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1. Introduction

Caldas and Jafari [1] introduced the notions of A; — Ry and A5 — R, topological spaces. In
this paper, we define A,-open sets, that is, if (X, 7) is a topological space and A € X. Then
A,-kernel of A is defined by

A, —ker(A)=n(G/GeA0X,t)andACG).

Then we introduce some A,-separation axioms, we call these axioms as A, — Ry, A, —R; and
study the properties of these axioms. We also define A,-difference sets and utilize them to
define the A, — Dy, k =0,1,2 axioms.

Throughout the paper (X, 7) (or simply X) will always denote a topological space. Let (X, T)
be a topological space and S € X. Then S is called regularly-open if S = Int(clS). The
complement S°(= X \ S) of a regularly-open set S is called the regularly-closed set. The
family of all regularly-open sets(resp. regularly-closed sets) will be denoted by RO(X, T)
(resp. RC(X, 1)). A subset S of a topological space (X, ) is called A,-set if S = A,(S) where

A (S)=n{G/G€RO(X,7)and S C G}.
*Corresponding author.

Email addresses: spmissier@yahoo.com (S. Missier), jeyanthimanickaraj@gmail.com (M. Jeyanthi),
akilicman@putra.upm.edu.my (A. Kiligman)

http://www.ejpam.com 357 (© 2012 EJPAM All rights reserved.



S. Missier, M. Jeyanthi, A. Kiligman / Eur. J. Pure Appl. Math, 5 (2012), 357-364 358

The collection of all A,-sets is denoted by A,.(X, 7).

Throughout this paper, we let A be a subset of a space (X, 7). Then A is called a A,-closed set
if A=TnNC where T is a A,-set and C is a closed set. The complement of a A,-closed set is
called A,-open. The collection of all A,.-open sets is denoted by A,O(X, 7). The collection of
all A,-closed sets is denoted by A,.C(X, 7). A point x € X is called a A,-cluster point of A if
for every A,-open set U containing x, AN U # 0. The set of all A,.-cluster points of A is called
the A,-closure of A and is denoted by A, — cl(A).

2. A, — R, Spaces

Definition 1. The topological space (X, ) is said to be A, — Ry if for each A.-open set G,
xeG=>A, —cl({x}) € G
Theorem 1. For a topological space (X, T), the following statements are equivalent:
(1) (X,7)is Ar =Ry,
(2) For any A,-closed set F and a point x ¢ F, 3U € A,O(X, 1) such that x ¢ U and F C U,
(3) For any A,-closed set F and a point x ¢ F, A, —cl({x})NF =0.

Proof. (1) = (2) Let F be a A,-closed set and x ¢ F. Then F¢ is A.-open and x € F¢. Since
Xis A, —Rgy, A, —cl({x}) € F° and hence F € X — (A, —cl({x})). Thus X — (A, —cl({x})) is
a A,.-open set containing F and x ¢ X — (A, — cl({x})).

(2) = (3) Let F be a A.-closed set and x ¢ F. Then 3U € A,.O(X, ) such that x ¢ U and
FCU.

Claim: UNA, —cl({x}) = 0. For, if UN A, —cl({x}) # 0, then 3 a point y in X such that
y€Uandy €A, —cl({x}). That implies y is a A,-cluster point of {x}. That implies for
every A,.-open set G containing y, G N {x} # 0. That is, x € G. Here U is a A,-open set
containing y. Hence x € U, which is a contradiction. Therefore U N A, — cl({x}) = 0 and
hence F N A, —cl({x}) =0.

(3) = (1) Let G be a A,-open set and x € G. Then G° is A,-closed and x ¢ G°. By (3),
A, —cl({x}) NG =0 and hence A, — cl({x}) € G. Therefore (X, 1) is A, —R,.

Theorem 2. A space (X, 7) is A, — Ry iff for each pair x,y of distinct points in X,
A —cl({xPHNA, —cl({yD =0or {x,y} S A, —cl({x}D) N A, —cl({y}).

Proof. Let (X,7) bea A, —R, space. Let x,y € X such that x # y. Then we have

Case(i): Suppose A, —cl({x})NA, —cl({y}) #0. If {x, y} is not a subset of
A —cl({xP)nA, —cl({y}) and x ¢ A, — cl({y}), then x € X — (A, — cl({y})) and
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X — (A, —cl({y})) is A.-open. Since (X,7)is A, — Ry, A, —cl({x}) S X — (A, — cl({y})).
Therefore A, — cl({x}) N A, —cl({y}) = 0. This is a contradiction. Hence
{x, y} S A —cl({xP) NA, —cl({y}).

Case(ii): Suppose {x, y} is not a subset of A, —cl({x})NA, —cl({y}) and let x ¢ A, —cl({y}).
Then x € X — (A, —cl({y})) and X — (A, — cl({y})) is A,-open. Since (X,7T) is A, — Ry,
A, —cl({x}) X — (A, —cl({y})) and hence A, —cl({x}) N A, —cl({y}) =0.

Conversely, let U be a A,-open set and x € U. Suppose A, — cl({x}) is not a subset of U.
Then 3 a point y € A, — cl({x}) such that y ¢ U. That implies y € X — U and X — U is
A,-closed. Since A, —cl({y}) is the smallest A,-closed set containing y, A, —cl({y}) S X -U
and hence A, —cl({y}) NU = 0. Since x € U, x ¢ A, — cl({y}) and hence {x, y} is not a
subset of A, —cl({x}) N A, —cl({y}). Also y € A, —cl({x}) N A, —cl({y}). That implies
A, —cl({xP) N A, —cl({y}) # 0. So by this contradiction, A, — cl({x}) € U and hence (X, 7)
is A, —R,.

Theorem 3. For any points x and y in a topological space (X, 7), the following are equivalent:
(1) A, —ker({x}) # A, —ker({y}),

(2) Ay —cl({x}) # A —cl({y D).

Proof: (1) = (2) Suppose A, — ker({x}) # A, —ker({y}). Then 3 a point z in X such that
ze€ N, —ker({x})and z ¢ A, —ker({y}) = A, —cl({z}) N {x} #0 and
A, —cl(z)N{y} =0= x € A, —cl({z}) and y ¢ A, —cl({z}) = A, —cl({x}) € A, —cl({z})
and y ¢ A, —cl({z}) = y € A, —cl({x}) = A, — cl({x}) # A, — cl({y D).

(2) = (1) Suppose A, —cl({x}) # A.—cl({y}). Then J a point z in X such that z € A, —cl({x})
and z ¢ A, —cl({y}). That implies 3 a A.-open set V containing z such that xv eV and y ¢ V.
That is, V is a A,-open set containing x but not y. If y € A, —ker({x}), then x € A, —cl({y}).
That implies for every A.-open set G containing x, G N {y} # 0. Thatis, y € G. By this
contradiction, y ¢ A, — ker({x}) and hence A, — ker({x}) # A, — ker({y}).

Theorem 4. For a topological space (X, 7), the following are equivalent:
(D (X,7)is A, — Ry,

(2) For any non-empty set A and G € A,O(X, 7) such that ANG # 0, IF € A.C(X, ) such
that ANF #Q and F C G,

(3) Forany Ge A, O(X,7), G=U{F/F € A.C(X,T)and F C G},
(4) Forany F e A,C(X,7), F=n{G/G € A, O(X,7)and F C G},

(5) Forany x € X, A, —cl({x}) S A, — ker({x}),
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(6) Forany x,yeX, y e A, —cl({x}) & x e A, —cl({y}).

Proof. (1) = (2) Let A be any nonempty subset of X and G be a A,-open set such that
ANG #0. Let x e ANG. Since (X,T)is A, — Ry, x € G = A, —cl({x}) € G. Since x € A,
A—cl({x})NA # 0. Thus A,.—cl({x}) is a A,-closed set contained in G and ANA,—cl({x}) # 0.

(2)=>(3) Let G € A, O(X, 1) and x € G. Then by (2), IF € A.C(X,7) such that {x} N F #0
and F C G. That implies x € F where F € A,C(X,7) and F € G and hence

x € U{F/F € A.C(X,7) and F C G}. Therefore G C U{F/F € A,C(X,7) and F C G}. Also
U{F/F € A,C(X,7t)and F € G} € G. Hence G =U{F/F € A,C(X,7) and F C G}.

(83)=(4)Let F € A.C(X, 7). Then F° € A,O(X, 7). By (3), F* =U{G°/G° € A,C(X,7) and
G® C F¢}. That implies F = N{G/G € A,O(X, 1) and F C G}.

(4)=> (5)Let y ¢ A, — ker({x}). Then x ¢ A, —cl({y}). That implies 3 a A,-open set V
containing x such that VN {y} =0 and hence A, — cl({y}) NV =0. By (4),

A —cl({yH)=n{G/G e A.OX,t)and A, —cl({y}) € G}. Sincex eV, x ¢ A, —cl({y}) and
hence 3G € A,O(X, 7) such that A, — cl({y}) € G and x ¢ G. Therefore A, —cl({x})NG =10
and hence y ¢ A, —cl({x}). Therefore A, —cl({x}) € A, — ker({x}).

(5)=>(©6)If y € A, —cl({x}), then y € A, — ker({x}) by (5). That implies x € A, — cl({y}).
Similarly, if x € A, — cl({y}), then by (5), x € A, — ker({y}) and hence y € A, — cl({x}).
Thus x € A, —cl({y}) & y € A, —cl({x}).

(6)=(1)Let GeA,OX,7)and x €G. If y ¢ G, then y € X — G and hence

A, —cl({y}) € X — G since A, —cl({y}) is the smallest A,-closed set containing y. Therefore
A, —cl({y}) NG = 0 and hence x ¢ A, —cl({y}). By (6), y ¢ A, —cl({x}). Therefore
A, —cl({x}) € G and hence (X, 7T)is A, —R,.

Corollary 1. For a topological space (X, ), the following properties are equivalent:
() X,7)is A — Ry,
(2) Forany x € X, A, —cl({x}) = A, — ker({x}).

Theorem 5. For a topological space (X, T), the following properties are equivalent:
(1) (X,7)is A, — Ry
(2) IfF is A,-closed, then F = A, — ker(F)
(3) IfF is A.-closed and x € F, then A, —ker({x}) C F

(4) If x €X, then A, —ker({x}) € A, —cl({x}).



S. Missier, M. Jeyanthi, A. Kiligman / Eur. J. Pure Appl. Math, 5 (2012), 357-364 361

Proof. (1) = (2) Let F be a A,-closed set and x ¢ F. Then X —F is A,-open and x € X —F.
By (1), A, —cl({x}) € X — F and hence A, —cl({x}) N F = 0. That implies x ¢ A, — ker(F).
Therefore A, —ker(F) CF. Also F C A, — ker(F). Hence F = A, — ker(F).

(2)=(3) Let F be a A,-closed set and x € F. ThenA, — ker({x}) € A, —ker(F)=F.

(3) = (4) Since x € A, —cl({x}) and A, — cl({x}) is A,-closed, by (3),
A, —ker({x}) € A, — cl({x}).

(4)=(1)Sincex e A, —cl({y}) & y e A, —cl({x}), (X,7T)is A, —R,.
The following Examples 1 and 2 show that A, — T, and A, — R, are independent.

Example 1. Let X = {a,b,c} and T = {X,0,{a},{b,c}}. Then A,O(X,7) = {X,0,{a},{b,c}}.
Here (X,7)is A, — Ry but it is not A, — Ty,

Example 2. Let X = {a,b,c} and T = {X, 0, {a}, {a, b}}. Then A,O(X,7)=1{X,0,{a}, {a, b}}.
Here (X,7T)is A, — Ty but it is not A, —R,,.
3. A, — R, Spaces

Definition 2. A space (X,7)is A, —R; if for each x,y € X with A, — cl({x}) # A, — cl({y}),
dA.-open sets U and V such that A, —cl({x}) C U, A, —cl({y}) SV and UnV =0.

Proposition 1. If (X, 1) is A, — Ry, then (X, 7) is A, —R.

Proof. Let (X,7) be A, —R;. Let U be A,-open in X and x € U. Foreach y € X — U,
A, —cl({x}) # A, — cl({y}). Then 3 disjoint A,-open sets U, and V,, such that
A, —cl({x}) S U, and A, —cl({y}) € V,. Take V = U{V, /y € X — U}. Then V is A,-open,
X —UCV and x ¢ V. Therefore A, —cl({x}) €X —V C U and hence (X, 7) is A, —R,.

Theorem 6. If (X,7)is A, — Ty, then (X,7)is A, —R;.

Proof. Let x,y € X such that x # y and A, —cl({x}) # A, —cl({y}). Since (X, 7) is
A, — Ty, dA,-open sets U and V such that x e U,y € V and UNV = 0. That is, {x} € U and
{¥} C V. Since (X, 1) is A, — Ty, it is A, — T;. Therefore for every x € X, {x} = A, — cl({x}).
Thus A, —cl({x}) C U, A, —cl({y}) SV and UNV = 0. Hence (X, 7) is A, —R;.

Remark 1. The converse of the above theorem need not be true. For example, let X = {a, b,c,d}
and T = {X,0,{a}, {b,c}, {a, b,c}}. Then

AOX, 1) =1{X,0,{a},{b,c},{a,b,c}{b,c,d},{a,d}}.
Here (X,7)is A, — R but not A, — Ts.

Note that A, — T, and A, — R, are independent as in the following examples 3 and 4.
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Example 3. Let X = {a, b,c} and T = {X, 0, {c}, {a,c}, {b,c}}. Then A,O(X,7)=1{X,0,{c},{a,c},{b,c}}.
Here (X,7T)is A, — Ty but it is not A, —R;.

Example 4. Let X = {a,b,c,d} and T = {X,0,{a}, {b,c},{a,b,c}}. Then
AOX,7) = {X,0,{a},{a,d},{b,c},{a,b,c},{b,c,d}}. Here (X,7)is A, — Ry but it is not
—

Theorem 7. For a space (X, 7), the following statements are equivalent:
(D (X,7)is A, — Ry,

(@) If x,y € X such that A, — cl({x}) # A, — cl({y}), then IA,.-closed sets F, and F, such
that x€F, y¢F,, x¢Fy y€Fyand X =F, UF,.

Proof. (1) = (2) Let x, y € X such that A, —cl({x}) # A, —cl({y}). Then by (1), 3 disjoint
A,-open sets U and V such that A, —cl({x}) CU and A, —cl({y}) € V. Take F; =X —V and
Fy =X —U. Then F; and F, are A,-closed sets such that x € F;, y ¢ F;, x ¢ F,, y € F, and
X =F, UF,.

(2) = (1) Let x,y € X such that A, —cl({x}) # A, — cl({y}). Then by (2) JA,-closed sets
Fy and Fy suchthat x € F, y ¢ F;, x ¢ F,, y€ F, and X = F; UF,. Take U = X — F, and
V=X —F,. Then U and V are A,-opensets, x € U, y € V and U NV = 0. Therefore (X, 7) is
A, — T, and hence (X, 1) is A, —R;.

4. A, — D, Spaces

Definition 3. Let (X, T) be a topological space and A be a subset of X. Then A is called A,-
difference set (shortly A.-D set) if 3U,V € A,.O(X,7) such that U # X and A= U — V. The
collection of all A,.-difference sets of (X, T) is denoted by A,.D(X, 7).

Remark 2. Every A,-open set A different from X is a A.-D set if U =A and V = 0. But the con-
verse need not be true. For example, let X = {a, b,c,d} and T = {X,0,{b,d},{b,c,d},{a, b,d}}.
Then A,.O(X,7)=1{X,0,{b,d},{b,c,d},{a, b,d}} and

A.D(X,7)=1{0,{b,d},{b,c,d},{a, b,d},{c}, {a}}. Here {a} is a A.-D set but not A,.-open set.

Definition 4. A space (X, 7) is called
(1) A, —Dyifforx,y €X, x #y, 3 a A,-D set containing one of x and y but not the other

2) A, —D; iffor x,y €X, x #y, 3A.-D sets U and V in X such that x € U, y ¢ U and
yeV,x¢V

3) A, —Dyifforx,y€X, x #y, A\, — D sets U and V in X such that x € U, y € V and
unv=20.

Theorem 8. A space (X, 1) is A, — Dy iff it is A, — T.



S. Missier, M. Jeyanthi, A. Kiligman / Eur. J. Pure Appl. Math, 5 (2012), 357-364 363

Proof. Suppose (X, 1) is A, — Dy. Let x,y € X such that x # y. Then 3 an A,-D set A
containing one of x and y but not the other, say x € A but y ¢ A. Since A is a A,-D set,
A=U—-V where U #X and U,V € A,O(X, 7). Since x € A, x €U and x ¢ V. For y ¢ A, we
have two cases (a) y ¢ U

(b)) yeUand y €V. Incase (a), x €U but y ¢ U. In case (b), y € V but x ¢ V. Hence
(X,7)is A, — Ty. Conversely, suppose (X, 7T) is A, — Ty. Let x,y € X such that x # y. Then
J an A,-open set U containing one of x and y but not the other, say x € U but y ¢ U. Then
U # X and hence U is a A,-D set. Therefore U is a A,-D set containing x but not y. Hence
(X,7)is A, — Dy.

The following examples 5 and 6 show that A, — Ry and A, — D are independent.

Example 5. Let X = {a,b,c} and T = {X,0,{b},{a,c}}. Then A,O(X,7)={X,0,{b},{a,c}}.
Here (X, 7T)is A, — Ry but it is not A, — D,

Example 6. Let X = {a,b} and T = {X,0,{a}}. Then A,O(X,7) = {X,0,{a}}. Here (X,7)is
A, — Dy but it is not A, —R.

Remark 3. Examples 7 and 8 below show that A, — R, and A, — D are independent.

Example 7. Let X = {a, b,c,d} and 7 = {X,0,{a}, {b,c,d}}. Then A,O(X,7)=1{X,0,{a},{b,c,d}}.
Here (X,7T)is A, — R, but it is not A, — D,

Example 8. Let X = {a,b,c} and T = {X,0,{b}, {a, b}}. Then A,O(X,7)={X,0,{b},{a, b}}.
Here (X,7T)is A, — Dy but it is not A, —R;.

Theorem 9. A space (X, 1) is A, — D, iff it is A, — Ds.

Proof. Suppose (X,7) is A, — D;. Then for each pair of distinct points x, y € X, we have
A,-DsetsAand B suchthat x €A, y ¢ Aand y €B, x ¢ B. Let A=U; —V; and B = U, — V.
Then Uy, V4, U, and V, are A,-open sets, U; # X and U, # X. For x ¢ B, we have two cases
(i) x ¢ U, (ii)) x € U, and x € V.

Case(i) x ¢ U, then since y ¢ A, either y ¢ U; or (y €Uy and y € V; ).

If y ¢ U;, from y € B=U, — V,, it follows that y € U, — (V, UU;). From x e A= U; — V; and
X ¢ Uz, X € Ul _(Vl UUz) Also (UZ —(VzuUl))ﬂ(Ul _(Vl U Uz)) = 0. Ify (S Ul andy S Vl’
then x € U; — V;. That implies (U; — V;)NV; = 0.

Case(ii) x € U, and x € V, then we have y e B=U, — V,, x € V, and (U, — V,) NV, = 0.
Hence (X, 1) is A, — D,.

Conversely, suppose (X, 7) is A, — D,. Let x, y € X such that x # y. Then JA, — D sets A and
B such that x € A, y € Band ANB = (). Therefore x €A, y ¢ Aand y € B, x ¢ B. Hence
(X,t)is A, — D;.
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Corollary 2. If (X, 1) is A, — Dy, then it is A, — T,

Remark 4. The converse of the above corollary need not be true. For example, let X = {a, b,c}
and v =1{X,0,{c},{a,c}}. Then A,O(X,7)={X,0,{c},{a,c}} and A, DX, 7) = {0,{a}, {c}, {a,c}}.
Here (X,7)is A, — Ty but not A, — D;.

Remark 5. Examples 9 and 10 below show that A, — Ry and A, — D, are independent.

Example 9. Let X = {a, b,c,d} and 7 = {X,0, {a}, {b,c},{a, b,c}}. Then
AOX,7) = {X,0,{a},{a,d},{b,c},{a,b,c},{b,c,d}}. Here (X,7) is A, — R, but it is not
A, = D,

Example 10. Let X = {a, b,c} and 7 = {X,0, {b}, {c},{b,c}, {a,c}}. Then
AOX,T)=1{X,0,{b},{c},{b,c}, {a,c}}. Here (X,7)is A, — D, but it is not A, —R;.

Similar to the previous cases the examples 11 and 12 show that A, —R; and A, — D; are
independent.

Example 11. Let X = {a, b,c,d} and 7 = {X,0,{a}, {b,c},{a, b,c}}. Then
AOX,7) = {X,0,{a},{a,d},{b,c},{a,b,c},{b,c,d}}. Here (X,7) is A, — Ry but it is not
A, =Dy

Example 12. Let X = {a, b,c} and 7 = {X,0, {a}, {c}, {a,c}, {b,c}}. Then
AOX,7)=1{X,0,{a},{c},{a,c},{b,c}}. Here (X,T)is A, — D; but it is not A, —R,.
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