EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 4, No. 4, 2011, 322-329

ISSN 1307-5543 - www.ejpam.com

Inequalities Involving Certain Integral Operator

Jacek Dziok^{1,*}, Mohamed Kamal Aouf², Janusz Sokół³

- ¹ Institue of Mathematics, University of Rzeszów, Rzeszów, Poland
- ² Department of Mathematics Faculty of Science, Mansoura University, Mansoura, Egypt
- ³ Department of Mathematics, Rzeszów University of Technology, Rzeszów, Poland

Abstract. The object of this paper is to give several strict inequalities associated with the operator $I_{p,n}^{\lambda}(a,b;c)$ $(a,b\in R\setminus \mathbb{Z}_0^-,\ p,n\in \mathbb{N}=\{1,2,\ldots\},\ \lambda>-p)$ defined by X.-L. Fu and M.-S. Liu, Some subclasses of analytic functions involving the generalized Noor integral operator [see 3].

2000 Mathematics Subject Classifications: 30C45

Key Words and Phrases: Analytic functions, Integral operator, Hadamard product.

1. Introduction

Let $\mathcal{A}_n(p)$ denote the class of functions of the form:

$$f(z) = z^p + \sum_{k=n}^{\infty} a_{k+p} z^{k+p} \quad (p, n \in \mathbb{N} = \{1, 2, \dots\}),$$
 (1)

which are analytic and p-valent in the open unit disc $U = \{z : z \in \mathbb{C}, |z| < 1\}$. For functions f given by (1) and $g \in \mathcal{A}_n(p)$ given by

$$g(z) = z^p + \sum_{k=n}^{\infty} b_{k+p} z^{k+p} \quad (z \in U)$$
 (2)

the Hadamard product (or convolution) of f and g is defined by

$$(f * g)(z) = z^p + \sum_{k=n}^{\infty} a_{k+p} b_{k+p} z^{k+p} = (g * f)(z).$$

Email addresses: jdziok@univ.rzeszow.pl (J. Dziok), mkaouf127@yahoo.com (M. Aouf), jsokol@prz.edu.pl (J. Sokół)

^{*}Corresponding author.

For real or complex numbers a, b, c other than 0, -1, -2, ..., the Gaussian hypergeometric series is defined by

$${}_{2}F_{1}(a,b;c;z) = \sum_{k=0}^{\infty} \frac{(a)_{k}(b)_{k}}{(c)_{k}(1)_{k}} z^{k},$$
(3)

where

$$(d)_k = \begin{cases} 1 & (k=0; d \in \mathbb{C} \setminus \{0\}), \\ d(d+1)\dots(d+k-1) & (k \in \mathbb{N}; d \in \mathbb{C}), \end{cases}$$

we note that the series (3) converges absolutely for all $z \in U$ so that it represents an analytic function in U (see [8]).

With the aid of the Gaussian hypergeometric function ${}_2F_1(a,b;c;z)$, let us consider a family of linear operators $I_{p,n}^{\lambda}: \mathcal{A}_n(p) \to \mathcal{A}_n(p)$ as follows:

$$I_{p,n}^{\lambda}(a,b;c)f(z) = z^{p} + \sum_{k=n}^{\infty} \frac{(c)_{k}(\lambda+p)_{k}}{(a)_{k}(b)_{k}} a_{k+p} z^{k+p}$$

$$= z^{p} {}_{2}F_{1}(c,1;a;z) * z^{p} {}_{2}F_{1}(\lambda+p,1;b;z)$$

$$(a,b,c \in \mathbb{R} \setminus \mathbb{Z}_{0}^{-};\lambda > -p;z \in U). \tag{4}$$

The operator $I_{p,n}^{\lambda}$ was introduced and studied by Fu and Liu [3]. We note that:

- (i) $I_{1,1}^n(a, n+1; a)f(z) = I_nf(z)$ (n > -1), where I_n is the Noor integral operator of n th order [see 6];
- (ii) $I_{1,1}^{\lambda}(\mu+2,1;1)f(z)=I_{\mu,\lambda}f(z)$ ($\mu>-2,\lambda>-1$), where $I_{\mu,\lambda}$ is the Choi–Saigo–Srivastava operator [see 2];
- (iii) $I_{p,1}^{\lambda}(\lambda+p+1,b;b)f(z)=F_{\lambda,p}(f)(z)$ ($\lambda>-p$), where $F_{\lambda,p}(f)(z)$ is the generalized Bernardi–Libera–Livingston operator [see 2];
- (iv) $I_{p,1}^{\lambda}(a,1;c)f(z) = I_p^{\lambda}(a,c)f(z)$ $(a,c \in \mathbb{R} \setminus \mathbb{Z}_0^-, \lambda > -p)$, where $I_p^{\lambda}(a,c)$ is the Cho–Kwon–Srivastava operator [see 1];
- (v) $I_{p,1}^1(n+p,c;c)f(z) = I_{n,p}f(z)$ (n > -p), where $I_{n,p}$ is the Noor integral operator of (n+p-1)-th order (see Liu and Noor [4] and Patel and Cho [7]).

Also it is easily to show that [see 3]:

$$I_{p,n}^{\lambda}(a,\lambda+p;a)f(z) = I_{p,n}^{1}(p+1,b;b)f(z) = f(z) \text{ and } I_{p,n}^{1}(a,p;a)f(z) = \frac{zf'(z)}{p},$$

$$z\left(I_{p,n}^{\lambda}(a,b;c)f(z)\right)' = (\lambda+p)I_{p,n}^{\lambda+1}(a,b;c)f(z) - \lambda I_{p,n}^{\lambda}(a,b;c)f(z)$$
 (5)

and

$$z\left(I_{p,n}^{\lambda}(a+1,b;c)f(z)\right)' = aI_{p,n}^{\lambda}(a,b;c)f(z) - (a-p)I_{p,n}^{\lambda}(a+1,b;c)f(z). \tag{6}$$

By using the operator $I_{p,n}^{\lambda}(a,b;c)$, we define the following classes of functions:

Definition 1. Let Φ be the set of complex-valued functions $\varphi(r,s,t)$,

$$\varphi(r,s,t): \mathbb{C}^3 \to \mathbb{C}$$
 (\mathbb{C} is the complex plane)

such that

- 1. $\varphi(r,s,t)$ is continuous in a domain $D \subset \mathbb{C}^3$;
- 2. $(0,0,0) \in D$ and $|\varphi(0,0,0)| < 1$;

3.
$$\left| \varphi \left(e^{i\theta}, f(\lambda, \zeta, \theta, p), g(\lambda, \zeta, \theta, p, M) \right) \right| > 1$$

whenever

$$(e^{i\theta}, f(\lambda, \zeta, \theta, p), g(\lambda, \zeta, \theta, p, M)) \in D,$$

with $\Re \left\{e^{-i\theta}M\right\} \ge \zeta(\zeta-1)$, for all $\theta \in \mathbb{R}$, and for all $\zeta \ge p \ge 1$, where

$$f(\lambda, \zeta, \theta, p) = \left(\frac{\zeta + \lambda}{\lambda + p}\right) e^{i\theta}$$

and

$$g(\lambda, \zeta, \theta, p, M) = \frac{(\lambda + 1)(\lambda + 2\zeta)e^{i\theta} + M}{(\lambda + p)(\lambda + p + 1)}.$$

Definition 2. Let \mathcal{H} be the set of complex-valued functions h(r,s,t);

$$h(r,s,t):\mathbb{C}^3\to\mathbb{C}$$

such that

- 1. h(r,s,t) is continuous in a domain $D \subset \mathbb{C}^3$;
- 2. $(1,1,1) \in D$ and |g(1,1,1)| < J (J > 1);

3.
$$\left| h\left(Je^{i\theta}, f(\lambda, \zeta, \theta, p, J), g(\lambda, \zeta, \theta, p, J) \right) \right| \ge J$$

whenever

$$(Je^{i\theta}, f(\lambda, \zeta, \theta, p, J), g(\lambda, \zeta, \theta, p, J, L)) \in D,$$

with $\Re \{L\} \ge \zeta(\zeta - 1)$ for all $\theta \in \mathbb{R}$ and for all $\zeta \ge \frac{J - 1}{J + 1}$, where

$$f(\lambda, \zeta, \theta, p, J) = \frac{1 + \zeta + (\lambda + p - 1)Je^{i\theta}}{(\lambda + p)}$$

and

$$g(\lambda,\zeta,\theta,p,J,L) = \frac{1}{(\lambda+p+1)} \left\{ 2 + \zeta + (\lambda+p-1)Je^{i\theta} + \frac{\zeta - \zeta^2 + (\lambda+p+1)\zeta Je^{i\theta} + L}{\zeta + (\lambda+p-1)Je^{i\theta}} \right\}.$$

2. Main Results

We recall the following lemma due to Miller and Mocanu [5].

Lemma 1. Let $w(z) = a + w_v z^v + ...$ be regular in U with $v \in \mathbb{N}$. If $z_0 = r_0 e^{i\theta}$ $(0 < r_0 < 1)$ and $|w(z_0)| = \max_{|z| \le |z_0|} |w(z)|$, then

$$z_0 w'(z_0) = \zeta w(z_0) \tag{7}$$

and

$$\Re \left\{ 1 + \frac{z_0 w''(z_0)}{w'(z_0)} \right\} \ge \zeta, \tag{8}$$

where ζ is a real number and

$$\zeta \ge v \frac{\left| w(z_0) - a \right|^2}{\left| w(z_0) \right|^2 - |a|^2} \ge v \frac{\left| w(z_0) \right| - |a|}{\left| w(z_0) \right| + |a|}. \tag{9}$$

Note that if v = 0 then the condition (9) becomes $\zeta \ge v \ge 1$.

Theorem 1. Let $\varphi(r,s,t) \in \Phi$ and let f in the class $\mathcal{A}_n(p)$ satisfy

$$\left(I_{p,n}^{\lambda}(a,b;c)f(z),I_{p,n}^{\lambda+1}(a,b;c)f(z),I_{p,n}^{\lambda+2}(a,b;c)f(z)\right) \in D \subset \mathbb{C}^{3}$$
(10)

and

$$\left| \varphi \left(I_{p,n}^{\lambda}(a,b;c)f(z), I_{p,n}^{\lambda+1}(a,b;c)f(z), I_{p,n}^{\lambda+2}(a,b;c)f(z) \right) \right| < 1 \tag{11}$$

for $a, b, c \in \mathbb{R} \setminus \mathbb{Z}_0^-$, $\lambda > -p$, $p \in \mathbb{N}$ and $z \in U$. Then we have

$$\left| I_{p,n}^{\lambda}(a,b;c)f(z) \right| < 1 \quad (z \in U) .$$
 (12)

Proof. We define the function w by

$$w(z) = I_{p,n}^{\lambda}(a,b;c)f(z) \quad \left(a,b,c \in \mathbb{R} \setminus \mathbb{Z}_{0}^{-}; \lambda > -p; p \in \mathbb{N}\right)$$
(13)

for f belonging to the class $\mathcal{A}_n(p)$. Then, it follows that $w \in \mathcal{A}_n(p)$ and $w(z) \neq 0$ for $z \in U \setminus \{0\}$. With the aid of (5), we have

$$I_{p,n}^{\lambda+1}(a,b;c)f(z) = \frac{1}{(\lambda+p)} \left[zw'(z) + \lambda w(z) \right]$$
 (14)

and

$$I_{p,n}^{\lambda+2}(a,b;c)f(z) = \frac{z^2w'(z) + 2(\lambda+1)zw'(z) + \lambda(\lambda+1)w(z)}{(\lambda+p)(\lambda+p+1)}.$$
 (15)

Suppose that $z_0 = r_0 e^{i\theta}$ (0 < r_0 < 1; $\theta \in \mathbb{R}$) and

$$w(z_0) = \max_{|z| \le |z_0|} |w(z)| = 1.$$
(16)

Then, letting $w(z_0) = e^{i\theta}$ and using (7) of Lemma 1, we obtain

$$I_{p,n}^{\lambda}(a,b;c)f(z_0) = e^{i\theta}, \tag{17}$$

$$I_{p,n}^{\lambda+1}(a,b;c)f(z_0) = \frac{1}{(\lambda+p)} \left[z_0 w'(z_0) + \lambda w(z_0) \right] = \frac{(\zeta+\lambda)}{(\lambda+p)} e^{i\theta}$$
 (18)

and

$$I_{p,n}^{\lambda+2}(a,b;c)f(z_0) = \frac{1}{(\lambda+p)(\lambda+p+1)} \left[(\lambda+1)(\lambda+2\zeta)e^{i\theta} + z_0^2 w'(z_0) \right]$$
$$= \frac{(\lambda+1)(\lambda+2\zeta)e^{i\theta} + M}{(\lambda+p)(\lambda+p+1)}, \tag{19}$$

where $M = z_0^2 w''(z_0)$ and $\zeta \ge p \ge 1$. Further, an application of (8) in Lemma 1, gives

$$\Re \left\{ \frac{z_0 w''(z_0)}{w'(z_0)} \right\} = \Re \left\{ \frac{z_0^2 w''(z_0)}{\zeta e^{i\theta}} \right\} \ge \zeta - 1, \tag{20}$$

or

$$\Re \left\{ e^{-i\theta} M \right\} \ge \zeta(\zeta - 1) \quad (\theta \in \mathbb{R}; \zeta \ge 1). \tag{21}$$

Since $\varphi(r,s,t) \in \Phi$, we also have

$$\left| \varphi \left(I_{p,n}^{\lambda}(a,b;c)f(z), I_{p,n}^{\lambda+1}(a,b;c)f(z), I_{p,n}^{\lambda+2}(a,b;c)f(z) \right) \right|$$

$$= \left| \varphi \left(e^{i\theta}, \frac{\zeta + \lambda}{\lambda + p} e^{i\theta}, \frac{1}{(\lambda + p)(\lambda + p + 1)} \left[(\lambda + 1)(\lambda + 2\zeta)e^{i\theta} + M \right] \right) \right| > 1 \quad (22)$$

which contradicts the condition (11) of Theorem 1. Therefore, we conclude that

$$|w(z)| = \left| I_{p,n}^{\lambda}(a,b;c)f(z) \right| < 1 \quad (z \in U).$$
 (23)

This completes the proof of Theorem 1.

Corollary 1. Let $\varphi_1(r,s,t) = s$ and let $f \in \mathcal{A}_n(p)$ satisfy the conditions in Theorem 1 for $a,b,c \in \mathbb{R} \setminus \mathbb{Z}_0^-$, $\lambda > -p$, $p \in \mathbb{N}$ and $z \in U$. Then

$$\left|I_{p,n}^{\lambda+i}(a,b;c)f(z)\right|<1\ (i=0,1,2,\ldots;a,b,c\in\mathbb{R}\setminus\mathbb{Z}_0^-;\lambda>-p;p\in\mathbb{N};z\in U).$$

Note that $\varphi_1(r,s,t) = s$ is in Φ , with the aid of Theorem 1, we have

$$\begin{split} \left|I_{p,n}^{\lambda}(a,b;c)f(z)\right| < 1 \Rightarrow \left|I_{p,n}^{\lambda+1}(a,b;c)f(z)\right| < 1 \\ \Rightarrow \left|I_{p,n}^{\lambda+i}(a,b;c)f(z)\right| < 1 \ (i=0,1,2,\ldots;a,b,c \in \mathbb{R} \setminus \mathbb{Z}_0^-;\lambda > -p;p \in \mathbb{N};z \in U). \end{split}$$

Theorem 2. Let $h(r,s,t) \in \mathcal{H}$, and let $f \in \mathcal{A}_n(p)$ satisfy

$$\left(\frac{I_{p,n}^{\lambda}(a,b;c)f(z)}{I_{p,n}^{\lambda-1}(a,b;c)f(z)}, \frac{I_{p,n}^{\lambda+1}(a,b;c)f(z)}{I_{p,n}^{\lambda}(a,b;c)f(z)}, \frac{I_{p,n}^{\lambda+2}(a,b;c)f(z)}{I_{p,n}^{\lambda+1}(a,b;c)f(z)}\right) \in D \subset \mathbb{C}^{3}$$
(24)

and

$$\left| h\left(\frac{I_{p,n}^{\lambda}(a,b;c)f(z)}{I_{p,n}^{\lambda-1}(a,b;c)f(z)}, \frac{I_{p,n}^{\lambda+1}(a,b;c)f(z)}{I_{p,n}^{\lambda}(a,b;c)f(z)}, \frac{I_{p,n}^{\lambda+2}(a,b;c)f(z)}{I_{p,n}^{\lambda+1}(a,b;c)f(z)} \right) \right| < J$$
 (25)

for some $a, b, c, \lambda, p, n, J$ $(a, b, c \in \mathbb{R} \setminus \mathbb{Z}_0^-; \lambda > 1; p, n \in \mathbb{N}; J > 1)$ and for all $z \in U$. Then we have

$$\left| \frac{I_{p,n}^{\lambda}(a,b;c)f(z)}{I_{p,n}^{\lambda-1}(a,b;c)f(z)} \right| < J \quad (z \in U).$$
 (26)

Proof. We define the function w by

$$w(z) = \frac{I_{p,n}^{\lambda}(a,b;c)f(z)}{I_{p,n}^{\lambda-1}(a,b;c)f(z)}$$
(27)

for f belonging to the class $\mathcal{A}_n(p)$. Then, it follows that w is either analytic or meromorphic in U, w(0) = 1, and $w(z) \neq 1$. With the aid of the identity (5), we have

$$\frac{I_{p,n}^{\lambda+1}(a,b;c)f(z)}{I_{p,n}^{\lambda}(a,b;c)f(z)} = \frac{1}{(\lambda+p)} \left[1 + (\lambda+p-1)w(z) + \frac{zw'(z)}{w(z)} \right]$$
(28)

and

$$\frac{I_{p,n}^{\lambda+2}(a,b;c)f(z)}{I_{p,n}^{\lambda+1}(a,b;c)f(z)} = \frac{1}{(\lambda+p+1)} \left\{ 2 + (\lambda+p-1)w(z) + \frac{zw'(z)}{w(z)} + \frac{(\lambda+p-1)zw'(z) + \frac{zw'(z)}{w(z)} + \frac{z^2w'(z)}{w(z)} - \left(\frac{zw'(z)}{w(z)}\right)^2}{1 + (\lambda+p-1)w(z) + \frac{zw'(z)}{w(z)}} \right\}.$$
(29)

Suppose that $z_0 = r_0 e^{i\theta} (0 < r_0 < 1; \theta \in \mathbb{R})$ and $|w(z_0)| = \max_{|z| \le |z_0|} |w(z)| = J$. Letting

 $w(z_0) = Je^{i\theta}$ and using Lemma 1 with a = v = 1, we see that

$$\frac{I_{p,n}^{\lambda+1}(a,b;c)f(z_0)}{I_{p,n}^{\lambda}(a,b;c)f(z_0)} = \frac{1}{(\lambda+p)} \left[1 + \zeta + (\lambda+p-1)Je^{i\theta} \right]$$
(30)

and

$$\frac{I_{p,n}^{\lambda+2}(a,b;c)f(z)}{I_{p,n}^{\lambda+1}(a,b;c)f(z)} = \frac{1}{(\lambda+p+1)} \left\{ 2 + \zeta + (\lambda+p-1)Je^{i\theta} + \frac{\zeta - \zeta^2 + (\lambda+p-1)\zeta Je^{i\theta} + L}{\zeta + (\lambda+p-1)Je^{i\theta}} \right\},\tag{31}$$

REFERENCES 328

where $L = \frac{z_0^2 w''(z_0)}{w'(z_0)}$ and $\zeta \ge \frac{J-1}{J+1}$. Further, an application of (16) in Lemma 1 gives

$$\Re \{L\} \geq \zeta(\zeta - 1).$$

Since $h(r,s,t) \in \mathcal{H}$, we have

$$\left| h\left(\frac{I_{p,n}^{\lambda}(a,b;c)f(z_{0})}{I_{p,n}^{\lambda-1}(a,b;c)f(z_{0})}, \frac{I_{p,n}^{\lambda+1}(a,b;c)f(z_{0})}{I_{p,n}^{\lambda}(a,b;c)f(z_{0})}, \frac{I_{p,n}^{\lambda+2}(a,b;c)f(z_{0})}{I_{p,n}^{\lambda+1}(a,b;c)f(z_{0})} \right) \right|$$

$$= \left| h\left(Je^{i\theta}, \frac{1+\zeta+(\lambda+p-1)Je^{i\theta}}{(\lambda+p)} + \frac{1}{(\lambda+p+1)} \left\{ 2+\zeta+(\lambda+p-1)Je^{i\theta} + \frac{\zeta-\zeta^{2}+(\lambda+p-1)\zeta Je^{i\theta}+L}{\zeta+(\lambda+p-1)Je^{i\theta}} \right\} \right) \right| \ge J,$$
(32)

which contradicts condition (25) of Theorem 2. Therefore, we conclude that

$$|w(z)| = \left| \frac{I_{p,n}^{\lambda}(a,b;c)f(z)}{I_{p,n}^{\lambda-1}(a,b;c)f(z)} \right| < J$$
 (33)

for some $a, b, c \in \mathbb{R} \setminus \mathbb{Z}_0^-, \lambda > 1$, $p, n \in \mathbb{N}$, J > 1 and for all $z \in U$. This completes the proof of Theorem 2.

References

- [1] N Cho, O Kwon and H Srivastava. Inclusion relationships and argument properties for certain subclasses of multivalent functions associated with a family of linear operators. *J. Math. Anal. Appl.*, 292:432–445, 2004.
- [2] J Choi, M Saigo and H Srivastava. Some inclusion properties of a certain family of integral operators. *J. Math. Anal. Appl.*, 276:432–445, 2002.
- [3] X Fu and M Liu. Some subclasses of analytic functions involving the generalized Noor integral operator. *J. Math. Anal. Appl.*, 323:190–208, 2006.
- [4] J Liu and K Noor, Some properties of Noor integral operator. *J. Natural Geometry*, 21:81–90, 2002.
- [5] S Miller and P Mocanu. Second order differential inequalities in the complex plane. *J. Math. Anal. Appl.*, 65:289–305, 1978.
- [6] K Noor and M Noor. On integral operators. J. Math. Anal. Appl., 238:341–352, 1999.
- [7] J Patel and N Cho. Some classes of analytic functions involving Noor integral operator. *J. Math. Anal. Appl.*, 312:564–575, 2005.

REFERENCES 329

[8] E Whittaker and G Watson. A course of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; With an Account of the Principal Transcendental Function, Fourth Edition, Cambridge Univ. Press, Cambridge, 1963.