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Abstract. We obtain in this paper the solutions of the following difference equations

xn+1 =
xn−3

±1± xn−1 xn−3

, n= 0,1, ...,

where the initial conditions are arbitrary nonzero real numbers.
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1. Introduction

In this paper we obtain the solutions of the following difference equations

xn+1 =
xn−3

±1± xn−1 xn−3

, n= 0,1, . . . , (1)

where the initial conditions are arbitrary nonzero real numbers.

The study of Difference Equations has been growing continuously for the last decade. This

is largely due to the fact that difference equations manifest themselves as mathematical mod-

els describing real life situations in probability theory, queuing theory, statistical problems,

stochastic time series, combinatorial analysis, number theory, geometry, electrical network,

quanta in radiation, genetics in biology, economics, psychology, sociology, etc. In fact, now

it occupies a central position in applicable analysis and will no doubt continue to play an

important role in mathematics as a whole.

Recently there has been a lot of interest in studying the global attractivity, boundedness

character, periodicity and the solution form of nonlinear difference equations. For some results
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in this area, for example: Agarwal et al. [2] investigated the global stability, periodicity

character and gave the solution of some special cases of the difference equation

xn+1 = a+
d xn−l xn−k

b− cxn−s

.

Aloqeili [4] has obtained the solutions of the difference equation

xn+1 =
xn−1

a− xn xn−1

.

Cinar [6–8] obtained the solutions of the following difference equations

xn+1 =
xn−1

1+ xn xn−1

, xn+1 =
xn−1

−1+ xn xn−1

, xn+1 =
axn−1

1+ bxn xn−1

.

Cinar et al. [9] studied the solutions and attractivity of the difference equation

xn+1 =
xn−3

−1+ xn xn−1 xn−2 xn−3

.

Elabbasy et al. [11–12] investigated the global stability, periodicity character and gave the

solution of some special cases of the following difference equations

xn+1 = axn−
bxn

cxn − d xn−1

, xn+1 =
αxn−k

β + γ
∏k

i=0 xn−i

.

In [19] Elsayed dealed with the dynamics and found the solution of the following rational

recursive sequences

xn+1 =
xn−5

±1± xn−1 xn−3 xn−5

.

Karatas et al. [34] obtained the solution of the difference equation

xn+1 =
axn−(2k+2)

−a+
∏2k+2

i=0 xn−i

.

Simsek et al. [38]-[39] obtained the solutions of the following difference equations

xn+1 =
xn−3

1+ xn−1

, xn+1 =
xn−5

1+ xn−1 xn−3

.

In [40] Stevic solved the following problem

xn+1 =
xn−1

1+ xn

.

Yalçınkaya et al. [49] considered the dynamics of the difference equation

xn+1 = α+
xn−m

x k
n

.
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Zayed [52] considered the behavior of the following difference equation

xn+1 = Axn+ Bxn−k +
pxn + xn−k

q+ xn−k

.

Other related results on rational difference equations can be found in refs. [2-51].

The study of these equations is quite challenging and rewarding and is still in its infancy.

We believe that the nonlinear rational difference equations are of paramount importance in

their own right, and furthermore we believe that these results about such equations over

prototypes for the development of the basic theory of the global behavior of nonlinear rational

difference equations.

Let us introduce some basic definitions and some theorems that we need in the sequel.

Let I be some interval of real numbers and let

f : Ik+1→ I ,

be a continuously differentiable function. Then for every set of initial conditions

x−k, x−k+1, . . . , x0 ∈ I , the difference equation

xn+1 = f (xn, xn−1, . . . , xn−k), n= 0,1, . . . , (2)

has a unique solution {xn}∞n=−k
.

Definition 1 (Equilibrium Point). A point x ∈ I is called an equilibrium point of Eq. (2) if

x = f (x , x , . . . , x).

That is, xn = x for n≥ 0, is a solution of Eq. (2), or equivalently, x is a fixed point of f .

Definition 2 (Periodicity). A sequence {xn}∞n=−k
is said to be periodic with period p if xn+p = xn

for all n≥ −k.

2. On the Difference Equation xn+1 =
xn−3

1+ xn−1 xn−3

In this section we give a specific form of the solutions of the difference equation

xn+1 =
xn−3

1+ xn−1 xn−3

, n= 0,1, . . . , (3)

where the initial conditions are arbitrary nonzero positive real numbers.

Theorem 1. Let {xn}∞n=−3 be a solution of Eq. (3). Then for n= 0,1, . . .

x4n−3 =

d

n−1
∏

i=0

(1+ 2i bd)

n−1
∏

i=0

(1+ (2i + 1)bd)

, x4n−1 =

b

n−1
∏

i=0

(1+ (2i+ 1)bd)

n−1
∏

i=0

(1+ (2i+ 2)bd)

,
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x4n−2 =

c

n−1
∏

i=0

(1+ 2iac)

n−1
∏

i=0

(1+ (2i + 1)ac)

, x4n =

a

n−1
∏

i=0

(1+ (2i+ 1)ac)

n−1
∏

i=0

(1+ (2i+ 2)ac)

,

where x−3 = d, x−2 = c, x−1 = b, x−0 = a,

−1
∏

i=0

Ai = 1.

Proof. For n = 0 the result holds. Now suppose that n > 0 and that our assumption holds

for n− 1. That is;

x4n−7 =

d

n−2
∏

i=0

(1+ 2i bd)

n−2
∏

i=0

(1+ (2i + 1)bd)

, x4n−5 =

b

n−2
∏

i=0

(1+ (2i+ 1)bd)

n−2
∏

i=0

(1+ (2i+ 2)bd)

,

x4n−6 =

c

n−2
∏

i=0

(1+ 2iac)

n−2
∏

i=0

(1+ (2i + 1)ac)

, x4n−4 =

a

n−2
∏

i=0

(1+ (2i+ 1)ac)

n−2
∏

i=0

(1+ (2i+ 2)ac)

.

Now, it follows from Eq. (3) that

x4n−3 =
x4n−7

1+ x4n−5 x4n−7

=

d

n−2
∏

i=0

(1+ 2i bd)

n−2
∏

i=0

(1+ (2i+ 1)bd)

1+

b

n−2
∏

i=0

(1+ (2i+ 1)bd)

n−2
∏

i=0

(1+ (2i + 2)bd)

d

n−2
∏

i=0

(1+ 2i bd)

n−2
∏

i=0

(1+ (2i+ 1)bd)

=

d

n−2
∏

i=0

(1+ 2i bd)

n−2
∏

i=0

(1+ (2i+ 1)bd)















1+

bd

n−2
∏

i=0

(1+ 2i bd)

n−2
∏

i=0

(1+ (2i + 2)bd)
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=

d

n−2
∏

i=0

(1+ 2i bd)

n−2
∏

i=0

(1+ (2i+ 1)bd)

�

1+
bd

(1+ (2n− 2)bd)

�

=

d

n−2
∏

i=0

(1+ 2i bd)

n−2
∏

i=0

(1+ (2i+ 1)bd)

�

1+
bd

(1+ (2n− 2)bd)

�

(1+ (2n− 2)bd)

(1+ (2n− 2)bd)

=

d

n−1
∏

i=0

(1+ 2i bd)

n−2
∏

i=0

(1+ (2i+ 1)bd)((1+ (2n− 2)bd)+ bd)

=

d

n−1
∏

i=0

(1+ 2i bd)

n−2
∏

i=0

(1+ (2i+ 1)bd)(1+ (2n− 1)bd)

.

Hence, we have

x4n−3 =

d

n−1
∏

i=0

(1+ 2i bd)

n−1
∏

i=0

(1+ (2i+ 1)bd)

.

Similarly one can prove the other relations. The proof is complete.

Theorem 2. Eq. (3) has a unique equilibrium point which is the number zero.

Proof. For the equilibrium points of Eq. (3), we can write

x =
x

1+ x2
.

Then

x + x3 = x ,

or,

x3 = 0.

Thus the equilibrium point of Eq. (3) is x = 0.
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Theorem 3. Every positive solution of Eq. (3) is bounded and lim
n→∞xn = 0.

Proof. It follows from Eq. (3) that

xn+1 =
xn−3

1+ xn−1 xn−3

≤ xn−3.

Then the subsequences {x4n−3}∞n=0, {x4n−2}∞n=0, {x4n−1}∞n=0, {x4n}∞n=0 are decreasing and so

are bounded from above by M =max{x−3, x−2, x−1, x0}.

Lemma 1. Eq. (3) has no prime period two solution.

Numerical Examples

For confirming the results of this section, we consider numerical examples which represent

different types of solutions to Eq. (3).

Example 1. Consider x−3 = 4, x−2 = 9, x−1 = 6, x0 = 7. See Fig. 1.
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Figure 1

Example 2. See Fig. 2, since x−3 = 1.4, x−2 = 0.9, x−1 = 0.6, x0 = 0.7.
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Figure 2

3. On the Difference Equation xn+1 =
xn−3

1− xn−1 xn−3

In this section we give a specific form of the solutions of the difference equation

xn+1 =
xn−3

1− xn−1 xn−3

, n= 0,1, . . . , (4)

where the initial conditions are arbitrary nonzero positive real numbers.

Theorem 4. Let {xn}∞n=−3 be a solution of Eq. (4). Then for n= 0,1, . . .

x4n−3 =

d

n−1
∏

i=0

(1− 2i bd)

n−1
∏

i=0

(1− (2i + 1)bd)

, x4n−1 =

b

n−1
∏

i=0

(1− (2i+ 1)bd)

n−1
∏

i=0

(1− (2i+ 2)bd)

,

x4n−2 =

c

n−1
∏

i=0

(1− 2iac)

n−1
∏

i=0

(1− (2i + 1)ac)

, x4n =

a

n−1
∏

i=0

(1− (2i+ 1)ac)

n−1
∏

i=0

(1− (2i+ 2)ac)

,

where x−3 = d, x−2 = c, x−1 = b, x−0 = a,

−1
∏

i=0

Ai = 1 and jbd 6= 1 jac 6= 1 for j = 1,2,3, . . ..

Proof. As the proof of Theorem 1.
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Theorem 5. Eq. (4) has a unique equilibrium point which is the number zero.

Proof. As the proof of Theorem 2.

Numerical Examples

Example 3. Consider x−3 = 0.7, x−2 = 0.5, x−1 = 3, x0 = 4. See Fig. 3.
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Figure 3

Example 4. See Fig. 4, since x−3 = 7, x−2 = 11, x−1 = 0.3, x0 = 4.
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4. On the Difference Equation xn+1 =
xn−3

−1+ xn−1xn−3

In this section we investigate the solutions of the following difference equation

xn+1 =
xn−3

−1+ xn−1 xn−3

, n= 0,1, . . . , (5)

where the initial conditions are arbitrary non zero real numbers with x−3 x−1 6= 1, x−2 x0 6= 1.

Theorem 6. Let {xn}∞n=−3 be a solution of Eq. (5). Then for n= 0,1, . . .

x4n−3 =
d

(−1+ bd)n
, x4n−1 = b (−1+ bd)n ,

x4n−2 =
c

(−1+ ac)n
, x4n = a (−1+ ac)n ,

where x−3 = d, x−2 = c, x−1 = b, x−0 = a.

Proof. For n = 0 the result holds. Now suppose that n > 0 and that our assumption holds

for n− 1. That is;

x4n−7 =
d

(−1+ bd)n−1
, x4n−5 = b (−1+ bd)n−1 ,

x4n−6 =
c

(−1+ ac)n−1
, x4n−4 = a (−1+ ac)n−1 .

Now, it follows from Eq.(5) that

x4n−3 =
x4n−7

−1+ x4n−5 x4n−7

=

d

(−1+ bd)n−1

−1+ b (−1+ bd)n−1 d

(−1+ bd)n−1

=
d

(−1+ bd)n−1 (−1+ bd)
.

Hence, we have

x4n−3 =
d

(−1+ bd)n
.

Similarly

x4n−2 =
x4n−6

−1+ x4n−4 x4n−6

=

c

(−1+ ac)n−1

−1+ a (−1+ ac)n−1 c

(−1+ ac)n−1

=
c

(−1+ ac)n−1 (−1+ ac)
.
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Hence, we have

x4n−3 =
c

(−1+ ac)n
.

Similarly, one can easily obtain the other relations. Thus, the proof is completed.

Theorem 7. Eq. (5) has three equilibrium points which are 0,
p

2, −p2.

Proof. For the equilibrium points of Eq. (5), we can write

x =
x

−1+ x2
.

Thus we have

−x + x3 = x ,

or,

x(x2 − 2) = 0.

Thus the equilibrium points of Eq. (5) are 0,
p

2, −p2.

Theorem 8. Eq. (5) has a periodic solutions of period four iff ac = bd = 2 and will be take the

form {d , c, b, a, d , c, b, a, . . .}.
Proof. First suppose that there exists a prime period four solution

d , c, b, a, d , c, b, a, . . . ,

of Eq. (5), we see from Eq. (5) that

d =
d

(−1+ bd)n
, b = b (−1+ bd)n ,

c =
c

(−1+ ac)n
, a = a(−1+ ac)n,

or,

(−1+ bd)n = 1, (−1+ ac)n = 1.

Then

bd = 2, ac = 2.

Second suppose ac = 2, bd = 2. Then we see from Eq. (5) that

x4n−3 = d , x4n−2 = c,

x4n−1 = b, x4n = a.

Thus we have a period four solution and the proof is complete.

Lemma 2. Eq. (5) has no prime period two solution.

Lemma 3. Assume that ac, bd 6= 1± 1. Then Eq. (5) has unbounded solutions.



E. Elsayed / Eur. J. Pure Appl. Math, 4 (2011), 287-303 297

Numerical Examples

Example 5. We consider x−3 = 0.4, x−2 = 0.9, x−1 = 0.16, x0 = 1.7. See Fig. 5.
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Figure 5

Example 6. See Fig. 6, since x−3 = 0.7, x−2 = 0.5, x−1 = 20/7, x0 = 4.
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Example 7. In Fig. 7, we assume x−3 = 0.7, x−2 = 0.5, x−1 = 3, x0 = 4.
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5. On the Difference Equation xn+1 =
xn−3

−1− xn−1xn−3

In this section we investigate the solutions of the following difference equation

xn+1 =
xn−3

−1− xn−1 xn−3

, n= 0,1, . . . , (6)

where the initial conditions are arbitrary nonzero real numbers with

x−3 x−1 6= −1, x−2 x0 6= −1.

Theorem 9. Let {xn}∞n=−3 be a solution of Eq. (6). Then for n= 0,1, . . .

x4n−3 =
(−1)n d

(1+ bd)n
, x4n−1 = (−1)n b (1+ bd)n ,

x4n−2 =
(−1)n c

(1+ ac)n
, x4n = (−1)n a (1+ ac)n ,

where x−3 = d, x−2 = c, x−1 = b, x−0 = a.

Proof. As the proof of Theorem 6.

Theorem 10. Eq. (6) has three equilibrium points which are 0,
p

2, −p2.

Proof. As the proof of Theorem 7.

Theorem 11. Eq. (6) has a periodic solutions of period four iff ac = bd = −2 and will be take

the form {d , c, b, a, d , c, b, a, . . .}.
Proof. As the proof of Theorem 8.

Lemma 4. Eq. (6) has no prime period two solution.

Lemma 5. Assume that ac, bd 6= −1± 1. Then Eq. (6) has unbounded solutions.
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Numerical Examples

Example 8. We consider x−3 = 0.7, x−2 = 0.6, x−1 = 0.3, x0 = 0.4. See Fig. 8.
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Example 9. See Fig. 9, since x−3 = 0.7, x−2 = 6, x−1 = −3, x0 = −0.4.
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Example 10. In Fig. 10, we assume x−3 = −2.5, x−2 = −6, x−1 = 0.8, x0 = 1/3.
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