Bivariate Generalization of the Inverted Hypergeometric Function Type I Distribution

Authors

  • Paula A. Bran-Cardona
  • Edwin Zarrazola
  • Daya Krishna Nagar Departamento de Matemáticas, Universidad de Antioquia Calle 67, No. 53-108, Medellín, COLOMBIA

Keywords:

Appell’s first hypergeometric function, Beta distribution, Gauss hypergeometric function, Humbert’s confluent hypergeometric function, product, transformation. 1

Abstract

The bivariate  inverted hypergeometric function type I distribution
 is defined by the probability density function proportional to x1ν11x2ν21Â(1+x1+Âx2)(ν1+ν2+γ)\linebreak Â\leftidx2F1Â(α,β;γ;(1+x1+x2)1), x1>0, x2>0, where  ν1, ν2, α, β and γ are suitable constants.  In this article, we study several properties of this distribution and derive density functions of X1/X2, X1/(X1+X2),  X1+X2  and  ÂX1X2. We also consider several other  products involving bivariate  inverted hypergeometric  function type I, beta type I, beta type II, beta type III, Kummer-beta and hypergeometric function type I variables.

Downloads

Published

2012-07-31

Issue

Section

Mathematical Statistics

How to Cite

Bivariate Generalization of the Inverted Hypergeometric Function Type I Distribution. (2012). European Journal of Pure and Applied Mathematics, 5(3), 317-332. https://www.ejpam.com/index.php/ejpam/article/view/932