A Novel Normality Test Using an Identity Transformation of the Gaussian Function
Keywords:
normality test, Gaussian distribution, probability distributionsAbstract
Normality is the most frequently required assumption for statistical techniques. Thus, evaluation of the normality assumption is the first step of many statistical analyses. Although there are many normality tests in the literature, none dominate for all conditions. This paper introduces a novel normality test, and its performance is compared with some of the other normality tests via a Monte Carlo simulation study. Tests are evaluated according to the Type I error and Power.Downloads
Published
2011-11-27
Issue
Section
Mathematical Statistics
License
Upon acceptance of an article by the European Journal of Pure and Applied Mathematics, the author(s) retain the copyright to the article. However, by submitting your work, you agree that the article will be published under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). This license allows others to copy, distribute, and adapt your work, provided proper attribution is given to the original author(s) and source. However, the work cannot be used for commercial purposes.
By agreeing to this statement, you acknowledge that:
- You retain full copyright over your work.
- The European Journal of Pure and Applied Mathematics will publish your work under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
- This license allows others to use and share your work for non-commercial purposes, provided they give appropriate credit to the original author(s) and source.
How to Cite
A Novel Normality Test Using an Identity Transformation of the Gaussian Function. (2011). European Journal of Pure and Applied Mathematics, 4(4), 448-454. https://www.ejpam.com/index.php/ejpam/article/view/634