Erratum to “Optimality and Duality for Second-order Multiobjective Variational Problems” [1]

T. R. Gulati and Geeta Mehndiratta

Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee-247 667, India

In the proof of Theorem 3 on page 794 [1], the system

\[g_x(t, \bar{x}, \dot{\bar{x}})\bar{y}(t) - D(g_x(t, \bar{x}, \dot{\bar{x}}))\bar{y}(t) = 0, \ t \in I, \]
\[\bar{y}(t)^T g(t, \bar{x}, \dot{\bar{x}}) = 0, \ t \in I, \]
\[(\bar{\lambda}^1, \bar{\lambda}^2, \ldots, \bar{\lambda}^k, \bar{y}(t)) \geq 0, \ t \in I, \]

has been printed instead of

\[\bar{\lambda}^1(f^1_x(t, \bar{x}, \dot{\bar{x}}) - Df^1_x(t, \bar{x}, \dot{\bar{x}})) + \sum_{i=2}^{k} \bar{\lambda}^i(f^i_x(t, \bar{x}, \dot{\bar{x}}) - Df^i_x(t, \bar{x}, \dot{\bar{x}})) + g_x(t, \bar{x}, \dot{\bar{x}})\bar{y}(t) - D(g_x(t, \bar{x}, \dot{\bar{x}}))\bar{y}(t) = 0, \ t \in I, \]
\[\bar{y}(t)^T g(t, \bar{x}, \dot{\bar{x}}) = 0, \ t \in I, \]
\[(\bar{\lambda}^1, \bar{\lambda}^2, \ldots, \bar{\lambda}^k, \bar{y}(t)) \geq 0, \ t \in I, \]

References