EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 4, No. 1, 2011, 14-19

ISSN 1307-5543 - www.ejpam.com

(α, β, δ) —Neighborhood for Certain Analytic Functions with Negative Coefficients

B.A. Frasin

Faculty of Science, Department of Mathematics, Al al-Bayt University, P.O. Box: 130095 Mafraq, Jordan

Abstract. In this paper, we introduce (α, β, δ) -neighborhoods of analytic functions with negative coefficients. Furthermore, we obtain some interesting results for functions belonging to this neighborhoods.

2000 Mathematics Subject Classifications: 30C45

Key Words and Phrases: Analytic functions, Neighborhood

1. Introduction and definitions

Let $\mathcal T$ denote the class of functions of the form :

$$f(z) = z - \sum_{n=2}^{\infty} a_n z^n, \qquad (a_n \ge 0).$$
 (1)

which are analytic in the open unit disk $\mathcal{U} = \{z : |z| < 1\}$. For a function $f(z) \in \mathcal{T}$, we define

$$D^{0}f(z) = f(z),$$

$$D^{1}f(z) = Df(z) = zf'(z),$$

and

$$D^{k}f(z) = D(D^{k-1}f(z))$$
$$= z - \sum_{n=2}^{\infty} n^{k} a_{n} z^{n} \qquad (k \in \mathbb{N}_{0} = \mathbb{N} \cup \{0\}).$$

14

The differential operator D^k was introduced by Sălăgean [12].

Email address: bafrasin@yahoo.com

Following a recent investigation by Frasin and Darus [6] [see also 1], if $f(z) \in \mathcal{T}$ and $\mu \ge 0$, then we define the (k,μ) -neighborhood for the function f(z) by

$$\mathcal{N}_{\mu}^{k}(f) = \{ g \in \mathcal{T} : g(z) = z - \sum_{n=2}^{\infty} b_{n} z^{n}, \sum_{n=2}^{\infty} n^{k+1} \left| a_{n} - b_{n} \right| \le \mu \}.$$
 (2)

In particular, for the identity function e(z) = z, we immediately have

$$\mathcal{N}_{\mu}^{k}(e) = \{ g \in \mathcal{T} : g(z) = z - \sum_{n=2}^{\infty} b_{n} z^{n}, \sum_{n=2}^{\infty} n^{k+1} \left| b_{n} \right| \le \mu \}, \tag{3}$$

We observe that $\mathcal{N}_{\mu}^{0}(f) \equiv \mathcal{N}_{\mu}(f)$ and $\mathcal{N}_{\mu}^{1}(f) \equiv \mathcal{M}_{\mu}(f)$, where $\mathcal{N}_{\mu}^{k}(f)$ and $\mathcal{M}_{\mu}(f)$ denote, respectively, the μ -neighborhoods of f as defined by Ruscheweyh [11] and Silverman [13]. For further details about the neighborhood of analytic functions see (as examples) the papers in [2, 3, 4, 7, 5, 8, 9].

Very recently, Orhan *et al.* [10], introduced new definition of (α, δ) -neighborhood for analytic function f(z) in the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n,$$
(4)

In this paper, we introduce the following new definition of (α, β, δ) -neighborhood for a function given by 1.

Definition 1. A function $f(z) \in \mathcal{T}$ is said to be (α, β, δ) -neighborhood for

$$g(z) = z - \sum_{n=2}^{\infty} b_n z^n \in \mathcal{T}$$
 if it satisfies

$$\left| e^{i\alpha} (D^k f(z))' - e^{i\beta} (D^k g(z))' \right| < \delta \qquad (z \in \mathcal{U})$$
 (5)

for some $-\pi \le \alpha, \beta \le \pi$ and $\delta > \sqrt{2(1 - \cos(\alpha - \beta))}$.

We denote this neighborhood by $(\alpha, \beta, \delta) - \mathcal{N}(g)$.

Now we show some results for functions belonging to $(\alpha, \beta, \delta) - \mathcal{N}(g)$.

2. Main results

In our first theorem, we introduce a sufficient condition to be in $(\alpha, \beta, \delta) - \mathcal{N}(g)$.

Theorem 1. If $f(z) \in \mathcal{T}$ satisfies

$$\sum_{n=2}^{\infty} n^{k+1} \left| e^{i\alpha} a_n - e^{i\beta} b_n \right| \le \delta - \sqrt{2(1 - \cos(\alpha - \beta))} \tag{6}$$

for some $-\pi \le \alpha, \beta \le \pi$ and $\delta > \sqrt{2(1 - \cos(\alpha - \beta))}$ then $f(z) \in (\alpha, \beta, \delta) - \mathcal{N}(g)$.

Proof. We observe that

$$\begin{split} \left| e^{i\alpha} (D^k f(z))' - e^{i\beta} (D^k g(z))' \right| &= \left| e^{i\alpha} - e^{i\beta} - \sum_{n=2}^{\infty} n^{k+1} (e^{i\alpha} a_n - e^{i\beta} b_n) z^{n-1} \right| \\ &\leq \left| e^{i\alpha} - e^{i\beta} \right| + \sum_{n=2}^{\infty} n^{k+1} \left| e^{i\alpha} a_n - e^{i\beta} b_n \right| |z|^{n-1} \\ &\leq \sqrt{2(1 - \cos(\alpha - \beta))} + \sum_{n=2}^{\infty} n^{k+1} \left| e^{i\alpha} a_n - e^{i\beta} b_n \right|. \end{split}$$

If

$$\sum_{n=2}^{\infty} n^{k+1} \left| e^{i\alpha} a_n - e^{i\beta} b_n \right| \le \delta - \sqrt{2(1 - \cos(\alpha - \beta))},$$

then we have $\left|e^{i\alpha}(D^kf(z))'-e^{i\beta}(D^kg(z))'\right|<\delta\ (z\in\mathscr{U})$. This shows that $f(z)\in(\alpha,\beta,\delta)-\mathscr{N}(g)$.

Corollary 1. Let $f(z) \in \mathcal{T}$. Then for $0 < \mu \le \delta$, we have $\mathcal{N}_{\mu}^{k}(g) \subseteq (\alpha, \alpha, \delta) - \mathcal{N}_{\delta}^{k}(g)$.

Proof. Assuming that $f(z) \in \mathcal{N}_{\mu}^{k}(g)$. We find from the definition (2) that

$$\sum_{n=2}^{\infty} n^{k+1} \left| a_n - b_n \right| \le \mu.$$

Now

$$\begin{split} \sum_{n=2}^{\infty} n^{k+1} \left| e^{i\alpha} a_n - e^{i\alpha} b_n \right| &= \sum_{n=2}^{\infty} n^{k+1} \left| e^{i\alpha} \right| \left| a_n - b_n \right| \\ &= \sum_{n=2}^{\infty} n^{k+1} \left| a_n - b_n \right| \\ &\leq \delta. \end{split}$$

Thus by Theorem 1, we have $f(z) \in (\alpha, \alpha, \delta) - \mathcal{N}(g)$.

Corollary 2. If $f(z) \in \mathcal{T}$ satisfies

$$\sum_{n=2}^{\infty} n^{k+1} \left| \left| a_n \right| - \left| b_n \right| \right| \le \delta - \sqrt{2(1 - \cos(\alpha - \beta))}$$
 (7)

for some $-\pi \le \alpha, \beta \le \pi, \ \delta > \sqrt{2(1-\cos(\alpha-\beta))}$ and $\arg a_n - \arg b_n = \beta - \alpha \ (n=2,3,4,...),$ then $f(z) \in (\alpha,\beta,\delta) - \mathcal{N}(g)$.

Proof. Let $\arg a_n - \arg b_n = \beta - \alpha$ and $\arg a_n = \theta_n$. Then $\arg b_n = \theta_n + \alpha - \beta$. Therefore,

$$e^{i\alpha}a_n - e^{i\beta}b_n = |a_n|e^{i(\alpha+\theta_n)} - |b_n|e^{i(\alpha+\theta_n)},$$

which implies

$$\left| e^{i\alpha} a_n - e^{i\beta} b_n \right| = \left| \left| a_n \right| - \left| b_n \right| \right|. \tag{8}$$

From the hypotheses (7) and (8), we get (6). Thus by Theorem 1, it follows that $f(z) \in (\alpha, \beta, \delta) - \mathcal{N}(g)$.

Furthermore, from Theorem 1, we easily get

Corollary 3. *If* $f(z) \in \mathcal{T}$ *satisfies*

$$\sum_{n=2}^{\infty} n^{k+1} (\left| a_n \right| + \left| b_n \right|) \le \delta - \sqrt{2(1 - \cos(\alpha - \beta))}$$
(9)

for some $-\pi \le \alpha, \beta \le \pi$ and $\delta > \sqrt{2(1 - \cos(\alpha - \beta))}$ then $f(z) \in (\alpha, \beta, \delta) - \mathcal{N}(g)$.

Next, we prove

Theorem 2. If $f(z) \in (\alpha, \beta, \delta) - \mathcal{N}(g)$ and $\arg(e^{i\alpha}a_n - e^{i\beta}b_n) = (n-1)\varphi$ (n = 2, 3, 4, ...), then

$$\sum_{n=2}^{\infty} n^{k+1} \left| e^{i\alpha} a_n - e^{i\beta} b_n \right| > \delta + \cos \alpha - \cos \beta. \tag{10}$$

Proof. Let $f(z) \in (\alpha, \beta, \delta) - \mathcal{N}(g)$ and $\arg z = -\varphi$. Then for all $z \in \mathcal{U}$, we have

$$\begin{aligned} \left| e^{i\alpha} (D^{k} f(z))' - e^{i\beta} (D^{k} g(z))' \right| &= \left| (e^{i\alpha} - e^{i\beta}) - \sum_{n=2}^{\infty} n^{k+1} (e^{i\alpha} a_{n} - e^{i\beta} b_{n}) z^{n-1} \right| \\ &= \left| (e^{i\alpha} - e^{i\beta}) - \sum_{n=2}^{\infty} n^{k+1} \left| e^{i\alpha} a_{n} - e^{i\beta} b_{n} \right| e^{i(n-1)\varphi} \left| z \right|^{n-1} e^{-i(n-1)\varphi} \right| \\ &= \left| (e^{i\alpha} - e^{i\beta}) - \sum_{n=2}^{\infty} n^{k+1} \left| e^{i\alpha} a_{n} - e^{i\beta} b_{n} \right| \left| z \right|^{n-1} \right| \\ &= \left(\left[(\cos \alpha - \cos \beta) - \sum_{n=2}^{\infty} n^{k+1} \left| e^{i\alpha} a_{n} - e^{i\beta} b_{n} \right| \left| z \right|^{n-1} \right]^{2} + \\ &\qquad (\sin \alpha - \sin \beta)^{2} \right)^{1/2} \\ &< \delta \end{aligned}$$

for $z \in \mathcal{U}$. This implies that

$$(\cos \alpha - \cos \beta) - \sum_{n=2}^{\infty} n^{k+1} \left| e^{i\alpha} a_n - e^{i\beta} b_n \right| |z|^{n-1} < \delta$$

REFERENCES 18

for $z \in \mathcal{U}$. Letting $|z| \to 1^-$, we have

$$\sum_{n=2}^{\infty} n^{k+1} \left| e^{i\alpha} a_n - e^{i\beta} b_n \right| > \delta + \cos \alpha - \cos \beta.$$

Finally, we prove

Theorem 3. If $f(z) \in \mathcal{T}$ satisfies

$$\sum_{n=2}^{\infty} n^{k+1} \left| e^{i\alpha} a_n - e^{i\beta} b_n \right| < \mu - \sqrt{2(1 - \cos(\alpha - \beta))}$$
 (11)

for some $-\pi \le \alpha, \beta \le \pi$ and $\mu > \sqrt{2(1 - \cos(\alpha - \beta))}$, then

$$\operatorname{Re}\left(\frac{e^{i\alpha}(D^k f(z))'}{e^{i\beta}(D^k g(z))'}\right) > 0 \tag{12}$$

where $g(z) \in \mathcal{N}_{1-\mu}^k(e)$.

Proof. Note that

$$\left| \frac{e^{i\alpha}(D^k f(z))'}{e^{i\beta}(D^k g(z))'} - 1 \right| \leq \frac{\sqrt{2(1 - \cos(\alpha - \beta))} + \sum_{n=2}^{\infty} n^{k+1} \left| e^{i\alpha} a_n - e^{i\beta} b_n \right|}{1 - \sum_{n=2}^{\infty} n^{k+1} b_n}$$

$$\leq \frac{\sqrt{2(1 - \cos(\alpha - \beta))} + \sum_{n=2}^{\infty} n^{k+1} \left| e^{i\alpha} a_n - e^{i\beta} b_n \right|}{\mu}.$$

Hence by the condition (11), we have

$$\left| \frac{e^{i\alpha}(D^k f(z))'}{e^{i\beta}(D^k g(z))'} - 1 \right| < 1.$$

This evidently proves Theorem 3.

References

- [1] O.P. Ahuja and M. Nunokawa, *Neighborhoods of analytic functions defined by Ruscheweyh derivatives*, Math. Japonica 51. No.3, 487-492. 2000.
- [2] O. Altintaş, Neighborhoods of certain p-valently analytic functions with negative coefficients, Appl. Math. Comp., 187, 47–53. 2007.

REFERENCES 19

[3] O. Altintaş, Ö. Özkan and H.M. Srivastava, *Neighborhoods of a class of analytic functions with negative coefficients*, Appl. Math. Lett., 13 (3), 63–67. 2000.

- [4] M.K. Aouf, Neighborhoods of certain classes of analytic functions with negative coefficients, IJMMS., Article ID 38258, pp. 1-6. 2006.
- [5] B.A. Frasin, *Neighborhoods of certain subclasses of analytic functions of complex order with negative coefficients*, Aust. J. Math. Ana. Appl., Vol. 7, Issue 1, Article 6, pp. 1-7, 2010.
- [6] B.A. Frasin and M. Darus, *Integral means and neighborhoods for certain analytic univalent functions with negative coefficients*, Soochow J. Math. Comp., Vol. 30 No.3, 217-223. 2004.
- [7] B.S. Keerthi, B.A. Stephen, A. Gangadharan and S. Sivasubramanian, *Neighborhoods of certain classes of analytic functions with negative coefficients*, IJMMS., Article ID 38258, pp. 1-6. 2006.
- [8] H. Orhan, E. Kadioğlu, *Neighborhoods of a class of analytic functions with negative coefficients*, Tamsui Oxford Journal of Math. Sci., 20 (2) 135–142. 2004.
- [9] H. Orhan, M. Kamali, *Neighborhoods of a class of analytic functions with negative coefficients*, Acta Mathematica Academiae Paedagogiace Nyiregyhaziensi, 4. 1 (21), 55–61. 2005.
- [10] H. Orhan, E. Kadioğlu and S. Owa, (α, δ) -Neighborhood for Certain Analytic Functions, Proceeding of international symposium "Geometric Function Theory and Applications" Istanbul Kultur University, 207-213. 2007.
- [11] S. Ruscheweyh, *Neighborhoods of univalent functions*, Proc. Amer. Math.Soc. 81(4), 521-527. 1981.
- [12] G. Sălăgean, *Subclasses of univalent functions*, in "Complex Analysis: Fifth Romanian-Finnish Seminar," Part I (Bucharest, 1981), pp.362-372, Lecture Notes in Mathematics, Vol. 1013, Springer-Verlag, Berlin/ New York, 1983.
- [13] H. Silverman, Neighborhoods of class of analytic functions, Far East J. Math. Sci., 3(2), 165-169. 1995.