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Score sequences in oriented k-hypergraphs
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Abstract. Given two non-negative integers n and k with n > k > 1, an oriented k-hypergraph on n
vertices is a pair (V,A), where V is a set of vertices with |V| =n and A is a set of k-tuples of vertices,
called arcs, such that for any k-subset S of V, A contains at most one of the k! k-tuples whose entries

belong to S.
In this paper, we define the score of a vertex in an oriented k-hypergraph and then obtain a necessary
and sufficient condition for the sequence of non-negative integers [s;,s,,- -+ ,s,] to be a score sequence

of some oriented k-hypergraph.
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1. Introduction

An edge of a graph is a pair of vertices and an edge of a hypergraph is a subset of the
vertex set, consisting of at least two vertices. An edge in a hypergraph consisting of k vertices
is called a k-edge, and a hypergraph all of whose edges are k-edges is called a k-hypergraph.

A k-hypertournament is a complete k-hypergraph with each k-edge endowed with an
orientation, that is, a linear arrangement of the vertices contained in the hyperedge. In other
words, given two non-negative integers n and k with n > k > 1, a k-hypertournament on n
vertices is a pair (V,A), where V is a set of vertices with |V| = n and A is a set of k-tuples
of vertices, called arcs, such that for any k-subset S of V, A contains exactly one of the k!
k-tuples whose entries belong to S. If n < k, A= ¢ and this type of hypertournament is called
a null-hypertournament. Clearly, a 2-hypertournament is simply a tournament.

Instead of scores of vertices in a tournament, Zhou et al. [8] considered scores and losing
scores of vertices in a k-hypertournament, and derived a result analogous to Landau’s theorem
[5]. The score s(v;) or s; of a vertex v; is the number of arcs containing v; and in which v;
is not the last element, and the losing score r(v;) or r; of a vertex v; is the number of arcs
containing v; and in which v; is the last element. The score sequence (losing score sequence)
is formed by listing the scores (losing scores) in non-decreasing order.
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The following characterizations of score sequences and losing score sequences in k-hypertournaments
are due to Zhou et al. [8].

Theorem 1.1. Given two non-negative integers n and k with n > k > 1, a non-decreasing
sequence R = [rq,rq, -+ ,1,] of non-negative integers is a losing score sequence of some k-
hypertournament if and only if for each j,

J j
i:z:lriz k 5

Theorem 1.2. Given non-negative integers n and k with n > k > 1, a non-decreasing se-
quence S = [s1,S9," - ,S,] of non-negative integers is a score sequence of some k-hypertournament
if and only if for each j,

sazi(i01)+()-(8)

with equality when j = n.

with equality when j = n.

Bang and Sharp [2] proved Landau’s theorem using Hall’s theorem on a system of distinct
representatives of a collection of sets. Based on Bang and Sharp’s ideas, Koh and Ree [4]
have given a different proof of Theorem 1.1 and 1.2. Some more results on scores of k-
hypertournaments can be found in [3, 7].

An oriented graph is a graph with each edge endowed with an orientation. As given by
Avery [1], the score s(v;) or s; of a vertex v; in an oriented graph with n vertices is s(v;) =
n—1+d*(v;)—d~(v;), where d*(v;) and d~ (v;) are respectively the outdegree and indegree of
v;. The score sequence of an oriented graph is formed by listing the scores in non-decreasing
order.

The following result due to Avery [1] characterizes score sequences in oriented graphs,
and a new proof of it is due to Pirzada et al. [6].

Theorem 1.3. A sequence S = [s1,$5, - ,5,] of non-negative integers in non-decreasing
order is a score sequence of an oriented graph if and only if for each j (1 <j <n)

$; > 2 s
= 2

An oriented k-hypergraph is a k-hypergraph with each k-edge endowed with an orienta-
tion, that is, a linear arrangement of the vertices contained in the hyperedge. In other words,
given two non-negative integers n and k with n > k > 1, an oriented k-hypergraph on n
vertices is a pair (V,A), where V is a set of vertices with |V| = n and A is a set of k-tuples
of vertices, called arcs, such that for any k-subset S of V, A contains at most one of the k!

with equality when j = n.
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k-tuples whose entries belong to S. Clearly, an oriented 2-hypergraph is simply an oriented
graph.

Let D = (V,A) denote an oriented k-hypergraph with n vertices and let 1 < k < n. Clearly,
there can or cannot be an arc among any k distinct vertices vy, vq,- -,V of V. If there is an
arc among Vvq,Vy,- -+ , Vi, we denote it by e = (v1,v,, -+, v, ) and if there is not an arc among
V1, Vg, , Vg, it is denoted by (v, vy, -+, i), and we call it a non arc. We note that D contains

n
k k k—1
arcs. We denote by d*(v;) (d~(v;)), the number of arcs in which v; is not the last element
((v; is the last element), furthermore, we denote by d;r (U) (d; (U)) the number of arcs that
are contained in U and in which v; is not the last element ((v; is the last element).
Now, let V; = {v;,vq,--+,v;} CV and V, =V — V;. If q is the number of those arcs which
contain at least one vertex from V; and at least one vertex from V,, then

=2 (1))

The set of those arcs having at least one vertex in V; and at least one vertex in V, is
denoted by V; * V.

Lete = (vy,Vy, -,V ) beanarcin D andi < j <k.

We denote by e(v;,vj) = (i, ,Vim1, V), Vig1, "+ > Vi—1,Vis Vit1,*** » Vi), that is, the new

n . . . n—1
at most arcs, that is |A| < , and a vertex v; in D can be in at most ( )

arc obtained from e by interchanging v; and v; in e. Similarly, we denote by f <vi, vj> the new
non arc obtained from the non arc f = <v1, Vo, ot v~> by interchanging v; and v; in f.

Define the score s(v;) or s; of a vertex v; in oriented k-hypergraph D as
n—1 -
s(vi)=(k—1)( i )+d+(vl-)—(k—1)d ().
n—1
k—1
listing the scores in non-decreasing order.
Let R = [s1,89, "+ ,S,] be an integer sequence. For 1 <i < j < n, we define S(s

Clearly, 0 <s; < k ( . The score sequence S = [s;,5,, -+ ,S,] of D is formed by

N
i:s')_
et o= — () S ’
[s1,82, = ,8i+ 1, .55 — 1,--+,s,], and S™(s; S5 ) = (53,85, ,s,) denotes an arrangement
+ — / / . /
of S(s; S5 ) such that s] <s;, <--- <s.

Let S = [s;,89,*,5,] be a non-decreasing sequence of non-negative integers with each
s; having the form s; = x;k + y;(k — 1), where x; and y; are nonnegative integers and satisfy

0<x;,y; < ( Z : 1 , S is called to be strict if for all s; <s;, we have y; > y;.

2. Main results

Our main result is the following theorem.
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Theorem 2.1. Given two non-negative integers n and k with n > k > 1, a non-decreasing
strict sequence S = [s1,S9, - ,S,] of non-negative integers with s; = x;k + y;(k — 1), where

.. . n—1 .
X;, ¥; are nonnegative integers and satisfies 0 < x;,y; < ( , is a score sequence of

-\ k-1
some oriented k-hypergraph if and only if

Lo n-1\ & . (i\(n-i
;si > j(k 1)(k_ 1) +;(l k)(i) (k_l_) (2.1)
with equality for j = n.

In order to prove this theorem, we need some lemmas.

Lemma 2.1. If D is an oriented k-hypergraph of order n, then s(v;) = xk+y(k—1), where
x and y are non-negative integers.

Proof. Let d*(v;) be the number of non arcs in which vertex v; is contained. Then,

At ) +d () +d*(v) = ( T )

ord=(v;) = ( Z:i ) —d(v))—d*(v).

Therefore, s(v;) = (k — 1) ( Z: i ) +d*(v;) — (k—1)d™(v;)

gives

s(vi)=(k—1)( o ) +d* ) = (k= 1) K o ) —d+(vl~)—d*(vi)}
=kd"(v;}) + (k—1)d*(v;)

As d*(v;) and d*(v;) are non-negative integers, the proof follows.(J
It follows from Lemma 2.1 that the score of a vertex v; besides satisfying 0 < s; <

-1
k ( Z_ 1 should also satisfy s; = xk + y(k — 1), where x and y are non-negative inte-

gers. A vertex v; if belonging to an arc and not the last element contributes k to the score of
v;, and if not belonging to an arc contributes k — 1 to the score of v;.
For k = 2, D is simply an oriented graph and the score of a vertex in that case becomes

s = "o Rt —d ),

which is same as defined by Avery.

Lemma 2.2. If [s1,s,,--,5,] is a score sequence of an oriented k-hypergraph of order n,

h L , n—1
then izzlsi—n( -1) k-1

Proof. In the following, d;r and d; denote d(v;)* and d(v;)” respectively. Let D be an
oriented k-hypergraph with score sequence [s1,S9," -+ ,S,]. We have,
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n

Y= [(k— 1)(2:1) +dt — (k- 1)d;}
i=1

i=1

:n(k—1)(Z:D + Y d = (k-1)) d;.
i=1 i=1

n n
Let D contains p k-arcs. Then, Y. d* =(k—1)p and },d; =p.
i=1 i=1
Therefore,

n

n—1
Zsizn(k—l)(k_l)+(k—1)p—(k—1)p

i=1
— k
= n( I ) ( )

Lemma 2.3. If S = [sq,$5, - ,S,] is a score sequence of an oriented k-hypergraph D with
si <sjand s; = xk + y(k — 1), s; = ak + f8(k — 1), where x, y, a and f§ are non-negative
integers. If y > f3, then S+(sl.+,sj_) is a score sequence of an oriented k-hypergraph D’.

O

Proof. For simplicity, A(D) denotes the set of arcs in D; A*(D) denotes the set of non arcs
in D.

Since d(v)* =y > 8 > 0, we have A*(D) # 0.

Case 1. There exists a non arc e* = (uy,uy, - ,Ui_1,v;) €A*(D) which does not contain
v; and such that e = (u},us, -+ ,u;_,,v;) €A(D), where (u},us, -+ ,u;_,) is a permutation of
(u]_J Ug, "+, uk—l)'

If there exists an arc e; that contains both v; and v; and that v; is the last entry. Then
by exchanging v; and v; in e;, adding the arc e’ = (uy,uy, -+ ,ux_1,v;) to D, and deleting e
from D, we get an oriented k-hypergraph D’ with S*(s:r,sj_) as its score sequence. So in the
following, we assume that for each arc containing both v; and v;, v; is not the last entry.

If there exists a pair of arcs f = (w1, wq, -+, wy_1,V;), and f' = (W], w, -, vj, -+, wi_,),
where (wi,ws,--+,w;_,) is a permutation of (wy,ws, -+, w,_;). Then by exchanging v; and
v; between f and f’, adding the arc e’ = (uy,u,, -+ ,u_1,V;) to D, and deleting e from D, we
get an oriented k-hypergraph D’ with S +(s;r,sj_) as its score sequence. So in the following, we
assume that no such pair of arcs exist. Furthermore, for each f’ = (w},wy, -+, v;,--- ,w;_,),
f = (wy,wy,+,v;,++ ,wk_1) must be an arc, where (wj,ws,---,w;_,) is a permutatiorll
of (wq,ws, -+ ,wi_;), otherwise, by adding (wy,wy,---,Vv;,-++ ,wi_;) to D and deleting f
from D, we get an oriented k-hypergraph D’ with S+(si+,sj_) as its score sequence. And

therefore, we have d+(vj) < d*(v;). Meanwhile, since y > f3, s; < s; and by the proof of
Lemma 2.1, s; = kd*(v;) + (k — D)d*(v;) <'s; = kd™(v;) + (k — 1)d*(v;), which implies that
k(d*(v;) —d*(v)) > (k —1)(d*(v;) — d*(v;)) > O, thus we have (d*(v;) — d*(v;) > 0, which

contradicts the fact that d*(v;) < d*(v).
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Case 2. For each non arc e = (uy, Uy, - ,Uk_1,V;), either f* = (uy,uy, -+, up_1,v;)
is a non arc, or {u;,uy, - ,ui_1,v;} forms an arc, but v; is not the last entry. Note that
the later case will deduce that result is valid, so we assume that for each non arc e* =
(uy,ug, -+, up—1,v;), f* = (uq,uy, -~ ,ur_1,v;) is also a non arc. This implies that d*(v;) <
d*(v;), which contradicts that y > .0

We note when y < 3, Lemma 2.3 need not be true. To see this consider a 3-hypergraph
D = (V,A) with V = {1,2,3,4} and A= {(1,2,3),(3,4,1)} it is easy to check that [5,5,7,7] is
the score sequence of D. But the sequence [5,6,6,7], which is just S+(sl.+,sj_), where s; =5
and s; = 7, is not a score sequence of any 3-hypergraph.

Lemma 2.4. If S = [s1,89,"**,5,] with s; < sy < -+ < 5, is a non-negative integer
-1
sequence satisfying (1), and if s,, < k Z_ E then there exists p (1 < p < n—1) such that

S (s;lL ,s; ) is non-decreasing and satisfies (2.1).
Proof. Let p be the maximum integer such that

1 <Sp=Spp1="""=5,_1 withsyg =0if p=1.

Sp p

To see S(s:,s;) satisfies (2.1), we only need to show foreach j (p <j<n-—1),

S n=1) S () (n
Zsi>](k—1)(k_1)+;(l—k)(i)(k_i). (2.2)

i=1

. -1
Since s,, < k ( Z_ 1 ), therefore
n—1 n
S-S
i=1 i=1

=n(k—1)(z:1)—sn
n—1 n—1
a1 1 (1)
n—1 n—1
R AN )]
_ k—1 _ —(n—
AS(;_%)SiE(k_i)(nil)(n k(ilil)),
o)
n—1 = /m-1\[ 1
~(io0)z 2o ()
B3 (1 1
oo 7))
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n—1 _ k-1 _

Therefore, . s; > (n—1)(k — 1) n-1 + Y.(i—k) n.l 1.

P k—1 = i k—1

Thus for p =1, (2.2) holds. Now, we assume p < n — 2. Clearly, (2.2) holds for j =n — 1.
Jo k-1 . .

If there exists j, (p < jo <n—2) such that Y. s; = jo(k — 1)(2:1) + 2 G-,
i=1 i=1

choose j, as large as possible.

S.incie
Jot _ k—1 : (s
Za>uﬁnw—n(21)+za—m(hﬂ)(“ %*”)
i=1 - i=1 1 k—l
therefore
Sjo = Siot1
Jot1 Jo
= Zsi_ ZSi
i=1 i=1
n-1) & jo+1 n—jo—1 n—1
. _ - . 0 —Jo— s _ -
> (o + Dk n(k_1)+2} m( i )( 0 ) jolk n(k_l
n-1) & jo+1 n—jo—1
— (I — - s 0 —Jo—
=PI |Gy
Thus,
Jo—1 Jo
S = Si_sjo
i=1 i=1

)

k—1 . .
< jo(k—l)( Z:i )— [(k—l)( Z:i )—G-Z(i—k)( Jojl ) ( n—kJEi—l ﬂ
i=1

k—1 . .
i _ n—-11) . Jot+1 n—jo—1
= (jo — D(k 1)( -1 ) i=1(l k)( ; ) ( i
Jot1 )\ iGe+D Jo—1
Now, ( i ) = Go—i+D0o—0) i

n—jo—1 \  (aejo—kti+Dn—jo—k+) [ n—(o—1)
k—1 B (n—jo+1)(n—jo) k—1 ’

and
Jo—1 -1
So, 25i<(j0_1)(k_1)(n )
i=1 k=1
_ kil (i—K)jolio+ D) (n—jo—k+i+1)(n—jo—k+i) [ Jo—1 n—(jo—1)
= (o—1+1)(jo—1)(n—jo+1)(n—jo) i k—1i ?

jo—1 —_ k— P — (i —
oﬁga<m—nw—n(2_i)+§ﬁ—m(“i1)(”é?i”),

i=1
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a contradiction to the hypothesis on S. Hence, (2.2) holds.O

Proof of Theorem 2.1. Necessity. Let S = [s;,5,, - ,s,] be the score sequence of an

oriented k-hypergraph D. Further, let V; = [vy,Vq,--+,v;] and V, =V — V;. Clearly, Vl{ =
i || =n—j.
Now,

._.,_.

j j
Zsi (k—1) (
=1 =

J
:j(k—l)( )+Zdl+(D) (k—l)Zd (D)
=1

1

)-+dj(D)-—(k-—1)d;(D)

J J
=j(k—1) ( ) + ) [dF ) +dF vV ] = (k= 1) [di (Vi) +d; (v % V)]

i=1 i=1

j j
If there are a arcs in V, then ), df (V) =(k—1Daand ), d (V) =a,
i=1 i=1

so that ﬁ dr(vy) — (k1) ﬁ d-(V)) = (k—1Da—(k—1a=0.
i=1

Also, Zd (Vl*V2)<k21( 1 ) ( Z:{ ),

i=1 i=1
andzdj(vl*vz)z Z(i—l)( J ) ( n=J )
i=1 i=1 t k—i
Therefore,

oo (11)-o0(1) (1) o8 ()
o171 )-Feo (1) (1)

Sufficiency. Induct on n. If n = k, there is only one arc (or one non arc) in which case the
scores are n,n,---,n,0(n—1,n—1,--- ,n— 1), and the result is true.
Assume n > k. Now,

n n—1
Sy = 51—251'
i=1 i=1
n—1 n-— 1
cor-n(i7 ) (1)o7 (11
n—1
:k(k—l)'
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n—1
Case 1. Ifsnzk( k1 )

_ -1
Lets{=si—k(k 2) (" ), 1<i<n-1. Clearly,s; is of the form xk 4+ y(k — 1).

n-1 k—1
Then,
nill/_n_l k(k—=2) [ n—
izlSi_izl i n—1 k-
n—1 n—1
Z(H(k—l)—k)(k_l)—k(k—z)(k_1)>
since
n—1 n
Zsl=25i—sn
i=1 i=1
see(301) (15
= (n(k—1)— k)(z 1)
So,

n—1

s/ = (n(k — 1) — k(k —2))

-1 —2

= (n(k —1) — k(k — z))( k)( 1)
-2
-1

=(n-1(k-1) (

i=1

Also,for1<j<n-—1,
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J J k(k—=2) ( n—1
=y ()

o174 S 1) (1

=[]_(k_1)_]krgk—2) n—1 (

n— ]k(k—z) n—1
k— B n—1 k—1
. k—1 j n—i-1
— +lzl:(l—k) ; ki
n—2 = Jj n—1—j
) ezes(1) ()
jlk=D(-k)+1] ( n- < i n-1-j
)z (1) ()
](k—l)(n—k) -2 n—1-—j
(0 ) gen (1) (),

Thus, the sequence [si,sé, .. ,s;_lj satisfies (2.1) and by induction hypothesis is a score
sequence of some oriented k-hypergraph D’. Now, construct the oriented k-hypergraph D as
follows.

Let V(D) = {vy,Vvq, -+ ,v,_1} with s(v;) = s!. Adding a new vertex v,, and taking all

-1

n—k

J(Tl —1)(k — 1) — jk(k —2) (
2
1

-1 1
( Z_ 1 ) ( 1 ) arcs with v, not in the last entry in any of these arcs, we get an oriented

k-hypergraph D of order n with score sequence

n—1 - n—1 n—1
[/Jrk(k 2) ( 1 )%( . ) k( k-1 )} = [51,52," " »Sn]-

Case 2. If s, <k( Z:i ) By (2.1), we get that s, Z(k—l)( Z:i ) Let x,, =

-1 -1
sp—(k—1) ( Z_ 1 ), and y, =k ( Z_ 1 ) —sp, thens, = kx, +(k—1)y,. Now applying
Lemma 2.4 repeatedly until we obtain a new non-decreasing sequence S’ = [s],s},-,s/]
-1
such that s, = k ( k—1 ) It is obvious that Lemma 2.4 is applied y, times. We denote

by P; the operation that makes S become some S; = S(s:,sgl) and P, the operation that

makes S; become some S, = Sl(s:,sgz), and so on. Furthermore will denote by Pi_1 the
corresponding reversal operation. Note that since s; — 1 = (x; — 1)k + (y; + 1)(k — 1) and
sp+1=(x, + 1k+ (y, — 1)(k — 1), the resulting sequence S, = S’ is still strict.

So by case 1, S’ is a score sequence of some oriented k-hypergraph. Now, we make
the operations P, ! Py ,Pl ! applying Lemma 2.3 on each operation, we finally get the
original non-decreasing sequence S = [s;,5,, - ,S,]. Note that after each operation Pl._l, the
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corresponding integer sequence remains strict, so by Lemma 2.3, S is a score sequence of an
oriented k-hypergraph.

Remark. If k = 2 in Theorem 2.1, then the necessary and sufficient condition for the
sequence of non-negative integers [s;,S9,** ,S,] in non-decreasing order becomes

o () 1) (1)
(7))

=jn—-1D-jn-)=j*-j=jG-1)

. L n—1
with  Yls;=n(2—1) 1 =n(n—1),
i=1

which is Avery’s theorem for oriented graphs.
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