Baer Elements In Lattice Modules

C S Manjarekar 1, U N Kandale 2,∗

1 Department of Mathematics, Shivaji University, Kolhapur, India
2 Department of General Engineering, Sharad Institute, Shivaji University, Kolhapur, India

Abstract. Let L be a compactly generated multiplicative lattice with 1 compact in which every finite product of compact elements is compact and M be a module over L. In this paper we generalize the concepts of Baer elements, ∗-elements and closed elements and obtain the relation between ∗-elements and Baer elements and also closed elements and Baer elements. Some characterization are also obtain for closed elements of M and minimal prime elements of M.

2010 Mathematics Subject Classifications: 13A99

Key Words and Phrases: Prime element, primary element, lattice modules, Baer element, ∗-element, closed element.

1. Introduction

A multiplicative lattice L is a complete lattice provided with commutative, associative and join distributive multiplication in which the largest element 1 acts as a multiplicative identity. An element a ∈ L is called proper if a < 1. A proper element p of L is said to be prime if ab ≤ p implies a ≤ p or b ≤ p. If a ∈ L, b ∈ L, (a : b) is the join of all elements c in L such that cb ≤ a. A proper element p of L is said to be primary if ab ≤ p implies a ≤ p or bn ≤ p for some positive integer n. If a ∈ L then √a = ∨{x ∈ L | xn ≤ a, n ∈ Z+}. An element a ∈ L is called a radical element if a = √a. An element a ∈ L is called compact if a ≤ ∨bα a implies a ≤ bα1 ∨ bα2 ∨ ... ∨ bαn for some finite subset {α1, α2, ..., αn}. Throughout this paper, L denotes a compactly generated multiplicative lattice with 1 compact and every finite product of compact elements is compact. We shall denote by Lc the set compact elements of L. A nonempty subset F of Lc is called a filter of Lc if the following conditions are satisfied,

(i) x, y ∈ F implies xy ∈ F
(ii) x ∈ F, x ≤ y implies y ∈ F.

∗Corresponding author.

Email addresses: csmanjrekar@yahoo.co.in (C Manjarekar), ujwalabiraje@gmail.com (U Kandale)
Let \(F(L) \) denote the set of all filters of \(L \). For a nonempty subset \(\{F_o\} \subseteq F(L) \), define
\[
\bigcup F_o = \{ x \in L \mid x \geq f_1 f_2 \cdots f_n \in F_o, \text{ for some } i = 1, 2, \ldots, n \}.
\] Then it is observed that,
\[
F(L) = (F(L), \cup, \cap, \emptyset)
\] is a complete distributive lattice with \(\cup \) as the supremum and the set theroretic \(\cap \) as the infimum. For \(a \in L \), the smallest filter containing \(a \) is denoted by \([a] \) and it is given by \([a] = \{ x \in L^{\ast} \mid x \geq a^n \text{ for some nonnegative integer } n \} \). For a filter \(F \in F(L) \) we denote \(\emptyset \) by \(\bigvee \{ x \in L \mid x s = 0, \text{ for } s \in F \} \).

Let \(M \) be a complete lattice and \(L \) be a multiplicative lattice. Then \(M \) is called \(L \)-module or module over \(L \) if there is a multiplication between elements of \(L \) and \(M \) written as \(a b \) where \(a \in L \) and \(b \in M \) satisfies the following properties,

\[
\begin{align*}
(i) \quad & (\forall_{a} a A = \forall_{a} a A \quad \forall a, A \in M \\
(ii) \quad & (\forall_{a} a A) = (\forall_{a} a A) \quad \forall a, A \in M \\
(iii) \quad & (a b) A = a (b A) \quad \forall a, b, A \in L, A \in M \\
(iv) \quad & 1 B = B \\
(v) \quad & 0 B = 0 M \quad \forall a, a, b \in L \text{ and } A, A_{a} \in M, \text{ where } 1 \text{ is the supremum of } L \text{ and } 0 \text{ is the infimum of } L. \text{ We denote by } 0_{M} \text{ and } I_{M} \text{ the least element and the greatest element of } M. \text{ Elements of } L \text{ will generally be denoted by } a, b, c, \ldots \text{ and elements of } M \text{ will generally be denoted by } a, b, c, \ldots.
\end{align*}
\]

Let \(M \) be a \(L \)-module. If \(N \in M \) and \(a \in L \) then \((N : a) = \bigvee \{ X \in M \mid a X \leq N \} \). If \(A, B \in M \), then \((A : B) = \bigvee \{ X \in L \mid X B \leq A \} \). An \(L \)-module \(M \) is called a multiplication \(L \)-module if for every element \(N \in M \) there exists an element \(a \in L \) such that \(N = a I_{M} \) see [2]. In this paper a lattice module \(M \) will be a multiplication lattice module, which is compactly generated with the largest element \(I_{M} \) compact. A proper element \(N \) of \(M \) is said to be prime if \(a X \leq N \) implies \(X \leq N \) or \(a I_{M} \leq N \) that is \(a \leq (N : I_{M}) \) for every \(a \in L, X \in M \). If \(N \) is a prime element of \(M \) then \((N : I_{M}) \) is prime element of \(L \) [4]. An element \(N < I_{M} \) in \(M \) is said to be primary if \(a X \leq N \) implies \(X \leq N \) or \(a^n I_{M} \leq N \) that is \(a^n \leq (N : I_{M}) \) for some integer \(n \). An element \(N \) of \(M \) is called a radical element if \((N : I_{M}) = \sqrt{(N : I_{M})} \). If \(a N = 0_{M} \) implies \(a = 0 \) or \(N = 0_{M} \) for any \(a \in L \) and \(N \in M \) then \(M \) is called a torsion free \(L \)-module.

2. Residuation properties

We state some elementary properties of residuation in the following theorem.

Theorem 1. Let \(L \) be a multiplicative lattice and \(M \) be a multiplication lattice module over \(L \). For \(x, y \in L \) and \(Z, A, B \in M \), where \((0_{M} : I_{M}) \) is a radical element. We have the following identities,

\[
\begin{align*}
(i) \quad & x \leq y \text{ implies } (0_{M} : y) \leq (0_{M} : x) \text{ and } 0_{M} : (0_{M} : x) \leq 0_{M} : (0_{M} : y) \\
(ii) \quad & x \leq 0_{M} : (0_{M} : x) \\
(iii) \quad & 0_{M} : [0_{M} : (0_{M} : x)] = (0_{M} : x)
\end{align*}
\]
(iv) \((0_M : x) = (0_m : x^n)\) for every \(n \in \mathbb{Z}_+\)

(v) \(0_M : (0_M : x) \land 0_M : (0_M : y) = 0_M : (0_M : xy) = 0_M : (x \land y)\)

(vi) \((0_M : a) = 0_M \implies (0_M : x \land 0_M : y) = 0_M : (x \land y) = 0_M : xy\)

(vii) \(x \lor y = 1 \implies (0_M : x) \lor (0_M : y) = 0_M : (x \lor y) = 0_M : x y\)

(viii) For \(Z \in \mathbb{Z}, Z \leq 0_M : (0_M : Z)\)

(ix) \(A \leq B \implies (0_M : B) \leq (0_M : A)\)

(x) \(0_M : (0_M : A) = 0_M : A\)

(xi) \(0_M : x I_M = 0_M : x^n I_M\) for some positive integer \(n\).

We define, \(0_{FM} = \lor \{X \in M_\ast \mid sX = 0_M \text{ for some } s \in F\}\), where \(M_\ast\) is the set of compact elements of \(M\). The proofs of the following theorems are simple.

Theorem 2. Let \(F \subseteq L\) be a filter of \(F(L_\ast)\) and let \(X\) be a compact element of \(M\). Then \(X \leq 0_{FM}\) if and only if \(sX = 0_M\) for some \(s \in F\).

Theorem 3. For \(F \in F(L_\ast)\), \(0_{FM} = \lor \{(0_M : x) \mid x \in F\}\).

Theorem 4. For \(F_1, F_2 \in F(L_\ast)\)

(i) \(F_1 \subseteq F_2 \implies 0_{F_1,M} \leq 0_{F_2,M}\).

(ii) \(0_{F_1,M} \land 0_{F_2,M} = 0_{(F_1 \cap F_2)M}\)

3. **Baer Elements**

A study of Baer elements, \(\ast\)-elements and closed elements carried out by D D Anderson, et al. [1]. We generalize these concepts for lattice modules.

Definition 1. An element \(A \in M\) is said to be Baer element if for \(x \in L_\ast\), \(x I_M \leq A\) implies \(0_M : (0_M : x I_M) \leq A\).

Definition 2. An element \(A\) of \(M\) is said to be \(\ast\)-element if \(A = 0_{FM}\) for some filter \(F \in F(L_\ast)\) such that zero does not belong to \(F\).

Definition 3. An element \(A\) of \(M\) is said to be closed element if \(A = 0_M : (0_M : A)\).

The next result establishes the relation between closed element and Baer element.

Theorem 5. Every closed element is a Baer element.

Proof. Let \(A\) be a closed element of \(M\) and \(x\) be a compact element of \(L_\ast\) such that \(x I_M \leq A\). Then \(0_M : (0_M : x I_M) \leq 0_M : (0_M : A) = A\) as \(A\) is a closed. This shows that \(A\) is a Baer element. \(\Box\)
Definition 4. An element P of M is called a minimal prime element over $A \in M$ if $A \leq P$ and there is no other prime element Q of M such that $A \leq Q < P$.

The following result gives the characterization of a minimal prime element over an element.

Theorem 6. Let a be a proper element of L and P be a prime element of M with $a I_M \leq P$. Then the following statements are equivalent,

(i) P is minimal prime element over $a I_M$.

(ii) For each compact element x in L, $x I_M \leq P$, there is compact element y in L such that $y I_M \not\leq P$ and $x^n y I_M \leq a I_M = \ast$ for some positive integer n.

Proof. (i) \Rightarrow (ii)

Let P be a minimal prime over $a I_M$ and suppose $x I_M \leq P$. Let

$$S = \{x^n y \mid y \not\in (P : I_M) \text{ and } n \text{ is a positive integer}\}.$$

It is clear that, S is a multiplicatively closed set. Suppose $x^n y \not\in a I_M$ for any integer n and for any $y I_M \not\leq P$, where y is compact in L. By the separation lemma (see [5]), there is a prime element $(Q : I_M)$ of L such that $(P : I_M) \leq (Q : I_M)$ and $t \not\in (Q : I_M)$ for all $t \in S$. Then we have $(Q : I_M) \leq (P : I_M)$ since otherwise $x^n (Q : I_M) \in S$ and $x^n (Q : I_M) \not\in (Q : I_M)$ a contradiction. Hence $(P : I_M) = (Q : I_M)$. It follows that $P = Q$ (see [3]). But then for $t \in S$, $t \leq x \leq (P : I_M) = (Q : I_M)$ a contradiction.

(ii) \Rightarrow (i)

Suppose for any x in L, $x I_M \leq P$, there is y in L such that $y I_M \not\leq P$ and $x^n y I_M \not\leq a I_M$ for some positive integer n. Also suppose that there is a prime element Q of M with $a I_M \leq Q < P$. Choose, $x I_M \leq P$ and $x I_M \not\in Q$. By hypothesise, there is a compact element y in L such that $y I_M \not\leq P$ and integer n such that $x^n y I_M \not\leq a I_M \leq Q$. As $x I_M \not\in Q$, $x \not\in (Q : I_M)$. Since Q is a prime element of M, $(Q : I_M)$ is also prime element of L (see [4]). Hence $x^n \not\in (Q : I_M)$. Thus, $x^n \not\in (Q : I_M)$ and $y \not\in (Q : I_M)$ where $(Q : I_M)$ is a prime element of L, which is a contradiction.

In the next result, we prove the important property of a minimal prime element.

Theorem 7. Let M be a lattice module. Every minimal prime element of M is a \ast-element where 0_{FM} is prime element.

Proof. Let p be a minimal prime element of M. Define the set $F = \{x \in L \mid x I_M \not\in P\}$. We first show that F is a filter of $F(L)$. Let x and y be compact element of L such that $x, y \in F$. So $x I_M \not\in P$ and $y I_M \not\in P$. As P is prime, $x y I_M \not\in P$. This shows that $x y \in F$. Now let $x \in F$ and $x \leq y$. Hence $x I_M \not\in P$ implies $y I_M \not\in P$ and $y \in F$. If $0 \in F$ then we have $0 I_M \not\in P$ that is $0 M \not\leq P$ a contradiction. Thus $F \in F(L)$ and $0 \not\in F$. Now we show that $P = 0_{FM}$. Let x be a compact element of L such that $x I_M \leq P$. By Theorem 6 it follows that there exist a compact element $y \in L$ such that $y I_M \not\leq P$ and $x^n y I_M = 0_M$ for some positive integer n. We have $y \in F$ and $x^n I_M \leq 0_{FM}$. As 0_{FM} is prime element, so $x I_M \leq 0_{FM}$ implies $P \leq 0_{FM}$. Now let x be a
compact element of L such that \(xI_M \leq 0_{FM} \). Then by Theorem 2, \(rxI_M = 0_M \) for some \(r \in F \).
So we have \(r \neq I_M \leq P \) and \(rI_M \neq P \). As P is prime, \(xI_M \leq P \) and \(0_{FM} \leq P \) which shows that \(P = 0_{FM} \). Thus every minimal prime element of M is \(*\)-element.

The relation between \(*\)-element and Baer element is proved in the next result.

Theorem 8. Each \(*\)-element of M is a Baer element.

Proof. Suppose an element \(A \) of M is \(*\)-element. Hence \(A = 0_{FM} \) for some filter \(F \in F(L_s) \) such that \(0 \notin F \). Let \(x \in L_s \) such that \(xI_M \leq A \). Then we have \(rI_M = 0_M \) that is \(xI_M \leq (0_M : r) \) for some \(r \in F \) by Theorem 2. Therefore by (i) and (iii) of Theorem 1 we get

\[
0_M : (0_M : xI_M) \leq 0_M : [0_M : (0_M : r)] = (0_M : r).
\]

Hence by Theorem 3, \(0_M : (0_M : xI_M) \leq \bigvee_{s \in F} (0_M : s) = 0_{FM} = A \). This shows that \(A \) is a Baer element.

The next result we prove the existence of closed and Baer elements.

Theorem 9. Let M be multiplication lattice module. For any \(x \in L_s(0_M : x) \) is both Baer and closed element.

Proof. For an element \(x \in L_s \), let \(xI_M \leq (0_M : x) \), then

\[
0_M : (0_M : xI_M) \leq 0_M : [0_M : (0_M : x)] = (0_M : x)
\]

by (i) and (iii) of Theorem 1. Thus \((0_M : x) \) is a Baer element. Again from (iii) of Theorem 1, \((0_M : x) = 0_M : (0_M : (0_M : x)) \). This shows that \((0_M : x) \) is a closed element.

In the following theorem we prove the characterization of closed element in terms of Baer element.

Theorem 10. For \(a \in L_s \), a \(I_M \) is closed if and only if \(aI_M = 0_{FM} \) is a Baer element.

Proof. Let \(L_s \) be the set of all compact element of L and a \(I_M \) be a Baer element of M. We show that \(aI_M = 0_M : (0_M : aI_M) \). As a \(I_M \leq aI_M \), we have \(0_M : (0_M : aI_M) \leq aI_M \). But \(aI_M : (0_M : aI_M) \leq 0_M \) implies \(aI_M \leq 0_M : (0_M : aI_M) \). Therefore \(0_M : (0_M : aI_M) = aI_M \). Thus \(aI_M \) is closed. The converse is proved in Theorem 5.

Theorem 11. For a nonzero compact element \(a \) in \(L_s \), \(0_M : a = 0_{(a)} \).

Proof. We note that \(F = [a] = \{ z \in L_s \mid z \geq a^n \text{ for some } n \in Z_+ \} \in F(L_s) \) and \(0_{FM} = \bigvee [X \in M_s \mid sX = 0_M \text{ for some } s \in F] \). Now let \(z \) be compact element of L such that \(z \in F \cap \{0\} \). Then \(z \in F \) and \(z = 0 \). As \(z \in F, z \geq a^n \) for some \(n \in Z_+ \). Hence \(a = \sqrt{z} = 0 \) which shows that \(a = 0 \). This contradiction implies that \(0 \notin F \). Now we show that \(0_M : a = 0_{FM} \). As \(a \) is a compact element in \(L_s, a \in F \). So we have \(0_M : a \leq 0_{FM} = \bigvee \{ (0_M : x) \mid x \in F \} \). Let \(Z \) be a compact element in \(M \) and \(Z \leq 0_{FM} \). Then by Theorem 2 \(sZ = 0_M \) for some \(s \in F \). So \(s \geq a^n = \) for some \(n \in Z_+ \). We note that \(0_M : a^n = 0_M : a \). Consequently, we have \(a^n Z \leq sZ = 0_M \). This implies that \(Z \leq (0_M : a^n) = (0_M : a) \). Consequently, \(0_F \leq (0_M : a) \) and \((0_M : a) = 0_F \).
Theorem 12. Suppose L has no divisors of zero then the element 0_M is always a Baer, closed and *-element whereas 1_M is Baer and closed.

Proof. Let x be a nonzero element of L. From Theorem 9, for any x ∈ L, 0_M : x is both Baer and closed and by Theorem 11 for a nonzero compact element x of L, 0_M : x = 0_{(x)}. To show that 0_M a is Baer element, take x ∈ L, such that xI_M ≤ 0_M. We have

0_M : (0_M : xI_M) ≤ O_M : (0_M : 0_M) = 0_M.

Hence 0_M is a Baer element. As 0_M = 0_M : (0_M : 0_M), 0_M is closed. Every Baer element is a *-element. To show that 1_M is a Baer element, take any x ∈ L, such that xI_M ≤ 1_M. We have 0_M : (0_M : xI_M) = 0_M : [v{a ∈ L | axI_M = 0_M}] = 0_M : 0 = 1_M. So 1_M is a Baer element. Now 0_M : (0_M : 1_M) = 0_M : [v{a ∈ L | aI_M = 0_M}] = 1_M and 1_M is closed.

Remark 1. For defining the *-element, the condition 0 ∉ F is necessary.

Suppose if possible x is a *-element. Hence X = 0_F M, for some filter F such that 0 ∉ F. Then we have X = v{(0_M : r) | r ∈ F}. Now 0_M : 0 = v{A ∈ M | 0 = 0_M} = 1_M. Thus only 1_M will be a *-element. Hence, for defining a *-element we take F such that 0 ∉ F.

Theorem 13. If {A_α}_α is a family of Baer elements then \(A_\cap \alpha \) is a Baer element.

Proof. Let x ∈ L, such that xI_M ≤ A_α. Then for each α, xI_M ≤ A_α. As each A_α is a Baer element, 0_M : (0_M : xI_M) ≤ A_α. Hence 0_M : (0_M : xI_M) ≤ A_\cap \alpha. Thus A_\cap \alpha is a Baer element.

The next result we prove the relation between minimal prime element and Baer element.

Theorem 14. If A is a meet of minimal prime elements then A is a Baer element.

Proof. From Theorem 7, every minimal prime element of M is a *-element and by Theorem 8, each *-element of M is a Baer element. From these two results, every minimal prime element is a Baer element. So meet of all minimal prime elements is a Baer element, by Theorem 13.

Theorem 15. If {A_α}_α is a family of closed elements then A_\cap \α is a closed element.

Proof. We have A_\cap \alpha ≤ A_\alpha for each α. As each A_\alpha is a closed element we have 0_M : [0_M : (A_\cap \alpha)] ≤ 0_M : (0_M : A_\alpha) = A_\alpha. This gives 0_M : [0_M : (A_\cap \alpha)] ≤ A_\alpha. Now let Z be an element of M such that Z ≤ A_\alpha. Then we have Z ≤ 0_M : (0_M : Z) ≤ 0_M : (0_M : A_\alpha), by (ix) of Theorem 1. This gives A_\alpha ≤ 0_M : [0_M : (A_\cap \alpha)]. Thus we get 0_M : [0_M : (A_\cap \alpha)] = A_\alpha.

Here is an important property of largest element of M which is compact.

Theorem 16. 1_M is never a *-element where 1_M is compact and M is torsion free L-module.
Proof. Suppose that 1_M is a $*$-element. Then there exist some filter $F \in F(L_n)$ such that $1_M = 0_{FM}$, where $0 \notin F$. Then as 1_M is compact and $1_M = 0_{FM} = \bigvee \{0_M : x \in F\}$, $1_M = (0_M : x_1) \lor (0_M : x_2) \lor \ldots \lor (0_M : x_n)$ for some $x_1, x_2, \ldots, x_n \in F$. Consequently, as 1_M is closed,

$$1_M = 0_M : (0_M : 1_M) = 0_M : [0_M : ((0_M : x_1) \lor (0_M : x_2) \lor \ldots \lor (0_M : x_n))] = 0_M : [0_M : (0_M : x_1) \land 0_M : (0_M : x_2) \land \ldots \land 0_M : (0_M : x_n)].$$

Therefore $1_M = 0_M : [0_M : (0_M : (x_1 x_2 \ldots x_n))] = 0_M : (x_1 x_2 \ldots x_n)$, by (iii) and (v) of Theorem 1. This implies that $x_1 x_2 \ldots x_n = 0$. Since x_1, x_2, \ldots, x_n are in F we have $0 = x_1 x_2 \ldots x_n \in F$. Which is a contradiction as $0 \notin F$. \hfill \square

The next result we prove the characterization of a Baer element.

Theorem 17. The following statements are equivalent,

(i) An element $A \in M$ is a Baer element.

(ii) For any element $x, y \in L$ such that x is compact $0_M : xI_M = 0_M : yI_M$ and $xI_M \leq A$ implies $yI_M \leq A$.

(iii) For any element $x, y \in L, 0_M : x = 0_M : y$ and $xI_M \leq A$ implies $yI_M \leq A$.

Proof. (i) \Rightarrow (ii)
Assume that A is a Baer element of M. Let $x, y \in L$ be such that x is compact, $xI_M \leq A$, and $0_M : xI_M = 0_M : yI_M$. Then by Theorem 1, $yI_M \leq 0_M : (0_M : yI_M) = 0_M : (0_M : xI_M) \leq A$, since A is a Baer element.

(ii) \Rightarrow (iii)
Obvious.

(iii) \Rightarrow (i)
Assume that for any element $x, y \in L, 0_M : xI_M = 0_M : yI_M$ and $xI_M \leq A$ implies $yI_M \leq A$. We show that $A \in M$ is a Baer element. Let $x \in L$ be such that $xI_M \leq A$. We have $0_M : xI_M = 0_M : [0_M : (0_M : xI_M)]$. Hence by (iii), we have $0_M : (0_M : xI_M) \leq A$. Hence, A is a Baer element. \hfill \square

In the following theorem we prove the relation between Baer element of a lattice module and radical of a multiplicative lattice.

Theorem 18. If A is a Baer element of M then $A : I_M$ is a radical element.

Proof. Let A be Baer element of a lattice module M. We show that $(A : I_M) = \sqrt{(A : I_M)}$. Assume that x is a compact element such that $x^n I_M \leq A$ for some positive integer n. We have $0_M : xI_M = 0_M : x^n I_M$, by (xii) of Theorem 1 and hence by above theorem $xI_M \leq A$ that is $x \leq (A : I_M)$. Hence $\sqrt{(A : I_M)} \leq (A : I_M)$ and we have $\sqrt{(A : I_M)} = (A : I_M)$ i.e. $(A : I_M)$ is a radical element. \hfill \square

Theorem 19. If A is a Baer element then every minimal prime element over A is a Baer element.
Proof. Let A be a Baer element and P be a minimal prime in M over A. Assume that 0_M : x = 0_M : z for some x, z ∈ L such that x is compact and xI_M ⊆ P. There exists a compact element y ∈ L such that yI_M ∉ P and x^n yI_M ⊆ A ⊆ P for some positive integer n, by Theorem 14. Note that 0_M : yx = (0_M : x) : y = (0_M : x^n) : y = 0_M : x^n y = 0_M : yx^n = 0_M : yz. As A is a Baer element. By Theorem 17, xyI_M ⊆ A implies yzI_M ⊆ A ⊆ P. Hence zI_M ⊆ P as P is prime. So again by Theorem 17, P is a Baer element.

The characterization of minimal prime element of M is proved in the next theorem.

Theorem 20. Let L be a lattice module and P be a prime element of M. Then P is a minimal prime element if and only if for x ∈ L, P contains precisely one of xI_M and 0_M : x.

Proof. If part: Assume that for x ∈ L, P contains precisely one of xI_M and 0_M : x. First assume that P contains xI_M. But 0_M : x ∉ P. Therefore there exists a compact element y in L such that yI_M ⊆ 0_M : x but yI_M ∉ P. Thus xyI_M ⊆ P. This shows that for each compact element x in L, xI_M ⊆ P, there exist a compact element y in L such that yI_M ∉ P and xyI_M ⊆ 0_M. By Theorem 6, it follows that P is a minimal prime element of M. Next assume that 0_M : x ∉ P but xI_M ⊆ P. Let z be a compact element of L such that zI_M ⊆ (0_M : x) ⊆ P. But xI_M ∉ P and xzI_M ⊆ 0_M. Consequently, by Theorem 6 P is a minimal prime element. Thus the condition is sufficient.

Only if part: Assume that P is a minimal prime element of M. Let x be a compact element of L. Suppose if possible xI_M ⊆ P. Then by Theorem 6, there exist a compact element y in L such that yI_M ∉ P and x^n yI_M = 0_M for some positive integer n. Consequently, yI_M ⊆ 0_M : x^n = 0_M : x. This implies that 0_M : x ∉ P. Now suppose if possible xI_M ∉ P and 0_M : x ∉ P. Then there exist a compact element y in L such that yI_M ⊆ 0_M : x but yI_M ∉ P. Hence we have xyI_M ⊆ 0_M and so xyI_M ⊆ P. But xI_M ∉ P and yI_M ∉ P which contradicts the fact that P is prime element of M. This shows that P contains precisely one of xI_M and (0_M : x).

The relation between ∗-element of M and a minimal prime element over it is established in the next theorem.

Theorem 21. If A is a ∗-element of M then every minimal prime over A is a minimal prime.

Proof. Let P be a minimal prime element of M over A. We know by Theorem 8 and Theorem 18, a ∗-element A is a Baer element and (A : I_M) is a radical element. Let x ∈ L, be such that xI_M ⊆ P. But P is a minimal prime over A. Then by Theorem 2 there exists y ∈ L, such that yI_M ∉ P and x^n yI_M ⊆ A i.e. x^n y ⊆ A : I_M. So x^n y^n ⊆ A : I_M i.e. xy ⊆ √((A : I_M)) = (A : I_M). By hypothesis, xy is compact and xyI_M ⊆ A = 0_F, for some filter F of L, such that 0 ∉ F. Hence xyI_M d = 0_M for some d ∈ F. We show that there is no compact element x in F such that xI_M ⊆ P. Suppose there is compact element z in L such that zI_M ⊆ P and z ∈ F. Then by Theorem 3, 0_M : z ≤ 0_F = A ⊆ P. This contradict the fact that P contains precisely one of zI_M and 0_M : z where z ∈ L. Hence there is no compact element x in F such that xI_M ⊆ P. This implies that dI_M ∉ P. As P is prime, dI_M ∉ P and yI_M ∉ P implies ydI_M ∉ P. Thus xydI_M = 0_M ⊆ P and ydI_M ∉ P. Therefore by Theorem 6, P is minimal prime.
Remark 2. By Theorem 7, we infer that every minimal prime element is a \(* \)-element and it is a Baer element. Therefore by Theorem 21, if \(A \) is the meet of all minimal prime elements containing it, \(A \) is a Baer element.

Notation: For a family \(\{A_a\} \) of Baer elements of \(L \) we define,

\[
\forall A_a = \forall (x I_M, x \in L_+ | 0_M : (x_1 \lor x_2 \ldots \lor x_n) I_M \leq 0_M : x I_M),
\]

for some compact elements \(x I_M \leq A_{a_j} \) and some \(j = 1, 2, \ldots, n \).

The important property of a family of Baer elements is established in the next theorem.

Theorem 22. If \(\{A_a\} \) is a family of Baer elements of \(L \), \(\forall A_a \) is the smallest Baer element greater than each \(A_a \).

Proof. We first show that \(\forall A_a \) is a Baer element greater than each \(A_a \). Let \(x \) be a compact element of \(L \) such that \(x I_M \leq \forall A_a \). Then there exist compact elements \(x_1, x_2, \ldots, x_n \) such that \(0_M : (x_1 \lor x_2 \ldots \lor x_n) I_M \leq 0_M : x I_M \) and \(x I_M \leq A_{a_j} \) \(j = 1, 2, \ldots, n \). Next we show that \(0_M : (0_M : x I_M) \leq \forall A_a \). Let \(z \) be a compact element in \(L \) such that \(z I_M \leq 0_M : (0_M : x I_M) \). Then \(0_M : z I_M \leq 0_M : [0_M : (0_M : x I_M)] \). That is \(0_M : x I_M \leq 0_M : z I_M \) (by Theorem 1, \(x \) and \((\forall x) \)). Therefore \(0_M : (x_1 \lor x_2 \ldots \lor x_n) I_M \leq 0_M : z I_M \). This implies that \(z I_M \leq \forall A_a \). Thus \(0_M : (0_M : x I_M) \leq \forall A_a \). This shows that \(\forall A_a \) is a Baer element. Let \(z \) be a compact element in \(L \) such that \(z I_M \leq A_a \) for some \(\alpha \). But \(0_M : z I_M \leq 0_M : z I_M \). Thus \(z I_M \leq \forall A_a \). Hence each \(A_a \leq \forall A_a \). Let \(B \) be a Baer element such that \(A_a \leq B \) for each \(\alpha \) and let \(x \) be a compact element in \(L \) such that \(0_M : (x_1 \lor x_2 \ldots \lor x_n) I_M \leq 0_M : x I_M \) for some compact elements \(x I_M \leq A_{a_j} \), \(j = 1, 2, \ldots, n \) so that \(x I_M \leq \forall A_a \). Note that \(B \) is a Baer element and the compact element \((x_1 \lor x_2 \ldots \lor x_n) I_M \leq B \). Hence \(0_M : (0_M : (x_1 \lor x_2 \ldots \lor x_n) I_M) \leq B \). Again note that \(0_M : (0_M : x I_M) \leq 0_M : [0_M : (x_1 \lor x_2 \ldots \lor x_n)] I_M \) and \(x I_M \leq 0_M : (0_M : x I_M) \). Therefore \(x I_M \leq B \) and hence \(\forall A_a \leq B \). Consequently \(\forall A_a \) is the smallest Baer element greater than each \(A_a \).

\[\square\]

Theorem 23. For any proper element \(A \in M \), \(\forall \{0_M : (0_M : x I_M) | x \in L_+ \text{ and } x I_M \leq A\} \) is the smallest Baer element greater than \(A \).

Proof. First we show that \(0_M : (0_M : x I_M) \) is a Baer element i.e. we show that for any \(x \in L_+ \), \(x I_M \leq 0_M : (0_M : x I_M) \) implies \(0_M : (0_M : x I_M) \leq 0_M : (0_M : x I_M) \) which holds obviously. Hence by Theorem 22, \(B = \forall \{0_M : (0_M : x I_M) | x \in L_+ \text{ and } x I_M \leq A\} \) is the smallest Baer element containing each \(0_M : (0_M : x I_M) \) for \(x I_M \leq A \). Let a compact element \(x \) in \(L \) be such that \(x I_M \leq A \). Then we have \(x I_M \leq 0_M : (0_M : x I_M) \leq B \). Thus \(A \leq B \). Let \(z I_M \) be a Baer element in \(M \) such that \(A \leq z I_M \) and let \(y \) be a compact element in \(L \) such that \(y I_M \leq B \). Then \(0_M : (z_1 \lor z_2 \ldots \lor z_n) I_M \leq 0_M : y I_M \), for some compact elements \(z_I_M \leq 0_M : (0_M : x I_M) \), where \(i = 1, 2, \ldots, n \). Thus \(0_M : x I_M \leq 0_M : z_I_M \) for each \(i \). This gives

\[
0_M : (x_1 \lor x_2 \ldots \lor x_n) I_M \leq 0_M : x_1 I_M \land 0_M : x_2 I_M \land \ldots 0_M : x_n I_M
\]

\[
\leq 0_M : z_1 I_M \land 0_M : z_2 I_M \land \ldots \land 0_M : z_n I_M
\]

\[
= 0_M : (z_1 \lor z_2 \ldots \lor z_n) I_M \leq 0_M : y I_M.
\]
Thus if \(x = x_1 \vee x_2 \vee \ldots \vee x_n \) is compact element such that \(xI_M = (x_1 \vee x_2 \vee \ldots \vee x_n)I_M \leq A \leq zI_M \), we get \(0_M : xI_M \leq 0_M : yI_M \). As \(zI_M \) is a Baer element we have

\[
yI_M \leq 0_M : (0_M : yI_M) \leq 0_M : (0_M : xI_M) \leq zI_M.
\]

Therefore \(B \leq zI_M \). This shows that \(\forall \{0_M : (0_M : xI_M) \mid x \in L_+ \) and \(xI_M \leq A \} \) is the smallest Baer element greater than \(A \)

Notation: For a family \(\{A_a\} \) of closed elements of \(M \) we define,

\[
A \triangledown B = \bigvee \{zI_M, z \in L_+ \mid 0_M : (x \vee y)I_M \leq 0_M : zI_M \}
\]

for some \(xI_M \leq A \) and \(yI_M \leq B \). Then we have the following important result.

The property of closed elements is proved in the next theorem.

Theorem 24. If \(A \) and \(B \) are closed elements of \(M \) \(A \triangledown B \) is the smallest closed element greater than \(A \) as well as \(B \).

Proof. We show that \(A \triangledown B \) is greater closed element than \(A \) as well as \(B \). Let \(C = A \triangledown B \). We always have \(C \leq 0_M : (0_M : C) \) where \(C \in M \). Let \(x \) be compact element in \(L \) such that \(xI_M \leq 0_M : (0_M : C) \). Then \(0_M : C \leq 0_M : xI_M \). This implies that

\[
0_M : (y \vee z)I_M \leq 0_M : C \leq 0_M : xI_M
\]

where \(y, z \in L_+ \), \(yI_M \leq A \) and \(zI_M \leq B \). But \(yI_M \leq A \triangledown B \), \(zI_M \leq A \triangledown B \). Hence

\[
0_M : (r \vee s)I_M \leq 0_M : yI_M \text{ and } 0_M : (u \vee v)I_M \leq 0_M : zI_M
\]

where \(rI_M, uI_M \leq A \) and \(sI_M, vI_M \leq B \). Therefore \(0_M : (r \vee s)I_M \wedge 0_M : (u \vee v)I_M \leq 0_M : yI_M \wedge 0_M : zI_M \). Consequently

\[
0_M : (r \vee s \vee u \vee v)I_M \leq 0_M : (y \vee z)I_M \leq 0_M : xI_M,
\]

where \((r \vee u)I_M \leq A \) and \((s \vee v)I_M \leq B \). This implies that \(xI_M \leq C \). Hence \(0_M : (0_M : C) \leq C \).

This gives \(0_M : (0_M : C) = C \) and \(C \) is closed. As \(0_M : sI_M \leq 0_M : sI_M \) for any element \(s \) in \(L \), it follows that \(A, B \leq A \triangledown B \). Suppose that \(W \) is closed element such that \(A, B \leq W \) and let \(x \in L_+ \) be such that \(0_M : (u \vee v)I_M \leq 0_M : xI_M \) for some \(uI_M \leq A \) and \(vI_M \leq B \). Note that \(W \) is a closed element and \((u \vee v)I_M \leq W \). Hence we have \(0_M : [0_M : (u \vee v)I_M] \leq 0_M : (0_M : W) = W \). Again note that \(0_M : (0_M : xI_M) \leq 0_M : [0_M : (u \vee v)I_M] \leq W \) and \(xI_M \leq 0_M : (0_M : xI_M) \). Therefore \(xI_M \leq W \) and hence \(A \triangledown B \leq W \). Consequently, it proves that \(A \triangledown B \) is the smallest closed element greater than \(A \) as well as \(B \).

Theorem 25. If \(A \) and \(B \) are closed elements of \(M \) then \(A \triangledown B = 0_M : [0_M : (A \lor B)] \).

Proof. By Theorem 24, we have \(A \lor B \leq A \triangledown B \). Hence \(0_M : [0_M : (A \lor B)] \leq A \triangledown B \). As \(A \triangledown B \) is a closed element. Let \(xI_M \leq A \triangledown B, x \in L_+ \). Then \(0_M : (u \lor v)I_M \leq 0_M : xI_M \), for some \(uI_M \leq A \) and \(vI_M \leq B \). Consequently, we have

\[
xI_M \leq 0_M : (0_M : xI_M) \leq 0_M : [0_M : (u \lor v)I_M] \leq 0_M : [0_M : (A \lor B)].
\]

Hence \(A \triangledown B \leq (0_M : [0_M : (A \lor B)]) \). Thus \(A \triangledown B = 0_M : [0_M : (A \lor B)] \).
ACKNOWLEDGEMENTS The authors thank the readers of European Journal of Pure and Applied Mathematics, for making our journal successful. We dedicate this research article to Prof Dr U Tekir & Prof Dr C Jayram.

References

