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Abstract. In [14], Th.M. Rassias introduced the following equality

n
∑

i, j=1

‖x i − x j‖
2 = 2n

n
∑

i=1

‖x i‖
2,

n
∑

i=1

x i = 0

for a fixed integer n ≥ 3. For a mapping f : X → Y , where X is a vector space and Y is a complete

random normed space, we consider the following functional equation

n
∑

i, j=1

f (x i − x j) = 2n

n
∑

i=1

f (x i) (1)

for all x1, . . . , xn ∈ X with
∑n

i=1
x i = 0. In this paper, we prove the Hyers-Ulam stability of the func-

tional equation (1) related to an inner product space.
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1. Introduction

A square norm on an inner product space satisfies the parallelogram equality

‖x + y‖2 + ‖x − y‖2 = 2‖x‖2+ 2‖y‖2.

From the above equation, we consider the following functional equation

f (x + y) + f (x − y) = 2 f (x)+ 2 f (y)
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related to an inner product space. The stability problem of functional equations originated

from a question of S.M. Ulam [18] concerning the stability of group homomorphisms. D.H.

Hyers [5] gave a first affirmative partial answer to the question of Ulam for Banach spaces and

Hyers’ Theorem was generalized by Th.M. Rassias [13] for linear mappings by considering an

unbounded Cauchy difference. Especially, the Hyers-Ulam stability of the above functional

equation related to an inner product space has been studied [see 7, 17].

A square norm on an inner product space also satisfies

3
∑

i, j=1

‖x i − x j‖
2 = 6

3
∑

i=1

‖x i‖
2

for all x1, x2, x3 ∈ R with x1 + x2 + x3 = 0 [see 14]. From the above equality we can define

the functional equation

f (x − y) + f (2x + y) + f (x + 2y) = 3 f (x)+ 3 f (y) + 3 f (x + y),

which is called a quadratic functional equation. In fact, f (x) = ax2 in R satisfies the quadratic

functional equation.

The aim of this paper is to investigate the Hyers-Ulam stability of additive-quadratic func-

tional equation in a random normed space related to an inner product space.

Throughout this paper, we use the definition of a random normed space as in [1, 10, 15,

16]. ∆+ is the space of distribution functions that is, the space of all mappings

F : R ∪ {−∞,∞} → [0,1] which is left-continuous and non-decreasing on R, F(0) = 0 and

F(+∞) = 1. D+ is a subset of ∆+ consisting of all functions F for which l−F(+∞) = 1,

where l− f (x) denotes the left limit of the function f at the point x . The space ∆+ is partially

ordered by the usual point-wise ordering of functions. The maximal element for ∆+ in this

order is the distribution function ǫ0 given by

ǫ0(t) =

(

0, if t ≤ 0,

1, if t > 0.

Definition 1 ([15]). A mapping T : [0,1]× [0,1] → [0,1] is a continuous triangular norm

(briefly, a continuous t-norm) if T satisfies the following conditions:

(a) T is commutative and associative;

(b) T is continuous;

(c) T (a, 1) = a for all a ∈ [0,1];

(d) T (a, b) ≤ T (c, d) whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0,1].

Recall that if T is a t-norm and {xn} is a sequence of numbers in [0,1], then T n
i=1 x i is

defined recurrently by T 1
i=1

x i = x1 and T n
i=1

x i = T (T n−1
i=1

x i, xn) for n ≥ 2 [see 3]. T∞
i=1

x i is

defined as limm→∞ T m
i=1

x i.
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Definition 2 ([16]). A random normed space (briefly, RN-space) is a triple (X ,µ, T ), where

X is a vector space, T is a continuous t-norm and µ is a mapping from X into D+ satisfies the

following conditions:

(RN1) µx(t) = ǫ0(t) for all t > 0 if and only if x = 0;

(RN2) µαx(t) = µx(
t

|α|
) for all x ∈ X , α 6= 0;

(RN3) µx+y(t + s)≥ T (µx(t),µy (s)) for all x , y ∈ X and t, s ≥ 0.

A sequence {xn} in an RN-space (X ,µ, T ) is said to be convergent to x in X if, for every

ε > 0 and λ > 0, there exists a positive integer N such that µxn−x(ε) > 1 − λ whenever

n≥ N . An RN-space (X ,µ, T ) is said to be complete if and only if every Cauchy sequence in X

is convergent to a point in X .

The Hyers-Ulam stability of functional equations in random normed spaces and fuzzy

normed spaces has been studied [see 3, 4, 6, 8, 9, 11, 12]. Let V,W be vector spaces. It is

shown that if a mapping f : V → W satisfies the functional equation (1), then the mapping

f is the sum of an additive mapping and a quadratic mapping [see 2]. In this paper, we

investigate the Hyers-Ulam stability of the functional equation (1) in RN-spaces.

Throughout this paper, assume that X is a vector space and that (Y,µ, T ) is a complete

RN-space.

2. Hyers-Ulam Stability of the Functional Equation (1): An Odd Case

We investigate the functional equation (1) for an odd mapping in RN-spaces.

For a given mapping f : X → Y , we define

D f (x1, . . . , xn) :=

n
∑

i, j=1

f (x i − x j)− 2n

n
∑

i=1

f (x i)

for all x1, . . . , xn ∈ X with
∑n

i=1 x i = 0.

For an odd mapping f : X → Y , we note that if f satisfies

D f (x1, x2, . . . , xn) = 0

for all x1, . . . , xn ∈ X with
∑n

i=1 x i = 0 then the mapping f is additive.

We prove the Hyers-Ulam stability of the functional equation (1) of an odd mapping in

RN-spaces.

Theorem 1. Let f : X → Y be an odd mapping for which there is a ρ : X n→ D+ ( ρ(x1, x2, . . . , xn)

is denoted by ρ(x1,x2,...,xn)
) such that

µD f (x1,x2,...,xn)
(t) ≥ ρ(x1,x2,...,xn)

(t) (2)

for all (x1, x2, . . . , xn) ∈ X n and all t > 0. If

T∞k=1ρ
�

x

2k+l , x

2k+l ,− x

2k+l−1 ,0,...,0
�

�

nt

22k+l−2

�

= 1 (3)
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and

lim
m→∞

ρ� x

2m ,
y

2m ,− x+y

2m ,0,...,0
�

�

nt

2m−1

�

= 1 (4)

for all x , y ∈ X , all t > 0 and all l = 0,1,2, . . ., then there exists a unique additive mapping

A : X → Y such that

µ f (x)−A(x)(t)≥ T∞k=1ρ
�

x

2k , x

2k ,− x

2k−1 ,0,...,0
�

�

nt

22k−2

�

(5)

for all x ∈ X and all t > 0.

Proof. Putting x1 = x2 =
x

2
, x3 = −x , x4 = . . . = xn = 0 in (2), we get

µ2n
�

f (x)−2 f
�

x

2

�� (t) ≥ ρ� x

2
, x

2
,−x ,0,...,0

�(t)

which is equivalent to

µ
f (x)−2 f

�

x

2

�(t) ≥ ρ� x

2
, x

2
,−x ,0,...,0

�(2nt)

for all x ∈ X and all t > 0. Replacing x and t by x

2k−1 and t

22k−1 , respectively in the above

inequality, we get

µ
2k−1 f

�

x

2k−1

�

−2k f
�

x

2k

�

�

t

2k

�

≥ ρ� x

2k
, x

2k
,− x

2k−1 ,0,...,0
�

�

nt

22k−2

�

for all x ∈ X and all t > 0.

Since µx(s)≤ µx(t) for all s and t with 0< s ≤ t, we obtain

µ
f (x)−2m f

�

x

2m

�(t) =µ∑m
k=1

�

2k−1 f
�

x

2k−1

�

−2k f
�

x

2k

��(t)

≥µ∑m
k=1

�

2k−1 f
�

x

2k−1

�

−2k f
�

x

2k

��

 

m
∑

k=1

t

2k

!

≥T m
k=1
ρ� x

2k
, x

2k
,− x

2k−1 ,0,...,0
�

�

nt

22k−2

�

Replacing x by x

2l in the above inequality, we get

µ
f
�

x

2l

�

−2m f
�

x

2m+l

�(t) ≥ T m
k=1
ρ� x

2k+l
, x

2k+l
,− x

2k+l−1 ,0,...,0
�

�

nt

22k−2

�

which is equivalent to

µ
2l f
�

x

2l

�

−2m+l f
�

x

2m+l

�(t) ≥ T m
k=1
ρ� x

2k+l
, x

2k+l
,− x

2k+l−1 ,0,...,0
�

�

nt

22k+l−2

�

(6)

for all x ∈ X , all t > 0 and all l = 0,1,2, . . ..
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Since the right hand side of the inequality (6) tends to 1 as m→∞ by (3), the sequence

{2m f
�

x

2m

�

} is a Cauchy sequence. Thus we define A(x) := limm→∞ 2m f
�

x

2m

�

for all x ∈ X ,

which is an odd mapping.

Now we show that A is an additive mapping. By (2), we get

µ2m
�

f
�

x+y

2m

�

− f
�

x

2m

�

− f
�

y

2m

�� (t) ≥ ρ� x

2m ,
y

2m ,−
�

x+y

2m

�

,0,...,0
�

�

nt

2m−1

�

.

Taking the limit as m → ∞ in the above inequality, by (4), the mapping A is additive. By

letting l = 0 and taking the limit as m→∞ in (6), we get (5).

Finally, to prove the uniqueness of the additive mapping A subject to (5), let us assume

that there exists another additive mapping B which satisfies (5). Since

µA(x)−B(x)(2t) =µA(x)−2m f
�

x

2m

�

+2m f
�

x

2m

�

−B(x)(2t)

≥T

�

µA(x)−2m f
�

x

2m

�(t),µ2m f
�

x

2m

�

−B(x)(t)

�

and

lim
m→∞

µA(x)−2m f
�

x

2m

� = lim
m→∞

µB(x)−2m f
�

x

2m

� = 1

for all x ∈ X and all t > 0, we get

lim
m→∞

T

�

µA(x)−2m f
�

x

2m

�(t),µ2m f
�

x

2m

�

−B(x)(t)

�

= 1.

Thus we have A= B.

Corollary 1. Let θ ≥ 0 and let p be a constant with p > 1. For a normed vector space X and

complete RN-space Y , let f : X → Y be an odd mapping satisfying

µD f (x1 ,x2,...,xn)
(t) ≥

t

t + θ
∑n

i=1 ||x i||p

for all (x1, x2, . . . , xn) ∈ X with
∑n

i=1 x i = 0 and all t > 0. If

T∞k=1

�

2(k+l)pnt

2(k+l)pnt + 22k+l−2(2+ 2p)θ ||x ||p

�

= 1

for all x ∈ X , all t > 0 and all l = 0,1,2, . . ., then there exists a unique additive mapping

A : X → Y such that

µ f (x)−A(x)(t) ≥ T∞k=1

�

2kpnt

2kpnt + 22k−2(2+ 2p)θ ||x ||p

�

for all x ∈ X and all t > 0.
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Proof. If we define

ρ(x1,x2,...,xn)
(t) =

t

t + θ
∑n

i=1 ||x i||p

and apply Theorem 1, then we get the desired result.

Theorem 2. Let f : X → Y be an odd mapping for which there is a ρ : X n→ D+ satisfying (2).

If

T∞k=1ρ(2k+l−2 x ,2k+l−2 x ,−2k+l−1 x ,0,...,0)

�

2l+1nt
�

= 1 (7)

and

lim
m→∞

ρ(2m x ,2m y,−2m(x+y),0,...,0)

�

2m+1nt
�

= 1 (8)

for all x , y ∈ X , all t > 0 and all l = 0,1,2, . . ., then there exists a unique additive mapping

A : X → Y such that

µ f (x)−A(x)(t) ≥ T∞k=1ρ(2k−2 x ,2k−2 x ,−2k−1 x ,0,...,0) (2nt) (9)

for all x ∈ X and all t > 0.

Proof. Putting x1 = x2 = x , x3 = −2x , x4 = . . . = xn = 0 in (2), we get

µ2n( f (2x)−2 f (x)) (t) ≥ ρ(x ,x ,−2x ,0,...,0)(t)

which is equivalent to

µ f (x)− 1

2
f (2x)(t) ≥ ρ

�

x

2
, x

2
,−x ,0,...,0

�(4nt)

for all x ∈ X and all t > 0. Replacing x and t by 2k−1x and 2t, respectively, in the above

inequality, we get

µ 1

2k−1 f (2k−1 x)− 1

2k f (2k x)

�

t

2k

�

≥ ρ(2k−2 x ,2k−2 x ,−2k−1 x ,0,...,0)(2nt)

for all x ∈ X and all t > 0.

Since µx(s)≤ µx(t) for all s and t with 0< s ≤ t, we obtain

µ f (x)− 1

2m f (2m x)(t) =µ∑m
k=1

�

1

2k−1 f (2k−1 x)− 1

2k f (2k x)
�(t)

≥µ∑m
k=1

�

1

2k−1 f (2k−1 x)− 1

2k
f (2k x)

�

 

m
∑

k=1

t

2k

!

≥T m
k=1
ρ(2k−2 x ,2k−2 x ,−2k−1 x ,0,...,0) (2nt)

Replacing x by 2l x in the above inequality, we get

µ f (2l x)− 1

2m f (2m+l x)(t) ≥ T m
k=1ρ(2k+l−2 x ,2k+l−2 x ,−2k+l−1 x ,0,...,0) (2nt)
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which is equivalent to

µ 1

2l
f (2l x)− 1

2m+l
f (2m+l x)(t)≥ T m

k=1ρ(2k+l−2 x ,2k+l−2 x ,−2k+l−1 x ,0,...,0)

�

2l+1nt
�

(10)

for all x ∈ X , all t > 0 and all l = 0,1,2, . . ..

Since the right hand side of the inequality (10) tends to 1 as m→∞ by (7), the sequence

{ 1

2m f (2mx)} is a Cauchy sequence. Thus we define A(x) := limm→∞
1

2m f (2mx) for all x ∈ X ,

which is an odd mapping.

Now we show that A is an additive mapping. By (2), we get

µ 1

2m ( f (2
m(x+y))− f (2m x)− f (2m y))(t) ≥ ρ(2m x ,2m y,−2m(x+y),0,...,0)(2

m+1nt).

Taking the limit as m→∞ in the above inequality, by (8) the mapping A is additive. By letting

l = 0 an taking the limit as m→∞ in (10), we get (9).

The rest of the proof is the same as in the proof of Theorem 1.

Corollary 2. Let θ ≥ 0 and let p be a constant with 0 < p < 1. For a normed vector space X

and complete RN-space Y , let f : X → Y be an odd mapping satisfying

µD f (x1 ,x2,...,xn)
(t) ≥

t

t + θ
∑n

i=1 ||x i||p

for all (x1, x2, . . . , xn) ∈ X with
∑n

i=1 x i = 0 and all t > 0. If

T∞k=1

�

2l+1nt

2l+1nt + 2(k+l−1)p(21−p + 1)θ ||x ||p

�

= 1

for all x ∈ X , all t > 0 and all l = 0,1,2, . . ., then there exists a unique additive mapping

A : X → Y such that

µ f (x)−A(x)(t) ≥ T∞k=1

�

2nt

2nt + 2(k−1)p(21−p + 1)θ ||x ||p

�

for all x ∈ X and all t > 0.

Proof. If we define

ρ(x1,x2,...,xn)
(t) =

t

t + θ
∑n

i=1 ||x i||p

and apply Theorem 2, then we get the desired result.
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3. Hyers-Ulam Stability of the Functional Equation (1): An Even Case

We prove the Hyers-Ulam stability of the functional equation (1) of an even mapping in

RN-spaces.

For an even mapping f : X → Y with f (0) = 0, we note that if f satisfies

D f (x1, x2, . . . , xn) = 0

for all x1, . . . , xn ∈ X with
∑n

i=1 x i = 0 then the mapping f is quadratic.

Theorem 3. Let f : X → Y be an even mapping with f (0) = 0 for which there is a ρ : X n→ D+

satisfying (2). If

T∞k=1ρ
�

x

2k+l ,− x

2k+l ,0,...,0
�

�

t

23k+2l−3

�

= 1 (11)

and

lim
m→∞

ρ� x

2m ,
y

2m ,− x+y

2m ,0,...,0
�

�

t

22m−1

�

= 1 (12)

for all x , y ∈ X , all t > 0 and all l = 0,1,2, . . ., then there exists a unique quadratic mapping

Q : X → Y such that

µ f (x)−Q(x)(t) ≥ T∞k=1ρ
�

x

2k
,− x

2k
,0,...,0

�

�

t

23k−3

�

(13)

for all x ∈ X and all t > 0.

Proof. Putting x1 = x , x2 = −x , x3 = . . . = xn = 0 in (2), we get

µ2( f (2x)−4 f (x)) (t) ≥ ρ(x ,−x ,0,...,0)(t)

which is equivalent to

µ f (x)−4 f
�

x

2

� (t) ≥ ρ� x

2
,− x

2
,0,...,0

� (2t)

for all x ∈ X and all t > 0. Replacing x and t by x

2k−1 and t

23k−2 , respectively in the above

inequality, we get

µ
4k−1 f

�

x

2k−1

�

−4k f
�

x

2k

�

�

t

2k

�

≥ ρ� x

2k ,− x

2k 0,...,0
�

�

t

23k−3

�

for all x ∈ X and all t > 0.

Since µx(s)≤ µx(t) for all s and t with 0< s ≤ t, we obtain

µ f (x)−4m f
�

x

2m

�(t) =µ∑m
k=1

�

4k−1 f
�

x

2k−1

�

−4k f
�

x

2k

��(t)

≥µ∑m
k=1

�

4k−1 f
�

x

2k−1

�

−4k f
�

x

2k

��

 

m
∑

k=1

t

2k

!

≥T m
k=1ρ

�

x

2k ,− x

2k ,0,...,0
�

�

t

23k−3

�
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Replacing x by x

2l in the above inequality, we get

µ
f
�

x

2l

�

−4m f
�

x

2m+l

�(t) ≥ T m
k=1ρ

�

x

2k+l ,− x

2k+l ,0,...,0
�

�

t

23k−3

�

which is equivalent to

µ
4l f
�

x

2l

�

−4m+l f
�

x

2m+l

�(t) ≥ T m
k=1
ρ� x

2k+l
,− x

2k+l
,0,...,0

�

�

t

23k+2l−3

�

(14)

for all x ∈ X , all t > 0 and all l = 0,1,2, . . ..

Since the right hand side of the inequality (14) tends to 1 as m→∞ by (11), the sequence

{4m f
�

x

2m

�

} is a Cauchy sequence. Thus we define Q(x) := limm→∞ 4m f
�

x

2m

�

for all x ∈ X ,

which is an even mapping.

Now we show that Q is an quadratic mapping. By (2), we get

µ
4m
�

f
�

x−y

2m

�

+ f
�

2x+y

2m

�

+ f
�

x+2y

2m

�

−3 f
�

x+y

2m

�

−3 f
�

x

2m

�

−3 f
�

y

2m

�

� (t)

≥ρ� x

2m ,
y

2m ,− x+y

2m ,0,...,0
�

�

t

22m−1

�

.

Taking the limit as m → ∞ in the above inequality, by (12), the mapping Q is quadratic.

Moreover, letting l = 0 and taking the limit as m→∞ in (14), we get (13).

The rest of the proof is the same as in the proof of Theorem 1.

Corollary 3. Let θ ≥ 0 and let p be a constant with p > 2. For a normed vector space X and

complete RN-space Y , let f : X → Y be an even mapping satisfying

µD f (x1 ,x2,...,xn)
(t) ≥

t

t + θ
∑n

i=1 ||x i||p

for all (x1, x2, . . . , xn) ∈ X with
∑n

i=1 x i = 0 and all t > 0. If

T∞k=1

�

2(k+l)p t

2(k+l)p t + 23k+2l−2θ ||x ||p

�

= 1

for all x ∈ X , all t > 0 and all l = 0,1,2, . . ., then there exists a unique quadratic mapping

Q : X → Y such that

µ f (x)−Q(x)(t) ≥ T∞k=1

�

2kp t

2kp t + 23k−2θ ||x ||p

�

for all x ∈ X and all t > 0.

Proof. If we define

ρ(x1,x2,...,xn)
(t) =

t

t + θ
∑n

i=1 ||x i||p

and apply Theorem 3, then we get the desired result.
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Theorem 4. Let f : X → Y be an even mapping with f (0) = 0 for which there is a ρ : X n→ D+

satisfying (2). If

T∞k=1ρ(2k+l−1 x ,−2k+l−1 x ,0,...,0)

�

2k+2l−1t
�

= 1 (15)

and

lim
m→∞

ρ(2m x ,2m y,−2m(x+y),0,...,0)

�

2m+1t
�

= 1 (16)

for all x , y ∈ X , all t > 0 and all l = 0,1,2, . . ., then there exists a unique quadratic mapping

Q : X → Y such that

µ f (x)−Q(x)(t) ≥ T∞k=1ρ(2k x ,−2k x ,0,...,0)

�

2k−1t
�

(17)

for all x ∈ X and all t > 0.

Proof. Letting x1 = x , x2 =−x , x3 = . . . = xn = 0 in (2), we get

µ2( f (2x)−4 f (x)) (t) ≥ ρ(x ,−x ,0,...,0)(t)

which is equivalent to

µ f (x)− 1

4
f (2x)

�

t

4

�

≥ ρ(x ,−x ,0,...,0)(2t)

for all x ∈ X and all t > 0. Replacing x and t by 2k−1 x and 2k−2t, respectively in the above

inequality, we get

µ 1

4k−1 f (2k−1 x)− 1

4k f (2k x)

�

t

2k

�

≥ ρ(2k−1 x ,−2k−1 x ,0,...,0)(2
k−1t)

for all x ∈ X and all t > 0.

Since µx(s)≤ µx(t) for all s and t with 0< s ≤ t, we obtain

µ f (x)− 1

4m f (2m x)(t) =µ∑m
k=1

�

1

4k−1 f (2k−1 x)− 1

4k
f (2k x)

�(t)

≥µ∑m
k=1

�

1

4k−1 f (2k−1 x)− 1

4k f (2k x)
�

 

m
∑

k=1

t

2k

!

≥T m
k=1
ρ(2k−1 x ,−2k−1 x ,0,...,0)

�

2k−1t
�

Replacing x by 2l x in the above inequality, we get

µ f (2l x)− 1

4m f (2m+l x)(t) ≥ T m
k=1ρ(2k+l−1 x ,−2k+l−1 x ,0,...,0)

�

2k−1t
�

which is equivalent to

µ 1

4l
f (2l x)− 1

4m+l
f (2m+l x) (t) ≥ T m

k=1ρ(2k+l−1 x ,−2k+l−1 x ,0,...,0)

�

2k+2l−1t
�

(18)

for all x ∈ X , all t > 0 and all l = 0,1,2, . . ..
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Since the right hand side of the inequality (18) tends to 1 as m→∞ by (15), the sequence

{ 1

4m f (2mx)} is a Cauchy sequence. Thus we define Q(x) := limm→∞
1

4m f (2mx) for all x ∈ X ,

which is an even mapping.

Now we show that Q is a quadratic mapping. By (2), we get

µ 1

4m ( f (2
m(x−y))+ f (2m(2x+y))+ f (2m(x+2y))−3 f (2m(x+y))−3 f (2m x)−3 f (2m y))(t)

≥ρ(2m x ,2m y,−2m(x+y),0,...,0)(2
m+1t).

Taking the limit as m → ∞ in the above inequality, by (16), the mapping Q is quadratic.

Moreover, letting l = 0 and taking the limit as m→∞ in (18), we get (17).

The rest of the proof is the same as in the proof of Theorem 3.

Corollary 4. Let θ ≥ 0 and let p be a constant with 0 < p < 2. For a normed vector space X

and complete RN-space Y , let f : X → Y be an even mapping satisfying

µD f (x1 ,x2,...,xn)
(t) ≥

t

t + θ
∑n

i=1 ||x i||p

for all (x1, x2, . . . , xn) ∈ X with
∑n

i=1 x i = 0 and all t > 0. If

T∞k=1

�

2k+2l−2t

2k+2l−2t + 2(k+l)pθ ||x ||p

�

= 1

for all x ∈ X , all t > 0 and all l = 0,1,2, . . ., then there exists a unique quadratic mapping

Q : X → Y such that

µ f (x)−Q(x)(t)≥ lim
m→∞

T m
k=1

�

2k−2t

2k−2t + 2kpθ ||x ||p

�

for all x ∈ X and all t > 0.

Proof. If we define

ρ(x1,x2,...,xn)
(t) =

t

t + θ
∑n

i=1 ||x i||p

and apply Theorem 4, then we get the desired result.

4. Hyers-Ulam Stability of the Functional Equation (1)

We note that if a mapping f : X → Y satisfies the functional equation (1), then the

mapping f is realized as the sum of an additive mapping and a quadratic mapping [see 2,

Lemma 2.1].

Here, we let g(x) := 1

2
( f (x)− f (−x)) and h(x) := 1

2
( f (x) + f (−x)) for all x ∈ X . Then

g(x) is an odd mapping and h(x) is an even mapping satisfying f (x) = g(x)+h(x). Moreover,

we get the following:

Dg(x1, x2, . . . , xn) =
1

2
{D f (x1, x2, . . . , xn)− D f (−x1,−x2, . . . ,−xn)}
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Dh(x1, x2, . . . , xn) =
1

2
{D f (x1, x2, . . . , xn) + D f (−x1,−x2, . . . ,−xn)}

for all x1, x2, . . . , xn ∈ X .

Note that D f (x1, . . . , xn) = 0 implies that Dg(x1, . . . , xn) = 0 and Dh(x1, . . . , xn) = 0.

Theorem 5. Let f : X → Y be a mapping with f (0) = 0 for which there is a ρ : X n→ D+ such

that

µD f (x1,x2,...,xn)+D f (−x1,−x2,...,−xn)
(2t) ≥ ρ(x1,x2,...,xn)

(t) (19)

µD f (x1,x2,...,xn)−D f (−x1,−x2,...,−xn)
(2t) ≥ ρ(x1,x2,...,xn)

(t) (20)

for all (x1, x2, . . . , xn) ∈ X n and all t > 0. If ρ satisfies (3), (11) and (12), then there exist an

additive mapping A : X → Y and a quadratic mapping Q : X → Y such that

µ f (x)−A(x)−Q(x)(2t)

≥T

�

T∞k=1ρ
�

x

2k , x

2k ,− x

2k−1 ,0,...,0
�

�

nt

22k−2

�

, T∞k=1ρ
�

x

2k ,− x

2k ,0,...,0
�

�

t

23k−3

�

�

for all x ∈ X and all t > 0.

Proof. Consider an odd mapping g(x) := 1

2
( f (x)− f (−x)) and an even mapping

h(x) := 1

2
( f (x) + f (−x)) for all x ∈ X with f (x) = g(x) + h(x). By Theorem 1, there exists

a unique additive mapping A : X → Y such that

µg(x)−A(x)(t) ≥ T∞k=1ρ
�

x

2k
, x

2k
,− x

2k−1 ,0,...,0
�

�

nt

22k−3

�

for all x ∈ X and all t > 0. And by Theorem 3, there exists a unique quadratic mapping

Q : X → Y such that

µh(x)−Q(x)(t) ≥ T∞k=1ρ
�

x

2k ,− x

2k ,0,...,0
�

�

t

23k−3

�

for all x ∈ X and all t > 0. Since f (x) = g(x)+ h(x), we obtain

µ f (x)−A(x)−Q(x) (2t) = µg(x)−A(x)+h(x)−Q(x)(2t)

≥ T (µg(x)−A(x)(t),µh(x)−Q(x)(t))

≥ T

�

T∞k=1ρ
�

x

2k , x

2k ,− x

2k−1 ,0,...,0
�

�

nt

22k−2

�

, T∞k=1ρ
�

x

2k ,− x

2k ,0,...,0
�

�

t

23k−3

�

�

for all x ∈ X and all t > 0, as desired.

Similarly, we can obtain the following. We will omit the proof.

Theorem 6. Let f : X → Y be a mapping with f (0) = 0 for which there is a ρ : X n → D+

satisfying (19) and (20). If ρ satisfies (7), (15) and (16), then there exist an additive mapping

A : X → Y and a quadratic mapping Q : X → Y such that

µ f (x)−A(x)−Q(x)(2t)

≥T
�

T∞k=1ρ(2k−2 x ,2k−2 x ,−2k−1 x ,0,...,0)(2nt), T∞k=1ρ(2k x ,−2k x ,0,...,0)

�

2k−1t
�

�

for all x ∈ X and all t > 0.
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