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Abstract. In [14], Th.M. Rassias introduced the following equality

n

n n
Dl —xilP=2n) Ikl Y x=0
i,j=1 i=1

i=1

for a fixed integer n > 3. For a mapping f : X — Y, where X is a vector space and Y is a complete
random normed space, we consider the following functional equation

Zf(xi_xj)zzan(xi) €]
=1 =1

for all xq,...,x, € X with Z?:l x; = 0. In this paper, we prove the Hyers-Ulam stability of the func-
tional equation (1) related to an inner product space.
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1. Introduction

A square norm on an inner product space satisfies the parallelogram equality
[l + y112 + llx = yII* = 2flx[* + 2/l [I2.
From the above equation, we consider the following functional equation
fle+y)+fx=y)=2f(x)+2f(y)
*Corresponding author.

Email addresses: dyshinQuos.ac.kr (D. Shin), jrlee@daejin.ac.kr (J. Lee), baak@hanyang.ac.kr (C.
Park)

http://www.ejpam.com 540 (© 2012 EJPAM All rights reserved.



D. Shin, J. Lee, C. Park / Eur. J. Pure Appl. Math, 5 (2012), 540-553 541

related to an inner product space. The stability problem of functional equations originated
from a question of S.M. Ulam [18] concerning the stability of group homomorphisms. D.H.
Hyers [5] gave a first affirmative partial answer to the question of Ulam for Banach spaces and
Hyers’ Theorem was generalized by Th.M. Rassias [13] for linear mappings by considering an
unbounded Cauchy difference. Especially, the Hyers-Ulam stability of the above functional
equation related to an inner product space has been studied [see 7, 17].

A square norm on an inner product space also satisfies

3 3
Do lx =2 =6 llx;l2
i,j=1 i=1

for all x;, x5, x3 € R with x; + x5 + x5 = 0 [see 14]. From the above equality we can define
the functional equation

fle=y)+fQx+y)+fx+2y)=3f(x)+3f(y)+3f(x+ ),

which is called a quadratic functional equation. In fact, f (x) = ax? in R satisfies the quadratic
functional equation.

The aim of this paper is to investigate the Hyers-Ulam stability of additive-quadratic func-
tional equation in a random normed space related to an inner product space.

Throughout this paper, we use the definition of a random normed space as in [1, 10, 15,
16]. A™ is the space of distribution functions that is, the space of all mappings
F :RU{—00,00} — [0,1] which is left-continuous and non-decreasing on R, F(0) = 0 and
F(+o0) = 1. D" is a subset of A" consisting of all functions F for which ["F(+o0) = 1,
where [~ f(x) denotes the left limit of the function f at the point x. The space A" is partially
ordered by the usual point-wise ordering of functions. The maximal element for A" in this
order is the distribution function &, given by

- 0, ift<o,
8 =
0 1, ift>o0.

Definition 1 ([15]). A mapping T : [0,1] x [0,1] — [0,1] is a continuous triangular norm
(briefly, a continuous t-norm) if T satisfies the following conditions:

(a) T is commutative and associative;

(b) T is continuous;

(o) T(a,1)=aforallaec[0,1];

(d) T(a,b) < T(c,d)whenevera<candb <d forall a,b,c,d €[0,1].

Recall that if T is a t-norm and {x,} is a sequence of numbers in [0,1], then T]',x; is

defined recurrently by Tilz1 x; =x;and T, x; = T(Ti”:_llxi,xn) forn > 2 [see 3]. T2, x; is
defined as lim,,,_,, T/, X;.
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Definition 2 ([16]). A random normed space (briefly, RN-space) is a triple (X, u, T), where
X is a vector space, T is a continuous t-norm and u is a mapping from X into DV satisfies the
following conditions:

(RN1) w,(t) =gy(t) forall t > 0 if and only if x = 0;
(RN2) pro (1) = pi (57) for all x €X, a #0;

(RN3) phyyy(t+5) = T(uy(t), uy(s)) forall x,y €X and t,s > 0.

A sequence {x,} in an RN-space (X, u, T) is said to be convergent to x in X if, for every
€ > 0 and A > O, there exists a positive integer N such that u, _.(e) > 1 — A whenever
n > N. An RN-space (X, u, T) is said to be complete if and only if every Cauchy sequence in X
is convergent to a point in X.

The Hyers-Ulam stability of functional equations in random normed spaces and fuzzy
normed spaces has been studied [see 3, 4, 6, 8, 9, 11, 12]. Let V,W be vector spaces. It is
shown that if a mapping f : V — W satisfies the functional equation (1), then the mapping
f is the sum of an additive mapping and a quadratic mapping [see 2]. In this paper, we
investigate the Hyers-Ulam stability of the functional equation (1) in RN-spaces.

Throughout this paper, assume that X is a vector space and that (Y, u,T) is a complete
RN-space.

2. Hyers-Ulam Stability of the Functional Equation (1): An Odd Case

We investigate the functional equation (1) for an odd mapping in RN-spaces.
For a given mapping f : X — Y, we define

Df (X, x) = ), flxi=x)—2n Y f(x)
i,j=1 i=1

forall xy,...,x, €X with D,/_, x; =0.
For an odd mapping f : X — Y, we note that if f satisfies

Df(xlzxZJ'“an):O

for all xq,...,x, € X with Z?:l x; = 0 then the mapping f is additive.
We prove the Hyers-Ulam stability of the functional equation (1) of an odd mapping in
RN-spaces.

Theorem 1. Let f : X — Y be an odd mapping for which thereisa p : X™ — DT ( p(x1,Xg,...,X,,)
is denoted by p(y, x,,...x,)) such that

MDf(xl,xz ..... X,) (t) = p(xl,xz ..... xn)(t) (2)

forall (x1,x5,...,x,) €X"and all t > 0. If

nt
N _
Tkzlp( o e 0,en0) (W) =1 .

okHT 2 5k+1°
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and e
im pre o xrg o)(ﬁ)zl )

m—o0 MM om s

forall x,y €eX,allt >0and all |l =0,1,2,..., then there exists a unique additive mapping
A:X — Y such that

nt
£ )=y (£) = T’?ilp(fk%k,— £ 0,..0) (—22k_2) (5)

*-1°

forall x€X and all t > 0.

=

Proof. Putting x; = x9 ==,x3 =—Xx,x4=...=Xx, =01n (2), we get

E,
Han(f-2 (2)) (D Z P (2.5 —x0,.,0) (1)

which is equivalent to

Br-or (2) (D Z P (x5 —ro..0)(201)

for all x € X and all t > 0. Replacing x and t by % and 22,(%1, respectively in the above
inequality, we get
t

nt
“2’<*1f(2k"_1)—2’<f(2%) (?) z p(zik,zik,—zk"_l,o,.,.,o) (22k—2)

for all x € X and all t > 0.
Since u,(s) < u,(t) for all s and t with 0 <s < t, we obtain

Mrco-2ns () (O T (2 () 247 (2))

Tt
s (2 ()29 (3)) (; ?)
o nt
—Tk=1p(zik,zik,_2k{1 0,...0) (sz—z)

Replacing x by % in the above inequality, we get

m nt )
Mf(;_l)_sz(z,,’fﬁ)(t) = Tk:lp(zkﬁ,,zg‘ﬁ,—ﬁ,o,...,o) (22k—2

which is equivalent to

nt
Haig(5)-amip () (D 2 TemP (e e e 6, 0) (2) ©

oK+ 2 ok+17

forallxeX,allt>0andalll=0,1,2,....
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Since the right hand side of the inequality (6) tends to 1 as m — oo by (3), the sequence
{2mf (zim)} is a Cauchy sequence. Thus we define A(x) := lim,,_,o, 2™f (zim) for all x € X,
which is an odd mapping.

Now we show that A is an additive mapping. By (2), we get

> nt
a5 (5 ()1 () (O 2 P oo (5 0.0) (37 )-

Taking the limit as m — oo in the above inequality, by (4), the mapping A is additive. By
letting [ = 0 and taking the limit as m — oo in (6), we get (5).

Finally, to prove the uniqueness of the additive mapping A subject to (5), let us assume
that there exists another additive mapping B which satisfies (5). Since

Ha)-B(o)(28) Zhacyamg (2 )+amf (2)-Boo ()
2T (a2 () O b ()00 0

and
I B2 () = o0, Maeo-27f (3) = 1

for all x € X and all t > 0, we get

lim T (MA(X)—me(ZLm)(t)"u'sz(Zim)—B(X)(t)) =1.

m—00
Thus we have A= B.
Corollary 1. Let 6 > 0 and let p be a constant with p > 1. For a normed vector space X and
complete RN-space Y, let f : X — Y be an odd mapping satisfying

t

u ) () 2
Df(x1,X2,-.,Xn) t+6 Z?:l [oc; [P

for all (x1,x,...,x,) €X with Y-, x;=0and all t > 0. If

2(k+l)pnt
T2, =1
1\ 2k+tDppt 4 22k41-2(9 4 2P) 0| |x||P

forall x €e X, allt > 0and all | = 0,1,2,..., then there exists a unique additive mapping
A:X — Y such that

o oo 2kpnt
r)-aco(t) = T2, 2kpnt + 22k=2(2 4 2P)0||x||P

forall xeX and all t > 0.
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Proof. If we define
t

t+6 30 Ix|IP
and apply Theorem 1, then we get the desired result.

P(x1,%9,..., xn)(t) =

Theorem 2. Let f : X — Y be an odd mapping for which there is a p : X" — D satisfying (2).
If

T]Silp(2k+l—2x’2k+l—zx’_2k+l—1x’0 """ 0) (21+1nt) =1 (7)
and
; +1,4) —
n}g%op(me,Zmy,—Zm(x-i-y),O ,,,,, 0) (zm Tlt) =1 (8)

forall x,y € X, allt >0and alll =0,1,2,..., then there exists a unique additive mapping
A:X — Y such that

Bt ()-ago () 2 Tl?ilp(2’<*2x,2’<*2x,—2’<*1x,0 ..... 0) (2nt) )]
forallxeX and all t > 0.
Proof. Putting x1 = x9 = Xx,X3 = —2X,X4=...=x, = 0in (2), we get

Moan(f 2x)-2£ () (0) 2 P(xx,~2x,0,...,0) ()
which is equivalent to

‘uf(x)—%f(Zx)(t) Z P (%,5,-x0,..0) (4nt)

for all x € X and all t > 0. Replacing x and t by 2¥~1x and 2t, respectively, in the above
inequality, we get
t
B £ (2 1) - Je £ (24) (?) 2 P(2k-2x 2k-2x,~2k1x,0,..,0)(21L)

forall x € X and all t > 0.
Since u, (s) < u,(t) for all s and t with 0 <s < t, we obtain

O N (O ¥ )

m

t
FHE, (e @) (2) (Z i)

k=1

Zlenzlp(Zk’zx,Zk’zx,—Zk’lx,O ..... 0) (2nt)
Replacing x by 2!x in the above inequality, we get

“f(zlx)—zimf(zm“x)(t) =z Tizn=1P(2’<+l—2x,2k+l—2x,—z’<+l—1x,o ..... 0) (2nt)
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which is equivalent to
[+1
uzizf(zlx)_zr;+zf(2m+lx)(t) > T,inzlp(2k+172x’2k+zfzx7_2k+171x70 ..... 0) (2 Tlt) (10)

forallxeX,allt>0andalll=0,1,2,....

Since the right hand side of the inequality (10) tends to 1 as m — oo by (7), the sequence
{zimf (2™x)} is a Cauchy sequence. Thus we define A(x) := lim,,_,, zimf (2mx) for all x € X,
which is an odd mapping.

Now we show that A is an additive mapping. By (2), we get

+1
.uzim(f(zm(x+y))_f(2mx)_f(2my))(t)Zp(zmx,zmy,—zm(x+y),0 ,,,,, 02" ne).

Taking the limit as m — oo in the above inequality, by (8) the mapping A is additive. By letting
[ = 0 an taking the limit as m — oo in (10), we get (9).
The rest of the proof is the same as in the proof of Theorem 1.

Corollary 2. Let 6 > 0 and let p be a constant with 0 < p < 1. For a normed vector space X
and complete RN-space Y, let f : X — Y be an odd mapping satisfying

t
t+ 020 [P

‘u'Df(XbXZ ,,,,, Xn) (t) Z

forall (xq,x5,...,Xx,) €X with Z?:l x;=0andallt > 0. If

2l+1nt
T, | 5 =1
=H\ 2+t 4 2(k+H=1p(21-P 4 1)4]|x||P

forall x e X, allt > 0and all | = 0,1,2,..., then there exists a unique additive mapping
A:X — Y such that

2nt
> o0
M o-aco(0) = T2y (Znt + 2(k=Dp(21-p 4 1)GIIXIIP)

forall x€X and all t > 0.

Proof. If we define
t

t+6 3.0 [Ix|lP
and apply Theorem 2, then we get the desired result.

p(xl,XZ ..... Xn)(t) =
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3. Hyers-Ulam Stability of the Functional Equation (1): An Even Case

We prove the Hyers-Ulam stability of the functional equation (1) of an even mapping in
RN-spaces.
For an even mapping f : X — Y with f(0) = 0, we note that if f satisfies

Df(xlzxZJ"'an) =0
for all xq,...,x, € X with Z?:l x; = 0 then the mapping f is quadratic.

Theorem 3. Let f : X — Y be an even mapping with f (0) = O for which thereisa p : X" — D%

satisfying (2). If
t
> (—) =1 11
k=1P (e x0,.0) \ 93k+203 an

and .
AL P (5, g~ 52.0,..,0) (—sz_l) =1 (12)

forall x,y €X,alt>0andalll =0,1,2,..., then there exists a unique quadratic mapping
Q : X — Y such that

t
s (x)-qo () = T;?ilp(ik ~2.0,.0) (W) (13)

forall xeX and all t > 0.

Proof. Putting x1 = x,xy = —Xx,X3=... =X, = 0in (2), we get

Ma(f(20)—4f () (1) 2 P(x,~x,0,..,0) (1)

which is equivalent to
Broo—ar () (O Z Pz —x 0. 0)(20)

for all x € X and all t > 0. Replacing x and t by % and 23,+_2, respectively in the above
inequality, we get

t t
Mg ()47 (%) (?) Z'o(zik,—ziko,...,o) (Zsk—s)

forall x € X and all t > 0.
Since u,(s) < u,(t) for all s and t with 0 <s < t, we obtain

Mpeo-ams (30) (O Thsm (g () -ap (3)) (O

ofE)

t
>Tm1p( -~ 2,0,..,0) (23k_3)

ZMZL (4k—1f(
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Replacing x by % in the above inequality, we get

t
iy (5)s () O 2 TP (i - 2000) (5565

which is equivalent to

t
Mg (2)-amiip(527) (O 2 TmP (e - e o, 0) (W) (14)

x
9 om+ ok+1

forallxeX,allt>0andalll=0,1,2,....

Since the right hand side of the inequality (14) tends to 1 as m — oo by (11), the sequence
{4mf (zim)} is a Cauchy sequence. Thus we define Q(x) := lim,,,_,,, 4™f (zim) for all x € X,
which is an even mapping.

Now we show that Q is an quadratic mapping. By (2), we get

B (5 () (20 ) (522 ) -7 (5)-f (3 )-3f () )

t
ZP(x v _xty (—) .
p(z_mazm:_ 7 05ees 0) 22m—1

Taking the limit as m — oo in the above inequality, by (12), the mapping Q is quadratic.
Moreover, letting | = 0 and taking the limit as m — oo in (14), we get (13).
The rest of the proof is the same as in the proof of Theorem 1.

Corollary 3. Let 6 > 0 and let p be a constant with p > 2. For a normed vector space X and
complete RN-space Y, let f : X — Y be an even mapping satisfying

t
u ) () 2
Df (51,2, Xn) t+6 Z:-l:l [P

forall (xq,x,,...,Xx,) €X with Z?:l x;=0andall t > 0. If

2(k+l)pt
T =1
k=1 ok+Dp ¢ _+_23k+21—29||x||p

forall x €e X, allt >0and all l =0,1,2,..., then there exists a unique quadratic mapping
Q : X — Y such that

2kp¢
o0
Hfo-ae () 2 T2, 2kpt + 23k=20]|x||P

forall xeX and all t > 0.

Proof. If we define
t

t+6 30 [1x|lP
and apply Theorem 3, then we get the desired result.

p(xl,XZ ..... Xn)(t) =
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Theorem 4. Let f : X — Y be an even mapping with f(0) = O for which thereisa p : X" — D%
satisfying (2). If

T]?ilp(zkalX’_zkalx’o 777 0) (2k+21_1t) =1 (15)
and
: m+1 —
Lim pgmye gmy —om(xty),0,..0) (2m1e) =1 (16)

forall x,y €X,alt>0andalll =0,1,2,..., then there exists a unique quadratic mapping
Q : X — Y such that

Br-ae (D) = TP (2 —ax0...0) (2577 (17)
forall x€eX and all t > 0.
Proof. Letting x; = x,Xy = —X,X3=...= X, = 01in (2), we get
Ma(f(20)—4f () (1) 2 P(x,~x,0,..,0) (1)

which is equivalent to
t

Breo-1r@o (Z) > P(x,~x,0,..,0(2t)

for all x € X and all t > 0. Replacing x and t by 2K"1x and 2%2¢, respectively in the above
inequality, we get

t
k-1
Mol p (2 10)- £ (24x) (g)ip(zkﬂx,-zk—lx,o ,,,,, 0)(2°70)

forall x € X and all t > 0.
Since u, (s) < u,(t) for all s and t with 0 <s < t, we obtain

Moo (O Fhy (1 pa)- (i) D

m

2l (A f (1) -4 (24)) (Z ik)
=Lt # =12
Zlenzlp(Zk_lx,—Zk‘lx,O ..... 0) (zk_lt)
Replacing x by 2!x in the above inequality, we get
Uf(zlx)—%f(zm“x)(t) 2 TyZy P (gk+i-1x,—2k+-1x0,._0) (zk_lt)
which is equivalent to

k+21-1
,u/%lf(zlx)_ﬁf(zmﬂx) (t) = Tlinzlp(zk+l—1x’_2k+l—lx’0 ’’’’’ 0) (2 t) (18)

forallxeX,allt>0andalll=0,1,2,....
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Since the right hand side of the inequality (18) tends to 1 as m — oo by (15), the sequence
{%mf (2™x)} is a Cauchy sequence. Thus we define Q(x) :=lim,,_, %nf (2Mx) for all x € X,
which is an even mapping.

Now we show that Q is a quadratic mapping. By (2), we get

B L (7 (2 (xmy D (2 2ty ) (27 (e 2y )3 (2 (e-ky )-3f (2 )-3f (27 y ) ()
ZP(2mx,2my,—2M(x+),0,..., 0(2™ ).

Taking the limit as m — oo in the above inequality, by (16), the mapping Q is quadratic.
Moreover, letting [ = 0 and taking the limit as m — oo in (18), we get (17).
The rest of the proof is the same as in the proof of Theorem 3.

Corollary 4. Let 68 > 0 and let p be a constant with 0 < p < 2. For a normed vector space X
and complete RN-space Y, let f : X — Y be an even mapping satisfying

t
U o) () 2
Df (x1,X2,..,Xn) t+0 Z?:l ||xi||p

for all (x1,x,...,x,) €X with Y., x;=0and all t > 0. If

2k+21—2t
T =1
k=1 ok+21-2; _+_2(k+l)p9||x||p

forall x e X, allt >0andalll =0,1,2,..., then there exists a unique quadratic mapping
Q : X — Y such that

2k=2¢
> i m
Mreo-qeo (D) 2 lim T2, (2’<—2t + 2kP9||x||P)
forall xeX and all t > 0.

Proof. If we define
t

t+6 25 [P
and apply Theorem 4, then we get the desired result.

P(x1,%9,...s xn)(t) =

4. Hyers-Ulam Stability of the Functional Equation (1)

We note that if a mapping f : X — Y satisfies the functional equation (1), then the
mapping f is realized as the sum of an additive mapping and a quadratic mapping [see 2,
Lemma 2.1].

Here, we let g(x) := %(f(x) — f(—=x)) and h(x) := %(f(x) + f(—x)) for all x € X. Then
g(x) is an odd mapping and h(x) is an even mapping satisfying f (x) = g(x)+h(x). Moreovet,
we get the following:

1
Dg(x1,X9,...,%x,) = E{Df(xl,xz, cesXy) = Df (—x1, —Xo9, ..., —x,)}
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1
Dh(x1’x23 oo ’xn) = E{Df(xbe’ R ’xn) + Df(_xb —Xo,..n, _Xn)}
for all xq,x9,...,x, €X.

Note that Df (xi,...,x,) = 0 implies that Dg(x4,...,x,) =0 and Dh(xy,...,x,) =0.
Theorem 5. Let f : X — Y be a mapping with f(0) = 0 for which thereisa p : X" — D% such
that

nqu(xl,xz ..... Xp)+Df (—x1,—X5,00s—Xy) (Zt) = p(xl,xz ,,,,, xn)(t) (19)

MDf(xl,xz ..... Xp)—Df (—x1,—X5,00s—Xy) (2t) = p(xl,xz ,,,,, xn)(t) (20)
forall (xq,x5,...,x,) €X"and all t > 0. If p satisfies (3), (11) and (12), then there exist an
additive mapping A: X — Y and a quadratic mapping Q : X — Y such that

Wt (0)-AG0) Q) (28)

nt t
>T(TE (s « (—),Toi .. (_)
( k_lp(z_k’z_k’_zkfl’o""’o) 22k-2 k—lp(z—k,—z—k,o ..... o) 93k—3

forall x€X and all t > 0.

Proof. Consider an odd mapping g(x) := %( f(x)— f(—x)) and an even mapping
h(x) := %(f(x) + f(—x)) for all x € X with f(x) = g(x)+ h(x). By Theorem 1, there exists
a unique additive mapping A : X — Y such that
nt
Mg(x)—ac) () = TI?LP(L X __x g o) (W)

Skok? T Sk=1°"

for all x € X and all t > 0. And by Theorem 3, there exists a unique quadratic mapping
Q : X — Y such that

t
X)— t Z TOS x x (—)
Ha(x)—qeo (t) k—lp(z—k,—z—k,o ..... 0) 53k—3
for all x € X and all t > 0. Since f(x) = g(x) + h(x), we obtain

Bf () -AG0)-Q(x) (28) = Mg (x)-A(x)+h(x)-Q(x) (20)
2 T (Ug(x)—ac)(£)s Urtx)—qe) (£))

nt t
R Y 2 Y At
( k_lp(z—k,z—k,—zk_l,O,...,O) 22k—2 k_lp(z_k’_z_k’o ..... 0) 53k—3

for all x € X and all t > 0, as desired.

Similarly, we can obtain the following. We will omit the proof.

Theorem 6. Let f : X — Y be a mapping with f(0) = 0 for which thereisa p : X" — Dt
satisfying (19) and (20). If p satisfies (7), (15) and (16), then there exist an additive mapping
A:X — Y and a quadratic mapping Q : X — Y such that

s (x)-A0)-QGa) (2t)

k-1
2T (Tifiﬂo(zk*Zx,zk*ZX,—zkflx,o ..... 0)(21t), T2, 0 (95x,~2kx.0....0) (2 t))
forall x€X and all t > 0.
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