2

}(
δA3

len
(a)

e

){
5
2

}
d21

The graph automaton A3
len can be generalized to consider every (m,n)-graph if we modify

the initial and final sequences by setting

IAk
len

= Qm and TAk
len

= Qn.

This will not affect the behavior of the automaton as it is evident from the Equations 17-20
which hold for every unitary automaton.

From the above Proposition we get that the graph language Lenk that consists of all
conventional graphs with length at most k lies in the class Urec(Σ), for every positive
integer k. Using the same argument as in the end of the above proof we can generalize the
result of [20] to obtain the following.

Proposition 2. Given k ∈ N, the set of all conventional graphs with chromatic number at
most k, belongs to Urec(Σ).

5. Non-unitary abelian graph automata

Non-unitary graph automata have never been examined in the literature and their
recognition capacity remains unknown. As a result, we don’t know if the class hierarchy
depicted in Figure 1 is proper.

In this section, we will introduce non-unitary abelian graph automata operating by
virtue of graphoids associated to non-trivial groups. We will identify a graph language
recognized by such a graph automaton and show that it doesn’t belong to Urec(Σ), demon-
strating that Urec(Σ) is properly included in Arec(Σ).

For this we define the abelian graphoid G2(0,1) that is obtained by the trivial partition
of the set {0, 1} to a single set that is structured into a group via the operation of addition
mod 2.

+ 0 1

0 0 1
1 1 0

From Theorem 3 of [19], we get that the elements of DG2(0,1), besides s will be as follows

d21 = {(01, 1), (10, 1)}, d10 = {(0, ε)},
d12 = {(1, 01), (1, 10)}, d01 = {(ε, 0)}.

Clearly, graph automata operating on G2(0,1) are abelian but non-unitary. Hence the
graph languages they recognize belong to Arec(Σ) but necessarily to Urec(Σ).

Now we consider the graph language L
(1,1)
od of all conventional (1, 1)-graphs with an odd

number of edges. We prove the following proposition.
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Proposition 3. The graph language L
(1,1)
od belongs to Arec(Σ).

Proof. We use this G2(0,1) to construct the following graph automaton

Aod = (Σ, {0, 1},G2(0,1), δAod
, IAod

, TAod
)

with Σ = Σ1,1 = {a}, state set Q = {0, 1}, IAod
= {0}, TAod

= {1} and the transition
function given by

δAod
(a) = {(0, 1), (1, 0)}.

This graph automaton recognizes the graph language L
(1,1)
od of all conventional (1, 1)-

graphs with an odd number of edges. To illustrate this, we consider the following graphs,
where the nodes of the begin and end sequences are designated by b1 and e1 respectively.

b1 e1

H4

b1 e1

H5

b1
e1

H6

Figure 3: Three unlabeled (1, 1)-graphs with binary edges

The image of a representation of H4 by the transition function of Aod gives

δ̄Aod
(H4) = δAod

(a) d12

(
δAod

(a)
δAod

(a)

)
d21

and an accepting sequence of states is

{0}δAod
(a){1}d12

{
1
0

}(
δAod

(a)
δAod

(a)

){
0
1

}
d21{1}

which shows that H4 is recognized by Aod. Similarly, we can see that for H5 and H6 the
following sequences of states can be respectively obtained

{0}δAod
(a){1}d12

{
1
0

}(
δAod

(a)
δAod

(a)

){
0
1

}
d21{1}δAod

(a){0}

and {0}d12
{
1
0

}(
δAod

(a)
e

){
0
0

}
d21{0},

which shows that H6 is accepted but not H5. Notice that, according to [10], the behavior
of the graph automaton will be the same regardless of which representation we select.

Next we are going to prove that L(1,1)
od does not belong to Urec(Σ), thus obtaining the

following

Proposition 4. The class Urec(Σ) is properly contained in Arec(Σ).
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Proof. Assume that there is a unitary automaton AU
od recognizing L

(1,1)
od and a graph

G ∈ L
(1,1)
od . Then there will be states a ∈ IAU

od
and b ∈ TAU

od
, and the following accepting

transition.
{a}δAU

od
(G){b}

We consider now the graph
Gp = I12 ◦ (G□G) ◦ I21,

which is accepted by the graph automaton AU
od with accepting transition as shown below.

{a}d12
{
a
a

}(
δAU

od
(G)

δAU
od
(G)

){
b
b

}
d21{b}

This is a contradiction since Gp has an even number of edges. Hence L
(1,1)
od does not belong

to Urec(Σ) and from Proposition 3 we obtain the result.

6. Conclusion

We investigated unitary and non-unitary Abelian graph automata by leveraging the al-
gebraic structure of graphoids and demonstrated that unitary graph automata effectively
recognize sets of directed graphs with chromatic numbers bounded by any given inte-
ger, thereby extending existing results in the literature. In addition, we introduced and
examined non-unitary Abelian graph automata, showing that they can recognize graph
languages—such as graphs the set of conventionawith an odd number of edges—that lie
beyond the recognition capabilities of unitary graph automata. This establishes a strict hi-
erarchy between the graph languages recognized by these two classes of automata namely,
Urec(Σ) ⊂ Arec(Σ).

The presented results demonstrate the robust expressive power of non-unitary automata
and provide new insights into the interplay between graph automata and their correspond-
ing algebraic structures. By showing how variations in the underlying graphoid influence
recognition capability, this work paves the way for further exploration of the theoretical
and practical implications of graph automata.

As a continuation of this study, the recognition mechanisms of non-unitary graph au-
tomata derived from graphoids based on non-Abelian groups with more than two elements
need to be investigated. Such an exploration could further expand the hierarchy of graph
language recognition within the class of Abelian graph automata. Additionally, while con-
structing non-Abelian and non-relational graphoids is theoretically feasible, it remains an
open problem. The successful development of such machines would enable comparisons
with existing unitary and Abelian graph automata, thereby broadening our understanding
of the recognition capabilities of graph automata.

Moreover, drawing parallels to the string case, we can compare the recognition power
of graph automata to the syntactic recognizability of graphs, as introduced in [9]. We can
also investigate the possible construction of fuzzy graph automata, similarly to syntactic
fuzzy recognition, as described in [22, 23].
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