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Abstract. Two generalizations of the Durbin-Watson Statistic d, for testing that the serial correlation,
in a given univariate normal regression model, is zero, to its multivariate counter part, are proposed.
In the univariate case the moments of d are obtained in terms of generalized gamma functions. Our
methodology is based on the generalized quadratic form of the central Wishart distribution.
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1. Introduction

For the univariate normal linear regression model
Y =XB+ee~N(0,0°%I) (1)

where Y is an n component (column) vector,  has g components, X is n X g and of rank
qg<n, o? is unknown, the Durbin-Watson statistic d is defined as follows,

(Y -XBY(Y =XB) = (B-BYX'X(B-P)+Y'(I-XXX)X)Y
= (B-BYX'X(B-P)+Y'QQYY,
B =(X'X)"'X'Y and Q'Q =1, Q is n x m, m=(n-q) matric of rank m < n. It follows that
Y'QQ'Y =f'f, (2)
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f is m x n, and the density of f is

1
g(f)=KeXp{—Ff’f},—00<f<oo, 3)

where K, as a generic letter, denotes the normalizing constants of density functions in this

paper.
Now [6, p. 200] define d to be

d=f'Af/f'f,A=Q'AQ, 4)
1 -1 0 0 ... O
-1 2 1 0 ... O
Al =
0 0 1 2 1

where n X n A; is of rank (n — 1).
Next setting f = ht, f'f = 1,(4) reduces to

d =HWAh,hh=1, (5)

and hence )
( 2 )gCg)(A)

()

E(d®) =KJ (WAR)8dh = (6)
hh=1
where C(g) is the zonal polynomial [1, p. 29].

The integrals of the type (6) are known in the literature as the generalized quadratic form
of the central Wishart distribution (GQFCWD) integrals. The power function integrals of the
type (6) may be called the generalized quadraic form of the noncentral Wishart distribution
(GQFNCWD) integrals.

Mathai et al. [6, Chapter 5] list a number of integrals of the type (6) and their gener-
alizations, however, none of them are suitable for the moments problem of d in the present
context. We formulate some suitable integrals in our context for the moments problem.

The model (1) generalizes to the model

Y=XB+E,E~N(0,I®X), (7)

where Yisp xn, Bispxq,n>(p+q), X isq x n and of rank g < n, ¥ is p X p unknown.
We now write

(Y = BX)Y - BX) = (B-PXX'(B-F)+YU-X'X'X)'X)Y
= (B-PIXX'(B-PBY +YQQY’,
B =(X’X)"'X'Y and the first generalized d to be

d=tr(YAY)/tr(YQQ'Y') = tr(FAF")/tr(FF') = tr(HAH') (8)
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where HH' =T and Hisp x (n—q) or p x m.
The second generalized d is, where m is assumed to be n,

d = |HAH'|=|HAH'|,HH' =1, )

where A = diag(Aq, Ay, ..., A,) is the diagonal matrix of the roots of A.
From (8), [6, p.270, equation 5.5.6] show that

E(dg)=f (tr(HAH))XdH = (3) c(g)(A)/(@) , (10)
HH'=1 2 g 2 g

where A =diag(Aq,As,...,A,) is the diagonal matrix of the roots of A;.
However, it does not appear that the integral

E(d®) =f |HAH'|8dH, (11)
HH'=1

has been suitably evaluated in the literature, and the evaluation of the integral (11) is the
main result of the present paper. The methodology for integrating (11) is based on [2, 3, 4]
and [5, p. 352, equation 5.5.29].

We present our methodology in the next section, and section 3 evaluates the integral (11).
The moments of d can be calculated in terms of gamma functions; however the density of d
is not, as yet, available in the literature, except in trivial cases. Sometimes the same symbol
denotes different quantities; however, its meaning is made explicit in the paper.

2. Methodology

Given the joint density of n gamma variates to be

_1 _
81, Yo Yn) =Kexpl—(Ayy1 + -+ A,y )by L ysT] (12)

the density of t = (y; +---+ y,) is desired. The moment generating function (6) of t is

P(O) = (a;—0)4...(a,—0) ¢
(al - 9)—g1((a1 — 9) - (al — az))_gz . ((al _ 9) _ (al _ an))_gn,

where a; is the largest parameter amongst the n positive parameters a,..., .
Now [2] expands ¢(60) as

i i gotry—1
$(0) = (o — @) EFrEITEn) H ( 2% 12 )
ro=0 r,=0 "2

-1
( &nt ) (@ —a)?...(a; —ay)™, (13)

Tn
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and inverting (13) finds the density of t to be

g(t) =Kexp{—t}t&t-+& Vo) ., gng + -+ gu(a; —at,...,(a; — a,)t)

where
b = i X T(gy+719)...T(g +r)(a; —ay)?...(a; —ay)™
= = (g +--+gutrog+---+rryt...r,!
= 1F1(g2+"'+gn;g1+"'+gn);((n_1)a1_a2_"'an)t)- (14)

To prove (14), we observe that the sum of two noncentral Wishart p X p matrices A and B, with
noncentrality parameter p X p matrices A and €2, and n and g degrees of freedom respectively
is again noncentral Wishart with (n + q) degrees of freedom, and noncentrality parameter
matrix (A 4+ Q). With 2g = (p + 1), we write this result as

f exp{—tr(A+ B)}|A|""¢|B|17"¢0F;(n; AA)oF,(q; 2B)dAdB
A+B=D
= Kexp{—trD}D|""180F;(q; (A +Q)D) (15)
or formally that
oF;(n; AA)oF;(q;QB) = oF;(n+q;(A + Q)(A+ B)). (16)

Mathai [5, p. 339, Theorem 5.5] defines

¢(by,by;05X1,X5) = f|U1|d1_g|U2|d2_g|I—U1—U2|C_d1_d2_g
1F1(by;dy;X1U1)1F1(by; dy; XoUy)dU,d U,
= f UL D8 |U| %7811 = Uy = Up| B %8

exp{—tr(Z; + 25)}Z1|" 78| Z,|" "8 0F; (dy; XU Z4)
OFl(dZ;XZUZZZ)dZ].dZZd Uld U2

= f U |98 (U, 2781 — Uy — Uy |~ %78

exp{—tr(Zy + Z,)}Z1|%178|Z,| %280 F, (d; + dy;
(X1 +X2)(U1 + UZ)(Zl +Zz)dzle2dU1dU2

= f U1 |B78|U,| %2781 — Uy — U |~ h %78

exp{—tr(Z, + Zz)}|21|b1_g|zz|b2_g
1F1(by + by;dy + dy; (X7 +X5)(Uy + Uy))dU,d U,
= (K)oFy(dy +dy; by + by dy +da;c;X1 +X5)
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and hence (16) follows. In (17) all matrices are p X p positive symmetric matrices.
Obviously now we have the integral

g(T) = Kf exp{tr(T1A; + -+ T A A 78 L A3
A+ A, =T

dA,...dA,

= Kexp{—trT}T[ST 7078 Fi(ga + -+ gni g1+ + g (= 1)

Li—5y - —Z)7)

where all matrices in (18) are p X p positive definite symmetric matrices.
The moment generating function ¢(9) of T is

P(0) =1z, — 0178 ... |2, — 0] 7*n,

and (18) is obtained by inverting (19), see e.g., [4], [5, p. 352, equation 5.5.29].
If now X p x p has the density

gX)= Kexp{—%tr(XAX’)}, —00 <X < 00,
then the moment generating function M(0) of T = XX’ is
M(0)=|AI—0]7Y2. AT —0|7V2
and hence from (18), the density function of the GQFCWD of T is
8(T) = Kexp{—tr(T)IT[0—2

1 1
1F1(§(Tl -1); 5 (=A== = A,)T).
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(17)

(18)

(19)

(20)

(21)

(22)

Now [3] proves the following results. Let p xnY, —oo <X < oo and g X n D of rank d be

given, then we have that

J f(yY’,DY")dY
YY'=T.DY'=V’
— K|DD'|ZPf(T,V)|T — V(DD")~1v’|z(n=4=p=1),

Next from (23) it follows that

1
f exp{—=tr(XAX") + tr(uAX')}dX
XX'=T=FF'+V(uA?/) 1V uAX'=V’ 2

1
= Kf exp{—atr(T) +tr(V)HT — V(‘u/\z‘u’)—l\//ﬁ(n—Zp—l)dV

(23)
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1 1 1
1F1(§(Tl -1); PR 5((“ — DA =A== A,)T))

1
= Kexp{—itr(T)HTl%("_p_l)
1 11
PG =1 5m 5 (= DAy =2y =+ = 2,)T)
11,
OFl(ETl; Z“A wT), (24)

which is known as (GQNCWD). The integration with respect to V is a known integral in the
theory of noncentral Wishart distribution. Here F is p x (n — p) matrix of rank (n-p), and the
integral is first evaluated with respect to F and then with respect to V.

We now proceed with d statistic generalizations. All other results given by [6, Chapter 5]
relating to the GQFNCWD can be simply and elegantly rewritten by our methodology.

3. d Statistic Generalizations

We observe from (10) that

d
E(d®) = K(@)g JHH,:Iexp{tr(GHAH’)}dH

6=0
—K(i)g Fii(n—1): =n; DA 2,)6 25
- do 9:01 12(Tl— ),zn,((fl— ) 11— T n) )) ( )
Mathai et al. [6, p. 302] show that
d ¢ I,(a+g)
(@) 1F1(a’ﬁ’6) mlFl(a-’_gaﬁ-’_gae), (26)
and hence (25) yields
r,(3(n—1)+
E(d)f = K((n—1)A; —Ay—---— A,)P8 p(z(nl ) g). (27)
l—‘p(ifl+ g)
It follows from (27) that (5) may be written as
g 1 m
g g
T(3(m=1)g)((m—1)A; — - = 4,8
= (28)

F(%m—kg)

Further it follows from (9) that

wor = (2) can(3)
g g
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TG Dp+ ) (m=1)ag == 2 o9)
T(zmp +g)
Once again we write Kabe’s [2] result as
gt) = f exp{—(Ary1 + - + Ay )by Ly Ty, L dy,
Y1ty =t
= Kexp{—t}t5 ™+ "8 L (g + -+ gps g1+ + g
(n=DA; == 2A)0) (30)

and hence

-1 _
J My +- -+ Ay )8y5 L y8ldy, L dy,
y1t+yp=1

I(ga+-+g+¢g
(g +--+8,+8)
Similar to (16) it holds that

((n=DA; == A))%.

and hence

q—b-1)

1 l(n_ _1) l( 1 1
exp{—5tr(A+B)}A|>" P77 |B} F1(5(n—1); 5n; AA)
A+B=D 2 2 2

1 1 1 1 1
1F1(§(q -1); PRE 93)0F1(§Tl; ZAA)OF1(§(1; QB)dAdB
1 ln—qb-1) 5 1
= KCXP{EW(D)HDP 1 1F1(§(Tl+q —-2); E(TI*HZ);(A +0)D)

1 1
0F1(§(” +q); Z(A +Q)D).
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