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1. Introduction

Let A, denotes a class of functions of the form:
o0
f(2)=zp+2ap+kzp+k (peN=1,2,3...), (1)

k=1

which are analytic and p-valent in the open unit disk A = {z € C: |z| < 1}. Let g,h €A, be of
the form:

o0
g(z)=2 + pr+kzp+k, byt =0 (2)
k=1
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and -
h(z) =2P + Zcp+kzp+k, Cptic = 0. 3)

k=1
A function f € A, is said to be p-valently starlike of order a in A, if it satisfies the inequality

Re{z;(g)}>a (z€A;0<a<p;peN).

The class of all p-valent starlike functions of order a is denoted by S; (a). On the other hand,
a function f €A, is said to be p-valently convex of order a in A, if it satisfies the inequality

Re{1+zf,(iz))}>a (zeA;0<a<p;peN).

The class of all p-valent convex functions of order a is denoted by K, (a). Furthermore, a
function f € A, is said to be p-valently close-to-convex of order a in A, if it satisfies the
inequality

Re{zl_pf/(z)} >a (zeA;0<a<p;peN).

The class of all p-valent close-to-convex functions of order a is denoted by CK,, (a). If f €A,
satisfies

. 2f ()
@)

for some 0 < 3 < p, then f is said to be p-valently strongly starlike function of order 8 in A
—%
and this class is denoted by S, (B). Further, if f € A, satisfies

arg(l+%)‘<§g(zeA),

<E£(ZEA),

p2

for some 0 < § < p, then f is said to be p-valently strongly convex function of order 8 in A
and is denote by K, (), the class of all such functions. Also, if f € A, satisfies

arg{zl_pf/(z)}‘ < gg(z eAN),

for some 0 < f§ < p, then f is said to be p-valently strongly close-to-convex function of order
f in A and denote by CK, () the class of all such functions. A convolution (Hadamard
product) of f €A, of the form (1) with g €A, of the form (2) is defined by:

(F ¥8) B) =2 + Y 4, by = (g% ) (2). )
k=1
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Various convolution operators have been defined so far, which can be obtained by taking suit-
able g in (4). For example the convolution in (4) reduces to the operator Wf;’s( [a1,A; ]f (2)
involving a Wright’s generalized hypergeometric function

W 2] = ( (ar.41), (a2.42)..... (a2, )

= 1%
1 -3 (ﬁl,Bl)’([jZ’BZ),"',(ﬁs’Bs)
[Tree)
if g(2) = 2P 77—V, [2], where for a; € (C(% #0,-1,-2,...),i=1,2,...,q,
I:[lr(ai) '

Bi E(C(% #0,—-1,-2,...),i=1,2,...,sand A; >0,i=1,2,...,q,B; >0,i =1,2,...,s such

s q
that 1+ Y.B; — D>.A; >0,
i=1 i=1
q
00 l_[r(ai +Aik)
v 2] =Y —— 2k, zen, )

S

k=0 [TT'(B; + B;k) k!
i=1

q

s q S q

(l—[B?i > nA'?i in case 1+ ) ,B;— > A; = 0 [15]). The convolution operator Wy ([ a1,A;])f (2),
i=1 i=1 =1 i=1

for which

ﬁ T(a;+Ak)

i1 ()

S J
T(B+Bik) 1,
i:l_ll (g k!
is studied by Aouf and Dziok [3, 4], Dziok and Raina [8], and Dziok et al. [9] and Sharma
[25] in their respective work and taking A; =1,i=1,2,...,q,B;=1,i =1,2,...,s, for
q <s+ 1, it reduces to Dziok Srivastava operator [10] which involve a generalized hypergeo-
metric function ,F; [z] and is defined by

JP ([a1]) f (2) =2P (F, [2] % f (2) (6)

bp+k =

where

(@)

q
= 1
i=
oFolz]= oF (ar,az,...ag; Br. o, Byz) = D ,————2F, z€ A,

the symbol (a); is the familiar Pochhammer symbol defined by

Ia+k)

—k .
]—'(a) K€ NO

() =
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The operator qu ([a1]) f () includes Hohlov operator [13] which involve Gaussian hy-
pergeometric function ,F; as well as Carlson and Shaffer operator [6] defined by Saitoh and
Ruschweyh derivative operator [23] (for detail one may refer to [8, 9]). Also, the convolution
(4) reduces to the Salagean operator [24] if

p+Kk\"
bp+k: T ,HENO

and to a generalized Salagean operator [2], if
p+6k\"
bpir = » ,0 >0,n€N,.

Further, the convolution (4) reduces to an integral operator involving generalized fractional
integral operator Ig Y if

(p+1)(p—u+v+1),

PR (p—pu+1), (p+A+v+1),
and hence
(f*g)(z)zzul“(p—u+1)l“(p+k+v+1) oy
Frp+)T(p—pu+v+1) ©*
where
pvp_ L+ DT (p—ptv+1) .,

b

= Z
0.2 F(p—u+)T(p+A+v+1)
(0<A<1,p>max{0,u—v}—1). Again, this convolution (4) reduces to the derivative
. . . . . . AUV .
operator involving generalized fractional derivative operator J;,"", if

(p+1)(p—u+v+1),

b =
P (p—p+ D) (p—A+v +1),
and hence,
F(p—u+1)T(p—A+v+1
(f*g)(2)=z‘u (p AU’ ) (p v )Jgt,u,vf,
rp+1)T(p—p+v+1) °*
where

pvgp _ _Lp+ T (p—ptv+1)

— zP_H_
0.2 F(p—p+1)T(p—A+v+1)

The generalized fractional calculus operators I& ’Z“ ¥ and J(i ;“ " defined above are studied in
[5], [20, 26]. These generalized fractional calculus operators reduce to fractional calculus
operators if we take u = —A and pu = A respectively. Let T, denotes the subclass of A,
consisting of functions of the form:

o0

f)=2— Zap+kzp+k, apii = 0. (7)

k=1
Motivated with the several work specially the work of Prajapat et al. [21], we consider
%% (p,m, B) class defined as follows:
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Definition 1. A function f € T, is said to be a member of the class éﬁ,gl (p,m,B) if and only if
for any g, h € A, with non-negative coefficients,

z(f+g)" (2)
(f *h)™ (2)

—(p-m)|<B,

z€A,peN,p>m,0<f <p,meN,=N|]J{0}, where (f * g)" () denotes the r'" derivative
of (f *g) and is given by

r p! . x (pFE) .
(f*g) (Z)=mzp -I-;ﬁaﬁkbﬁkz”k , T €Nj. (8)

Obviously the class %t§ (p,m, ) contains the class S¢ (p,m, ), which is defined as fol-
lows:

Definition 2. A function f (z) € T, is said to be a member of the class S}f (p,m, B) if and only
if for any g, h € A, with non-negative coefficients,

" m+1
Re U g)m (z)+m >p—f,
(f *h)™ (2)
z€A,peN,p>m,0<ff <p,meN,.
Taking m = 0 and 1 respectively and h(z) = g(2) = —, the class éﬁg (p,m, B) coincides
with the classes 5* (B) and K, () respectively and the class S¢ (p, m, 3) coincides with the
class S, (p—-B) and K, (p— [3’) respectively. Also, taking g (z) = =—, h(z) =2 and m = 0,

the class %7 (p,m,B) reduces to the class CK,, () and the class Sg (p, m, ) reduces to the
the class CK,, (p — 8).

If h = g, we denote %f (p,m, ) = R, (p,m,B). Class R, (1,0,) for g(z) = =, co-
incides with the class studled by Chen et al [7] as a partlcular case. In addition, the class
R, (p,0,p(1— a)) reduces to the class studied by Ali et al. [1]. Taking, forn+p > 0,
h(z)=g(2) = . Z),,+p and g(z) = m,h(z) = zP respectively, the class th (p,m,B) re-
duces to the classes, which were investigated by Raina and Srivastava [22] and these classes
coincide with the classes, studied by Giiney and Breaz [12] if n + p = 1 and are the gener-
alization of the classes investigated by Murugusundaramoorthi and Srivastava [18]. Further,
taking g € A; so that b = (1+k)", n € N, the class R, (1,0,1 — a) would reduce to the
class studied in [1]. Moreover, a class similar to R, (p,m,B) is studied by Prajapat et al.
[21].

In this paper, we study coefficient inequality, growth and distortion bounds, sufficient
conditions with the help of various lemmas, integral means inequality for convolution of two
functions and a set of class preserving integral operators for functions belonging to the class

%t (p,m,B).
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2. Coefficient Inequality, Growth and Distortion Bounds for the class
Ry (p,m,B)

A necessary and sufficient coefficient condition for a function f € T, to be in the class
%% (p,m, B) is derived in the form of following Theorem:

Theorem 1. Let the function f be of the form (7) and g, h € A, of the form (2) and (3)
respectively with (p +k —m) b,y > (p —m— ) cppx - Then f is in the class R; (p,m, ) if
and only if

i(P"‘k) (P+k—m)bp+k—(P—m_f5)Cp+k] Bp!

(p+k—m)! P Epomy O

k=1
p €N,p>m,0 < 8 < p. The result is sharp for the function f given by
B Bp! (p+k—m)!
(P+k)! (p—m)! [(p+k—m) bp+k_ (P —m—ﬁ)CerkJ
Proof. We assume that the inequality (9) holds true, then we have to show that

z(f+g)" (2)
(f xh)™ (2)

PR (k>1). (10)

fr(®) =

—(p—-m)|-p<0

or,

2(f+g)" (@) - (p—m) (f*h)"(2) —ﬁ|(f *h)m(z)| <0.

m+1

Using series expansion of (f * g) and (f xg)™ from (8), we have

(P+k)a+k _
ey k= m) by = (p = m) ey f 2P

(p-m)! & (prk-m)l

p!ZP_m B Z (p + k) !ap+ka+kzp+k_m
k=1

A

p+k— my

Bp!

_ Z(p+k) Ap+k ( +k—m)bp+k—(p_m_ﬁ)cp+k}_m

(p +k m)'
< O, 1f (9) holds.

Hence, f € %t¥ (p,m, B). To prove the converse, we suppose that f € ®¢ (p,m,8), that is

z(fxg)" ()
(f *h)™ (2)

—(p—-m)|<B, (11)

p—I—k) Ap+k p! S (p+k)!ap+kcp+k
Z( {( +k—m)bp+k—(P—m)cp+k}—/5{(p_m)!—; (+k—m)!

}
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z€ A,p€eN,p>m,0<f <p,meN,. Since |Re(z)| < |z| for any z. Choosing z to be real
and letting z — 1~ through real values, (11) yields

Z(p+k) ap+k{( +k—=m) b, —(p— m)cp+k} ﬁ{—p' i(p+k)!ap+kcp+k}50

4 (p+k—m)! (p-m)t & (p+k—m)!
’ i(p-"k) (p+k—m)bp+k_(p_m_ﬁ)cp-l-k]a ﬁp!
k=1 (p+k—m)! erk_(p—m)!

which leads us immediately to the desired inequality (9). Sharpness follows if we take ex-
tremal function given by (10).

Corollary 1. If f € %% (p,m, 8), then

- Bp!(p+k—m)!
TR (p-m) [(p+k—m)byer— (p—m—B) cpix]

The equality in (12) is attained for the function f;, given by ( 10).

k> 1. (12)

Corollary 2. Let f € ®¥ (p,m, ) and d,y := (p+k—m) b, — (p —m — ) cp1x be such
that d,j = dy11,V k 2 1, then

_Blp-m+1)
Z Bprk = P+ 1) dpsr (13

Corollary 3. Let f € ®; (p,m, ) and d, := (p+k —m) by — (p —m — B) c,4x be such
that d, 4 = dpiq,V k =1, then

B(p—m+1)
dp+1 .

o0
Z (p+k) Apik =
k=1

Corollary 4. Let the function f be of the form (7) and g, h € A, of the form (2) and (3)
respectively with (p +k —m) b, > (p —m— B) cpui if

i(P"‘k)![(P+k—m)bp+k—(P—m_ﬁ)cp+k] Bp!

<
(p+k—m)! W= —m)r

pEN,p>m,0< 8 <p holds, then f €S} (p,m,f3).

Theorem 2. Let f € T, of the form (7) be in the class &t (p,m, 8) and g, h be of the form (2),
(3) respectively with d, i := (p+k—m) by — (p —m—B) cpyk = dpy1, ¥ k = 1, then

) Plp=m+1) (14)

B(p—m+1) | p+1|
(p+1)dp+1 i

1
< 1r @ <1+ Ty
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and
-m+1 / —-m+1
jpert] - £ D) 1y |7 )| <[p=rt]+ P-m*l) i as
dp+1 dp+1
Also let g (1) be finite and { := max by (k = 1), then
—-m+1 -m+1
o) - B o) < (g )] < o1+ BT D g g
(p+1)dpa (p+1)dys1
The bounds are sharp and extremal function may given by
—m+1
f(z)=2P — Mzzﬂrl, 17)

(p + 1) dp+1

Proof. Taking absolute value of f (z) given in (7) and using Corollary 2, we get

|f (Z)| < |2P| +iap+k |zp+k| <|Z?|+ plp—m+1) |Zp+1|

k=1 (p+ 1) dp+1
and . ( )
B(p—m+1 1
F@|>12°] =) ay 2P| > 2P| - —————= 2P,
| | kz:; p+k| | (p+1) de |

which prove assertion (14). Again, taking absolute value of f’(z) and using Corollary 3, we
get
Blp—m+1) |
|2”|
dp+1

e

o0

< [P+ D0 (p +K) ape [ < |p2r Y[+
k=1

and

B(p-m+1)
dp+1

l,

e

> 521|320 R g2 -
k=1

which prove assertion (15).
Further, taking absolute value of f * g, where f and g are of the form (7) and (2)
respectively. If { := max b, then using corollary (2), we get

o —
|(f #8) G| S 1221+ Y @by |27 < 122] + pE(p—m+1) 241

k=1 (p + 1) dp+1
and . : |
BE(p—m+1 )
Fxg)@)| =122 =Y apiby i |2P K| > 2P| - =——Z 2P,
|( ) | ; p+k p+k| | (p+1) dp+1 |

which prove (16). The bounds in (14), (15) and (16) are sharp, with extremal function given
by (10).
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3. Sufficient Conditions for Classes %7 (p,m, ) and S} (p,m, )

In this section, we obtain sufficient conditions for the classes Qtfl (p,m,B) and S;f (p,m,B)
with the use of following Lemmas:

Lemma 1. [14] Let w (2) be analytic in A and such that w (0) = 0. Then if |w ()| attains its
maximum value on circle |z| =r < 1 at a point 25 € A, we have

zow (20) =kw (20),
where k > 1 is a real number.
Lemma 2. [17] Let ¢ (u,v) be a complex valued function:
¢ :D—C, (D cC xC; Cis the complex plane ),
and let u = uy + iuy and v = vy + iv,. Suppose that the function ¢ (u,v) satisfies
(1) ¢ (u,v) is continuous in D;

(i) (1,0)€D and Re (¢ (1,0)) >0;

(ii) Re (¢ (iug,v1)) <0 forall (iuy,vy) € D and such that v; < — (1 + u%) /2.
Let p(2) = 1+ pyz + poz? + - -+ be regular in A such that (p (), zp/ (z)) eDforallz e A. If
Re (d) (p (2),2p (z))) >0 (z€A), thenRe (p(z)) >0(z € A).
Lemma 3. [19] Let a function p (z) be analyticin A, p(0) =1, and p(2z) # 0 (z € A). If there
exists a point zy € A such that

i
|arg p(z)| < E[D’for |z| < |zo|
and -
jarg p (20)| = 5 B

with 0 < 8 <1, then we have

0P (20) — il
p (20)
where .
[ > 1 when arg p (zq) = Eﬁ
and

7
[ < —1when arg p (z) = —5[5.
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Theorem 3. Let the function f €A, if for g, h€A,, peN,p>m,0< <p,

AT DK O N ) O | N

Y™ @ | S om T

(18)

holds, then f € %} (p,m,f3).

Proof. Let w (z) be defined by

z(f*g)" " (2)
(f xh)™ (2)

Clearly w (z) is analytic in A and w (0) = 0. Differentiating logarithmically, we obtain

=(p—m)+pw(z).

R T 9 O DA G ) K OO BN/ )
(F+g)"™ ) (W)@ [(p-m)+pw)]

Suppose that there exists a point z; € A such that

1

max |w(2)| = |w (zo)| =1 (w(zg) #1).

|Z|<|Zo|

Then using Jack’s Lemma 1, we get Zow’ (20) =kw (20) (k > 1). Therefore, letting
w (20) = e (6 £0),

n 70 (f+8)"" (%) %0 (F *m)™" (20)
(F)" (@)  (Fxh)" (=)

zoBw (20)
(p—m) + Bw (2)
Bk
{(p —m)*+ B2+ 2B (p —m) cos 9}
_Fk
p—m+p’

which contradicts the condition (18), we have |w(z)| < 1 for all z, € A, consequently, we
conclude that f € %% (p,m, ).

N =

v

Taking h = g, we get following inclusion result with the help of Jack’s Lemma.

Theorem 4. For p > m, R, (p,m+1,8) C R, (p,m,a), where

e —(p—m—/s+1)iV(p;m—/s+1)2+4/s(p—m) .,

0< —m. (19)
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Proof. Let f € R, (p,m+1,). Then

z(f*)"@
GO R o
and let w (2) be defined by
m+1
Clearly w (z) is analytic in A and w (0) = 0. Differentiating logarithmically, we obtain
2 (f*g)"(2) B o azw’ (2)
e I A T ey
z (f * g)m+2 () _ azw’ (2) 1
owgrﬁ%@_”p_m_l)"“W@)P+'ww@ @—n0+awwj'

Now, suppose that there exists a point 2z, € A such that

mallxl lw(2)| = |W (zo)| =1 (w(zg) #1).

lz]<|20

Using Jack’s Lemma 1, we have 2o’ (20) = kw (20) (k > 1). Therefore, letting
w (20) = e (6 £0),

% m+2 / 1
20 (f gr)n+1 (20) —(p—-m-1)|=a |W(zo)| 1+ wzow (%)
(f*g)™ (20) aw (z9) (p—m)+aw (z)
—all+ ———
* (p —m) + ae'?
1+—%<cos O —i—2%—sin O
k —m —m
>a |1+ Re (p=m) 3 (p=m)
(p—m) 1+( < )—I— 22 _ o5 6
(p—m) (p—m)
1+ !
a
(p—m) e ’
2+ 1+( am) cos O

. 1 (p=m+a) (p=m)

[ 5tml d
(p—-m) |2(p-m+a)(p—m)+a—(p—m)

p—m+a+l
=y —,
p—m+a
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on using (19), it gives
2(f*g)" (=)
(F+e)"" @

which contradicts (20). Hence |w (z)| < 1 and from (21), it follows that f € R, (p,m,a).

(p—-m-1)|=p

Theorem 5. Let f €A, if

5 (f +8)™ (2) ()" @)
Re [5 )" () +(1—5)z{ )" @) >y (z€A),

forsomey (y <& (p—m)),0< 65 <1, then f €S (p,m, ), where § = 2(6(1;’;)—0 <p.

Proof. If 6 =1, the result holds. Let 0 < § < 1, define the function p (z) by
2(f+8)"" ()
(f xh)" ()

Then p (2) =1+ p1z + pyz? + -+ is regular in A. It follows from (22) that

L) E (Fe)" () pap ()
+z -

Feg)™ @ ()@  (-m-P)+BpG)

=(p-m-B)+pp). (22)

or,

/

L U@ [ @)\ _ ) - {(p—m=p) +Bp()}
(Fx8)" @ | (F*h)" () (p—m—B)+Bp(2)

or, equivalently

/7

% m+1 ,
zz{w} =Bzp (z)—{(p—m—pB)+php(z)}.

(f k)™ (2)

Therefore, we have

52U+ )" (@)

VT @

+(1—5)z{

2 e)™ @) |
(F+h)" @)

2 (F % 9)™ (2) ()™ @)
= R 1-6 X~ ©°J - _
Ve T e @ ’
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= Re{5(p-m—B)+Pop(z)+(1-6)Pzp (z)—71} >0
If we define a function ¢ (u,v) by
p(wv)=6(p-m—pB)+pou+(1-6)pv—7y (23)
with u =u; +iu, and v = v; +iv,, then
(i) ¢ (u,v) is continuous in D € C x C;
(i) (1,0)eDandRe ¢ (1,0)=6(p—m) —y >0;

(iii) For all (iuy,v;) € D and such that for v; < — (1 + u%) /2, we get

Re{¢ (iug,v1)} = 6(p—-m—-B)+(1A-8)pv;—7r
< s5(p-m-p)-(1-6)p(1+ud)/2—7
= —(1-6)Bus/2
< o.

Therefore, ¢ (u, v) satisfies the conditions of Lemma 2. This show that Re (p(z)) >0 (z € A),

ie.
e |20 +g)" 1 (2)
S m
(f xh)™ (2)

which proves that f (z) € S¥ (p,m, 8).

}>p—m—[3’ (ze )

Theorem 6. Let forp e N,p >m,m €Ny, 0< 8 <p, if

/

1 z(f*+g)™ (2) z(f*xg)" () Br (B
arg o-m) Fh)™ &) —I—z( ) ) <E§+tan (E) (z€A),

(24)

then

2(fx¢)" (@)
arg {—(f*h)m(z) }

z2f (2) 2f () zf (2) B (B
e {pf(z) (“ OIS )}| Spz (E) e,
then f e§: (B).
Proof. Let

< g% (z € A). In particular, if

1 [2(fx)" (@
pe) = (p—m){ (f *m)" (2) }
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We obtain

/

z {z(f*gy“*@)}
p-m) | (f+*h)") |

Suppose that there exists point z, € A such that

zp (2) = (

n m
|argp (2)| < gE for |z] < |zo|, |argp (z0)| = g?
Then applying Lemma 3, we write that
zop (%) B
——==il—
p (20) p
where ;
T
[>1wh i
> 1 when argp (z) >3
and ;
T
[ <—1wh ==
< —1 when argp (z,) b3

Then it follows that

/

1 (200" @) { (f )™ (20)}
(p-m) | =" (0) L (P (z0)

arg

= arg{p (20) +200' (20) }

= argp () +arg (1 + ilg)
= argp (z) +tan"’ (lg) )

When argp (zp) = g

%, we have

/

1 59" () ( )" (zO))
p-m) | =m0 ) T\ )" (o)

(25)

A%
|
N
+
~t
o
AR
~
T |
—
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Similarly, if argp (zo) = —g%, then we obtain that

/

1 (200" @) { ()" (ZO)}
(p-m) | (W)™ (=) [ (F W)™ (=)

= —Ez+tan_1 (ZE)
p2 p

(3 (5)

Thus we see that (25) and (26) contradicts the condition (24). Consequently, we conclude
that

arg (26)

A

|argp(z)| < EE (zeA).
p2

This proves Theorem 6.

4. Integral Means Inequality for the Class %7 (p,m, f8)

Definition 3. [Subordination Principle]. For two functions f; and f,, analytic in A, we say that
the function f; (2) is subordinate to f,(z) in A, and write

1)< fa(z) (z€4),
if there exists a Schwartg function w (z), analytic in A with
w(0)=0 and |w(z)| <1,

such that

fil@)=fa(w(z)) (z€A).

In particular, if the function f, is univalent in A, the subordination is equivalent to

f1(0)=£,(0) and f;(A)C f,(A).
Littlewood [16] proved the following subordination result (See also Duren [11]).

Lemma 4. [16]If f; and f, are analytic in A with f, < f,, thenfor T > Oandz =re'® (0 <r < 1),

21 21
flfl(z)lfdesﬂfz(z)rde.
0 0
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Theorem 7. Let g (2), h(z) be of the form (2), (3) respectively and f € é)t,gl (p,m,B) be of the
form (7) and let for some i €N,

LANg. min Ld
bpyi k=1 by
. (pHk)ldy — _ — - m—
where @ = i) and d,, . := [(p +k—m) b,y — (p—m—p) cp+kJ > 0. Also let for

such i € N, functions f; and g; be defined respectively by

pptlp+i-m)! .
dpyi (p+1)! (p—m)!

If there exists an analytic function w defined by

filz)=2F - , & =20 + by, 27)

i_dp+i(p+i)!(p_m)!oo k
fw(z)} = by Bl (p +i=m)] ;ap+kbp+kz

then, for t>0andz =re® (0 <r < 1),

27 2
f|(f*g)(z)|Td9 SJ|(fi*gi)|Td9 (t>0).
0 0

Proof. Convolution of f and g is defined as:

00 00
(f * g) (z) =zf - Zap+kbp+kzp+k = 2P (1 - Zap+kbp+kzk)
k=1 k=1

Similarly, from (27), we obtain
Bl i —m)!
irg)@ = o 2eePPLBLIZMY L
dpyi (p+1)! (p—m)!
_ (1 _ byifp! (p+i—m)! i)

dpei P+ (p—m)!

To prove the theorem, we must show that for T > 0 and z = re!? (0 < r < 1),
2r

27
f dGSJ
0 0

Thus, by applying Lemma 4, it would suffice to show that

0 T

k
k=1

1- do.

. T
bpyiBp! (p+i—m)! |
. z
Gy (0 + 01 (p =)

N b,.Bp!(p+i—m)! .
1—Zap+kbp+kzk—<1— p+iPP (p ) 2t
= dpi (p+ D)t (p —m)!

(28)



P Sharma, P, Srivastava / Eur. J. Pure Appl. Math, 3 (2010), 1093-1112 1109

If the subordination (28) holds true, then there exist an analytic function w with w(0) = 0
and |w (z)| < 1 such that

> byiBp! (p+i—m)!
1_Zap+kbp+kzk:1_dp l( T (p—m)!
=1 p+i (P +1)!(p —m)!

{w@}' .

From the hypothesis of the theorem, there exists an analytic function w given by

i () (p-m)IE y
fw()} = by Bl (p +i—m)! ;ap+kbp+kz

which readily yields w (0) = 0. Thus for such function w, using the hypothesis in the coeffi-
cient inequality for the class ®; (p,m, 8) , we get

dpri (P+1)! (p—m)I S
wE)| < = . @y by 21f
b,:Bp! (p+i—m)! ,; pHEPHE
dpri (P+)! (p—m)I S
< |z -2 ; a,..b
b,:Bp! (p+i—m)! ,; pHEPHk
< |zl <1.

Therefore the subordination (28) holds true, thus the theorem is proved.
5. Class-preserving Integral-Operators for the Class St,f (p,m,B)

In this section, we present several integral operators which preserve class é)t,f (p,m,B).
For f € %} (p,m,3), we define the integral operators by

Lif(z) = (pZLCC)Jtc_lf(t)dt,C > —p,
0

(p+) [ .., z\ o1
- - — >
Lof (2) 2T () t (log t) f(t)dt,c>—-p,o0>0,
0
t+c+o-1 t\o!
Lyf (z) = (p cre )EJ (1——) ttf ()dt,c > —p, o > 0.
pt+c—1 z¢ b4

0

Theorem 8. Let f € %Y (p,m, B), then for p>m,0 < 8 < p,c > —p and
020, Lif €®f (p,mp), j=1,2,3.
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Proof. Let f € T, of the form (7) be in the class éﬁf (p,m,B), then

s c+p
Lf@=5-), (c +p+k) @™

=1

= c+p \?
Lof (2)=2P — ————— | a2tk
S @)= -3 ) e

o0
(p+c)x k
Lif (2)=2P — Y ————2%—q . 2PTF
3 ;(p+c+o)k ptk

g
Since (%) <1,foroc >0, (%) <1 and % <1,k > 1, by Theorem 1, we see
k
that

oo(P+k)![(P+k—m)bp+k_(p_m_ﬁ)cp+k]( ¥ )a k

k=1 (p+k—m)! ctptk
= (p+ k) [(p+k=m) by = (p—m—B) cpu] Pr!
< ; (p+k—m)! aWSm'

Hence, by Theorem 1, L, f (2) € ®{ (p,m, 8). Also

hd

= (P"‘k)![(P+k_m)bp+k—(P—m—ﬁ)CpHJ( c+p )U

= (p+k—m)! c+p+k
© (p+K)! [(p+k—m) by — (p—m—P) cpa] Bp!
= ; (p+k—m)! aﬁks(P—m)!'

Hence, L,f (2) € ®¢ (p,m, ). Similarly, we obtain that Ly f (z) € %} (p,m,f8).
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