Forcing Independent Domination Number of a Graph

Cris L. Armada¹, Sergio R. Canoy, Jr.²³,*

¹ Mathematics Department, Cebu Normal University, 6000 Cebu City, Philippines
² Department of Mathematics and Statistics, College of Sciences and Mathematics, Mindanao State University-Iligan Institute of Technology, 9200 Iligan City, Philippines
³ Center for Graph Theory, Algebra, and Analysis, Premier Research Institute in Science and Mathematics, Mindanao State University-Iligan Institute of Technology, 9200 Iligan City, Philippines

Abstract. In this paper, we obtain the forcing independent domination number of some special graphs. Further, we determine the forcing independent domination number of graphs under some binary operations such join, corona and lexicographic product of two graphs.

2010 Mathematics Subject Classifications: 05C69

Key Words and Phrases: Forcing, independent, domination, join, corona, lexicographic product

1. Introduction

Let $G = (V(G), E(G))$ be a graph and $v \in V(G)$. The open neighborhood of v in G is the set $N(v) = \{u \in V(G) : uv \in E(G)\}$ and the closed neighborhood of v is the set $N[v] = N(v) \cup \{v\}$. For $X \subseteq V(G)$, the open neighborhood of X is the set $N(X) = \cup_{v \in X} N_G(v)$ and its closed neighborhood is the set $N[X] = N(X) \cup X$.

A set $I \subseteq V(G)$ is an independent set of G if $I \cap N(I) = \emptyset$. A set $D \subseteq V(G)$ is a dominating set of G if $N[D] = V(G)$. A set $T \subseteq V(G)$ is an independent dominating set of G if T is both independent and dominating set. The independent domination number $\gamma_i(G)$ of G is the minimum cardinality of an independent dominating set. If S is an independent dominating set with $|S| = \gamma_i(G)$, then we call S a γ_i-set of G. A maximum independent set (α-set) is an independent set of largest possible size for a given graph G. This size, denoted by $\alpha(G)$, is called the independence number of G.

*Corresponding author.
DOI: https://doi.org/10.29020/nybg.ejpam.v12i4.3484

Email addresses: cris.armada@msuiit.edu.ph, armadac@cnu.edu.ph (C. Armada), serge_canoy@yahoo.com (S. Canoy)
Let I be a γ_I-set of a graph G. A subset D of I is said to be a forcing subset for I if I is the unique γ_I-set containing D. The forcing independent domination number of I is given by $f \gamma_I(I) = \min\{|D| : D \text{ is a forcing subset for } I\}$. The forcing independent domination number of G is given by

$$f \gamma_I(G) = \min\{f \gamma_I(I) : I \text{ is a } \gamma_I\text{-set of } G\}.$$

Let B be an α-set of a graph G. A subset P of B is said to be a forcing subset for B if B is the unique α-set containing P. The forcing independence number of B is given by $f \alpha(B) = \min\{|P| : P \text{ is a forcing subset for } B\}$. The forcing independence number of G is given by

$$f \alpha(G) = \min\{f \alpha(B) : B \text{ is an } \alpha\text{-set of } G\}.$$

Chartrand et. al [3] initiated the investigation on the relation between forcing and domination concepts in 1997 and used the term "forcing domination number". Independent domination under some binary operations such as corona and composition is studied by Canoy [2]. In 2013, Larson et. al [5] investigated the forcing independence number. In 2018, Canoy et. al [1] investigated the forcing domination number of graphs under some binary operations.

Let G and H be two graphs. The join of G and H, denoted by $G + H$, is the graph with vertex set $V(G + H) = V(G) \cup V(H)$ and edge set $E(G + H) = E(G) \cup E(H) \cup \{uv : u \in V(G), v \in V(H)\}$. The corona $G \circ H$ of G and H is the graph obtained by taking one copy of G and $|V(G)|$ copies of H, and then forming the join $\{\{v\}\} + H^v = v + H^v$, where H^v is a copy of H, for each $v \in V(G)$. The lexicographic product (or composition) $G[H]$ of G and H is the graph with $V(G[H]) = V(G) \times V(H)$, and $(u, u')(v, v') \in E(G[H])$ if and only if either $uv \in E(G)$ or $u = v$ and $u'v' \in E(H)$.

Note that for each $\emptyset \neq C \subseteq V(G) \times V(H)$, the G-projection and H-projection of C are, respectively, the sets $C_G = \{x \in V(G) : (x, a) \in C \text{ for some } a \in V(H)\}$ and $C_H = \{a \in V(H) : (y, a) \in C \text{ for some } y \in V(G)\}$. Observe that any non-empty subset C of $V(G) \times V(H)$ can be written as $C = \cup_{x \in S}\{x\} \times T_x \subseteq V(G[H])$, where $S = C_G \subseteq V(G)$ and $T_x = \{a \in C_H : (x, a) \in C\}$ for each $x \in S$.

2. Known Results

Theorem 2.1. [4] For any graph G, $\left\lceil \frac{n}{\Delta+1} \right\rceil \leq \gamma_i(G) \leq n - \Delta$.

Theorem 2.2. [4] The independent domination number of a cycle C_n with $n \geq 3$, a path P_n with $n \geq 1$ and complete bipartite graph $K_{r,s}$ are given by

1. $\gamma_i(P_n) = \gamma_i(C_n) = \left\lceil \frac{n}{2} \right\rceil$,
2. $\gamma_i(K_{r,s}) = \min\{r, s\}$.

Theorem 2.3. [2] Let G be a connected graph and H be any graph. Then $C \subseteq V(G \circ H)$ is an independent dominating set in $G \circ H$ if and only if $C \cap V(G)$ is an independent set in G and $C \cap V(v + H^v)$ is an independent dominating set in $v + H^v$ for every $v \in V(G)$.
Theorem 2.4. [2] Let G be a connected graph of order n and H any graph with $\gamma_i(H) \neq 1$. If $C \subseteq V(G \circ H)$ is a minimum independent dominating set in $G \circ H$, then $C \cap V(G)$ is a maximum independent set in G.

Theorem 2.5. [2] Let G and H be nontrivial connected graphs. A subset $C = \bigcup_{x \in S}\{x\} \times T_x$ of $V(G[H])$, is an independent dominating set in $G[H]$ if and only if S is an independent dominating set in G and T_x is an independent dominating set in H for every $x \in S$.

Corollary 2.6. [2] Let G and H be nontrivial connected graphs. Then $\gamma_i(G[H]) = \gamma_i(G)\gamma_i(H)$.

Corollary 2.7. [2] Let G be a connected graph and K_n the complete graph of order $n \geq 1$. Then $\gamma_i(G[K_n]) = \gamma_i(G)$.

3. Main Results

The next two results follow directly from the definition of forcing independent domination and Theorem 2.1.

Remark 3.1. Let G be a graph. Then

(i) $f_{\gamma_i}(G) = 0$ if and only if G has a unique γ_i-set.

(ii) $f_{\gamma_i}(G) = 1$ if and only if G has at least two γ_i-sets and there exists a vertex which is contained in exactly one γ_i-set of G.

Remark 3.2. Let G be any graph of order n. Then

$$0 \leq f_{\gamma_i}(G) \leq n - \Delta.$$

Theorem 3.3. Let G be a connected graph. Then $f_{\gamma_i}(G) = \gamma_i(G)$ if and only if for every γ_i-set S of G and for each $x \in S$, there exists $y_x \in V(G) \setminus S$ such that $[S \setminus \{x\}] \cup \{y_x\}$ is a γ_i-set of G.

Proof. Suppose that $f_{\gamma_i}(G) = \gamma_i(G)$. Let S be a γ_i-set of G. Then, by assumption, $\gamma_i(G) = |S| = f_{\gamma_i}(G)$, that is, S is the only forcing subset for itself. Let $x \in S$. Since $S \setminus \{x\}$ is not a forcing subset for S, there exists $y_x \in V(G) \setminus S$ such that $[S \setminus \{x\}] \cup \{y_x\}$ is a γ_i-set of G. Conversely, suppose that every γ_i-set S' of G satisfies the given condition. Let S be a a γ_i-set of G such that $f_{\gamma_i}(G) = f_{\gamma_i}(S)$. Suppose further that S has a forcing subset P with $|P| < |S|$, that is, $S = P \cup K$, where $K = \{x \in S : x \notin P\}$. Pick $x \in K$. By assumption, there exists $y_x \in V(G) \setminus S$ such that $[S \setminus \{x\}] \cup \{y_x\} = T$ is a γ_i-set of G. Hence, $T = P \cup R$, where $R = [K \setminus \{x\}] \cup \{y_x\}$, is a γ_i-set containing P, a contradiction. Hence, S is the only forcing subset for S. Therefore, $f_{\gamma_i}(G) = |S| = \gamma_i(G)$. □

Theorem 3.4. For any complete graph K_n with $n \geq 1$ vertices,

$$f_{\gamma_i}(K_n) = \begin{cases} 0, & n = 1, \\ 1, & n > 1. \end{cases}$$
Theorem 3.5. For any path P_n with $n \geq 1$ vertices,
\[
f_{\gamma_i}(P_n) = \begin{cases}
0, & \text{if } n = 1 \text{ or } n \equiv 0(\text{mod } 3), \\
1, & \text{otherwise.}
\end{cases}
\]

Proof. Suppose that $P_n = [u_1, u_2, \ldots, u_n]$. By Theorem 2.2(i), $\gamma_i(P_n) = \left\lceil \frac{n}{3} \right\rceil$. Note that $P_1 \cong K_1$. Then $f_{\gamma_i}(P_1) = 0$ by Theorem 3.4. Next, let $n \geq 2$ and consider the following cases:

Case 1: $n \equiv 0(\text{mod } 3)$
Let $S = \{u_2, u_5, u_8, \ldots, u_n-1\} = \{u_{3k-1} : k = 1, 2, \ldots, \frac{n}{3}\}$. Clearly, $S \cap N(S) = \emptyset$ and $|S| = \left\lceil \frac{n}{3} \right\rceil$. Since S is the only γ_i-set of P_n, $f_{\gamma_i}(P_n) = 0$ by Remark 3.1(i).

Case 2: $n \equiv 1(\text{mod } 3)$
Let $S_1 = \{u_1\} \cup \{u_{3k} : k = 1, 2, \ldots, \frac{n-1}{3}\}$, $S_2 = \{u_1\} \cup \{u_{3k+1} : k = 1, 2, \ldots, \frac{n-2}{3}\}$ and $S_{k,p} = \{u_1\} \cup \{u_{3k+1} : k = 1, 2, \ldots, \frac{n-1}{3}\} \cup \{u_{3p} : k < p \leq \frac{n-1}{3}\}$. Then for all $i \in \{1, 2\}$ and for all k, p with $k \in \{1, 2, \ldots, \frac{n-1}{3}\}$ and $k < p \leq \frac{n-1}{3}$, $S_i \cap N(S_i) = \emptyset$ and $|S_i| = \left\lceil \frac{n}{3} \right\rceil$, that is, S_i and $S_{k,p}$ are γ_i-sets of P_n and $u_3 \in S_1 \setminus (S_2 \cup S_{k,p})$. Let S be a γ_i-set of P_n such that $u_2 \in S$. Then $u_3 \in S_1 \setminus S$. Since S_1 is the only γ_i-set containing u_3, by Remark 3.1(ii), $f_{\gamma_i}(S_1) = 1 = f_{\gamma_i}(P_n)$.

Case 3: $n \equiv 2(\text{mod } 3)$
Then the set $S_1 = \{u_1, u_4, u_7, \ldots, u_{n-1}\} = \{u_{3k+1} : k = 0, 1, \ldots, \frac{n-2}{3}\}$ is the only γ_i-set of P_n that contains u_1. Since $S_2 = \{u_2, u_4, u_7, \ldots, u_{n-1}\}$ is also a γ_i-set of P_n, it follows from Remark 3.1(ii) that $f_{\gamma_i}(S_1) = 1 = f_{\gamma_i}(P_n)$. \qed

Theorem 3.6. For any cycle C_n with $n \geq 3$ vertices,
\[
f_{\gamma_i}(C_n) = \begin{cases}
1, & \text{if } n = 4 \text{ or } n \equiv 0(\text{mod } 3), \\
2, & \text{otherwise.}
\end{cases}
\]

Proof. Suppose that $C_n = [u_1, u_2, \ldots, u_n, u_1]$. By Theorem 2.2(i), $\gamma_i(C_n) = \left\lceil \frac{n}{3} \right\rceil$. If $n = 4$, then $S_1 = \{u_1, u_3\}$ and $S_2 = \{u_2, u_4\}$ are the only γ_i-sets of C_4. Since S_1 contains an element which is not in S_2, $f_{\gamma_i}(S_1) = f_{\gamma_i}(C_4) = 1$ by Remark 3.1(iii).

Next, let $n \geq 3$, where $n \neq 4$, and consider the following cases:

Case 1: $n \equiv 0(\text{mod } 3)$
Let $I_1 = \{u_{3k} : k = 1, 2, \ldots, \frac{n}{3}\}$, $I_2 = \{u_{3k+1} : k = 0, 1, \ldots, \frac{n-3}{3}\}$, and $I_3 = \{u_{3k+2} : k = 0, 1, \ldots, \frac{n-3}{3}\}$. Then for all $j \in \{1, 2, 3\}$, $I_j \cap N(I_j) = \emptyset$ and $|I_j| = \left\lceil \frac{n}{3} \right\rceil$. Thus, I_1, I_2 and I_3 are the only γ_i-sets of C_n. Clearly, I_1 contains an element which is not in I_2 and I_3, by Remark 3.1(iii), $f_{\gamma_i}(I_1) = f_{\gamma_i}(C_n) = 1$. \qed
Case 2: \(n \equiv 1(\text{mod } 3) \)
Then clearly, \(S = \{u_1, u_3\} \cup \{u_{3k+2} : k = 1, 2, \ldots, \frac{n-4}{3}\} \) is a \(\gamma_i \)-set of \(C_n \). Clearly, \(S \) contains \(u_1 \) and \(u_5 \) where \(d(u_1, u_3) = d(u_3, u_5) = 2 \). Replacing any of the vertices \(u_{3k+2} (k \neq 1) \) to form another \(\gamma_i \)-set is not possible since \(d(u_5, u_8) = d(u_1, u_{n-2}) = d(u_{3k+2}, u_{3k+5}) = 3 \) for all \(k \in \{2, 3, \ldots, \frac{n-7}{3}\} \). Since \(u_1 \) is also contained in the \(\gamma_i \)-set \(S' = \{u_1, u_{n-1}\} \cup \{u_{3k} : k = 1, 2, \ldots, \frac{n-4}{3}\} \), no vertex of \(C_n \) is contained in a unique \(\gamma_i \)-set. Thus, \(f_{\gamma_i}(S) \geq 2 \). Clearly, \(\{u_1, u_5\} \) is uniquely contained in \(S \). Therefore, \(f_{\gamma_i}(S) = 2 = f_{\gamma_i}(C_n) \).

Case 3: \(n \equiv 2(\text{mod } 3) \)
Suppose that \(n = 5 \). The \(\gamma_i \)-sets of \(C_5 \) are \(S_1 = \{u_1, u_3\}, S_2 = \{u_1, u_4\}, S_3 = \{u_2, u_4\}, S_4 = \{u_2, u_5\} \) and \(S_5 = \{u_3, u_5\} \). Clearly, for each \(u_i \in S_j \) where \(i, j \in \{1, 2, 3, 4, 5\} \), there exists \(u_k \in V(C_5) \setminus S_j \) such that \([S_j \setminus \{u_i\}] \cup \{u_k\} \) is a \(\gamma_i \)-set of \(G \). By Theorem 3.3, \(f_{\gamma_i}(C_5) = 2 \). Now, suppose that \(n > 5 \). Then \(S = \{u_1\} \cup \{u_{3k} : k = 1, 2, \ldots, \frac{n-2}{3}\} \) is a \(\gamma_i \)-set of \(C_n \). Clearly, \(S \) contains \(u_1 \) and \(u_3 \) where \(d(u_1, u_3) = 2 \). Since \(u_1 \) is also contained in the \(\gamma_i \)-set \(S' = \{u_1, u_4\} \cup \{u_{3k} : k = 2, 3, \ldots, \frac{n-5}{3}\} \), no vertex of \(C_n \) is contained in a unique \(\gamma_i \)-set. Thus, \(f_{\gamma_i}(S) \geq 2 \). Since \(\{u_1, u_3\} \) is a forcing subset for \(S \), \(f_{\gamma_i}(S) = 2 = f_{\gamma_i}(C_n) \).

Theorem 3.7. Let \(G \) and \(H \) be any graphs. Then \(S_0 \subseteq V(G + H) \) is a \(\gamma_i \)-set of \(G + H \) if and only if one of the following holds:

(i) \(S_0 \) is a \(\gamma_i \)-set of \(G \) and \(\gamma_i(G) < \gamma_i(H) \)

(ii) \(S_0 \) is a \(\gamma_i \)-set of \(H \) and \(\gamma_i(H) < \gamma_i(G) \)

(iii) \(S_0 \) is either a \(\gamma_i \)-set of \(G \) or \(H \), and \(\gamma_i(H) = \gamma_i(G) \).

In particular, \(\gamma_i(G + H) = \min\{\gamma_i(G), \gamma_i(H)\} \).

Proof. Clearly, \(S \subseteq V(G + H) \) is an independent dominating set of \(G + H \) if and only if either \(S \) is an independent dominating set of \(G \) or \(S \) is an independent dominating set of \(H \). In particular, \(\gamma_i(G + H) = \min\{\gamma_i(G), \gamma_i(H)\} \). Hence, \(S_0 \) is a \(\gamma_i \)-set of \(G + H \) if and only if one of (i), (ii), and (iii) holds.

Theorem 3.8. For any graphs \(G \) and \(H \) with \(\gamma_i(G) = \gamma_i(H) \),

\[
f_{\gamma_i}(G + H) = \begin{cases}
 1, & \text{if either } G \text{ or } H \text{ has a unique } \gamma_i\text{-set}, \\
 1, & \min\{f_{\gamma_i}(G), f_{\gamma_i}(H)\}, & \text{otherwise.}
\end{cases}
\]

Proof. By Theorem 3.7, \(\gamma_i(G + H) = \gamma_i(G) = \gamma_i(H) \). Suppose that either \(G \) or \(H \) has a unique \(\gamma_i \)-set. W.l.o.g., suppose that \(G \) has a unique \(\gamma_i \)-set, say \(S \). Then by Corollary 3.7, \(S \) and the \(\gamma_i \)-sets of \(H \) are \(\gamma_i \)-sets of \(G + H \). Clearly, for any \(x \in S \), \(\{x\} \) is uniquely contained in \(S \) and not in any \(\gamma_i \)-set of \(G + H \). By Remark 3.1(ii), \(f_{\gamma_i}(S) = 1 = f_{\gamma_i}(G + H) \).
Suppose that both G and H have no unique γ_i-sets. We may assume that $f_\gamma(G) \leq f_\gamma(H)$. Since every γ_i-set of G and H is a γ_i-set of $G+H$, $f_\gamma(G) \geq f_\gamma(G+H)$. Now, let S_0 be a γ_i-set of $G+H$ such that $f_\gamma(G+H) = f_\gamma(S_0)$. If $S_0 \subseteq V(G)$, then S_0 is a γ_i-set of G. Hence, $f_\gamma(G+H) = f_\gamma(S_0) \geq f_\gamma(G)$. If $S_0 \subseteq V(H)$, then S_0 is a γ_i-set of H. Hence, $f_\gamma(G+H) = f_\gamma(S_0) \geq f_\gamma(H) \geq f_\gamma(G)$. Hence, in any case, $f_\gamma(G+H) = f_\gamma(G)$. □

Theorem 3.9. For any graphs G and H with $\gamma_i(G) \neq \gamma_i(H)$,

$$f_\gamma(G+H) = \begin{cases} 0, & \text{if } \gamma_i(G) < \gamma_i(H) \text{ and } G \text{ has a unique } \gamma_i\text{-set or } \gamma_i(H) < \gamma_i(G) \text{ and } H \text{ has a unique } \gamma_i\text{-set,} \\ f_\gamma(G), & \text{if } \gamma_i(G) < \gamma_i(H) \text{ and } G \text{ has no unique } \gamma_i\text{-sets,} \\ f_\gamma(H), & \text{if } \gamma_i(H) < \gamma_i(G) \text{ and } H \text{ has no unique } \gamma_i\text{-sets.} \end{cases}$$

Proof. Suppose that $\gamma_i(G) < \gamma_i(H)$. By Theorem 3.7, $\gamma_i(G+H) = \gamma_i(G)$. Suppose that G has a unique γ_i-set, say S. Then by Corollary 3.7, S is the only γ_i-set of $G+H$. By Remark 3.1(i), $f_\gamma(G+H) = 0$. Now, suppose that G has no unique γ_i-sets. By Corollary 3.7, the γ_i-sets of G are also the γ_i-sets of $G+H$. Thus, $f_\gamma(G+H) = f_\gamma(G)$. Similarly, if $\gamma_i(H) < \gamma_i(G)$, then $f_\gamma(G+H) = 0$ whenever H has a unique γ_i-set, and $f_\gamma(G+H) = f_\gamma(H)$ whenever H has no unique γ_i-sets. □

The next results are direct consequences of Theorem 3.8 and Theorem 3.9

Corollary 3.10. For any graph H,

$$f_\gamma(K_1+H) = \begin{cases} 1, & \gamma_i(H) = 1, \\ 0, & \gamma_i(H) > 1. \end{cases}$$

Corollary 3.11. For the complete bipartite graph $K_{n,m}$ such that $n, m \geq 1$,

$$f_\gamma(K_{n,m}) = \begin{cases} 0, & n \neq m, \\ 1, & n = m. \end{cases}$$

Corollary 3.12. For the generalized fan $F_{n,m} = K_n + P_m$, where $n \geq 1$ and $m \geq 2$,

$$f_\gamma(F_{n,m}) = \begin{cases} 0, & \text{if either } n < \left\lceil \frac{m}{3} \right\rceil \text{ or } n > \left\lceil \frac{m}{3} \right\rceil \text{ with } m \equiv 0(\text{mod } 3), \\ 1, & \text{if either } n = \left\lceil \frac{m}{3} \right\rceil \text{ or } n > \left\lceil \frac{m}{3} \right\rceil \text{ with } m \equiv 0(\text{mod } 3). \end{cases}$$

Corollary 3.13. For the fan $F_n = K_1 + P_n$, where $n \geq 2$,

$$f_\gamma(F_n) = \begin{cases} 0, & n > 3, \\ 1, & n \leq 3. \end{cases}$$
Corollary 3.14. For the generalized wheel $W_{n,m} = K_n + C_m$, where $n \geq 1$ and $m \geq 3$,

$$f_{\gamma_i}(W_{n,m}) = \begin{cases}
0, & \text{if } n < \left\lceil \frac{2m}{3} \right\rceil \\
1, & \text{if either } n = \left\lceil \frac{2m}{3} \right\rceil \text{ or } n > \left\lceil \frac{2m}{3} \right\rceil \text{ with } m = 4 \text{ or } m \equiv 0 \text{(mod 3),}
2, & \text{if } n > \left\lceil \frac{2m}{3} \right\rceil \text{ with } m \neq 4 \text{ or } m \neq 0 \text{(mod 3).}
\end{cases}$$

Corollary 3.15. For the wheel $W_n = K_1 + C_n$, where $n \geq 3$,

$$f_{\gamma_i}(W_n) = \begin{cases}
0, & n > 3 \\
1, & n = 3.
\end{cases}$$

The following results are restatements of Theorems 2.3 and 2.4.

Theorem 3.16. Let G be a connected graph of order n and let H be any graph. Then $C \subseteq V(G \circ H)$ is an independent dominating set in $G \circ H$ if and only if $C = A \cup \bigcup_{v \in V(G) \setminus A} S_v$, where A is an independent set (may be empty) of G and S_v is an independent dominating set of H^v for all $v \in V(G) \setminus A$.

Theorem 3.17. Let G be a connected graph of order n and let H be any graph with $\gamma_i(H) = 1$. Then C is a γ_i-set of $G \circ H$ if and only if $C = A \cup \bigcup_{v \in V(G) \setminus A} S_v$ where A is an independent set of G and S_v is a γ_i-set of H^v for each $v \in V(G) \setminus A$. In particular, $\gamma_i(G \circ H) = n$.

Theorem 3.18. Let G be a connected graph of order n and let H be any graph with $\gamma_i(H) \geq 2$. Then C is a γ_i-set of $G \circ H$ if and only if $C = A \cup \bigcup_{v \in V(G) \setminus A} S_v$ where A is a maximum independent set of G and S_v is a γ_i-set of H^v for each $v \in V(G) \setminus A$. In particular,

$$\gamma_i(G \circ H) = \alpha(G) + \lfloor n - \alpha(G) \rfloor \gamma_i(H).$$

Theorem 3.19. Let G be a connected graph of order n and let H be any graph with $\gamma_i(H) = 1$. Then

$$f_{\gamma_i}(G \circ H) = \begin{cases}
\gamma_i(G), & \text{if } H \text{ has a unique } \gamma_i\text{-set,} \\
n, & \text{otherwise.}
\end{cases}$$

Proof. Since $\gamma_i(H) = 1$, by Theorem 3.17, $\gamma_i(G \circ H) = n$. Suppose that H has a unique γ_i-set, say $P = \{x\}$. For each $v \in V(G)$, let $P_v = \{x_v\} \subseteq V(H^v)$ be such that $(P) \cong (P_v)$, where (P) is the subgraph induced by P. Let $S = T \cup U$ where T is a γ_i-set of G and $U = \{x_v \in V(H^v) : x_v \in P_v \forall v \in V(G) \setminus T\}$. Clearly, S is a γ_i-set of $G \circ H$. Since H has a unique γ_i-set and any vertex $v \in V(G) \setminus T$ is adjacent to a vertex in T, no element in U can be replaced by any vertex in $v + V(H^v)$ for all $v \in V(G) \setminus T$ to form another γ_i-set of $G \circ H$. Hence, T is uniquely contained in S, that is, T is a forcing subset for S.

Therefore, \(f_{\gamma_i}(S) \leq |T| \). Suppose that there exists \(B \subseteq S \) such that \(f_{\gamma_i}(S) = |B| < |T| \).
Suppose that \(B \cap T \neq \emptyset \), say \(w \in B \cap T \). Let \(v \in V(G) \setminus T \) such that \(w = x_v \in V(H^v) \).
Pick \(y \in T \cap N_G(v) \) and let \(T' = T \setminus \{y\} \) and \(U' = U \cup \{x_y\} \). Then \(S' = T' \cup U' \) is a \(\gamma_i \)-set of \(G \circ H \) with \(S' \neq S \) and \(B \subseteq S' \), a contradiction. Hence, \(B \nsubseteq T \). Let \(z \in T \setminus B \) and let \(S_z = (T \setminus \{z\}) \cup (U \cup \{x_z\}) \) where \(\langle \{x_z\} \rangle \cong \langle x \rangle \) and \(x_z \in V(H^z) \). Then \(S_z \) is a \(\gamma_i \)-set of \(G \circ H \), \(S_z \neq S \) and \(B \subseteq S_z \). This is a contradiction since \(B \) is a forcing subset for \(S \).
Therefore, \(f_{\gamma_i}(S) = |B| = |T| = \gamma_i(G) \).

Now, suppose that \(H \) does not have a unique \(\gamma_i \)-set. Let \(C \) be a \(\gamma_i \)-set of \(G \circ H \) and let \(S \) be a forcing subset for \(C \). By Theorem 3.17, \(C = A \cup \left(\bigcup_{v \in V \setminus A} S_v \right) \) where \(A \) is an independent set of \(G \) and \(S_v \) is a \(\gamma_i \)-set of \(H^v \) for each \(v \in V(G) \setminus A \). Suppose that \(S \neq C \), say \(w \in C \setminus S \).
Let \(z \in V(G) \) such that \(w \in V(z + H^z) \). If \(w = z \), then \(w \in A \). Let \(A' = A \setminus \{w\} \) and let \(S_w = \{x_w\} \) be a \(\gamma_i \)-set of \(H^w \). Then by Theorem 3.17, \(C' = A' \cup \left(\bigcup_{v \in V \setminus A'} S_v \right) \) is a \(\gamma_i \)-set of \(G \circ H \) with \(C' \neq C \) and \(S' \subseteq C' \). If \(w \neq z \), then \(S_z = \{w\} \) is a \(\gamma_i \)-set of \(H^z \). Let \(S^*_z = \{w'\} \) be a \(\gamma_i \)-set of \(H^z \) with \(w' \neq w' \). Then \(C^* = A \cup \left(\bigcup_{v \in V \setminus (A \cup \{z\})} S_v \right) \cup S_z^* \) is a \(\gamma_i \)-set of \(G \circ H \) with \(C^* \neq C \) and \(S \subseteq C^* \). In either case, we get a contradiction. Thus, \(S = C \) and \(f_{\gamma_i}(C) = |C| = n \). Consequently, \(f_{\gamma_i}(G \circ H) = n \).

Theorem 3.20. Let \(G \) be a connected graph of order \(n \) and let \(H \) be any graph with \(\gamma_i(H) \neq 1 \). Then

\[
f_{\gamma_i}(G \circ H) = \begin{cases} f_{\alpha}(G), & \text{if } H \text{ has a unique } \gamma_i \text{-set} \\ \lceil n - \alpha(G) \rceil \cdot f_{\gamma_i}(H), & \text{if } H \text{ has no unique } \gamma_i \text{-sets.} \end{cases}
\]

In particular, \(f_{\gamma_i}(G \circ H) = 0 \) if \(G \) has a unique \(\alpha \)-set and \(H \) has a unique \(\gamma_i \)-set.

Proof. Since \(\gamma_i(H) \geq 2 \), by Theorem 3.18, \(\gamma_i(G \circ H) = \alpha(G) + \lceil n - \alpha(G) \rceil \cdot \gamma_i(H) \). Let \(T \) be a maximum independent set of \(G \). Then \(|T| = \alpha(G) \) and \(|V(G) \setminus T| = n - \alpha(G) \). Consider the following cases:

Case 1: Suppose that \(H \) has a unique \(\gamma_i \)-set, say \(R \).
For each \(v \in V(G) \), let \(R_v \subseteq V(H^v) \) such that \(\langle R_v \rangle \cong \langle R \rangle \).
Suppose that \(G \) has a unique \(\alpha \)-set, say \(D \). Then by Theorem 3.18, \(C = D \cup \left(\bigcup_{v \in V(G) \setminus D} R_v \right) \) is the unique \(\gamma_i \)-set of \(G \circ H \). Thus, by Remark 3.1(i), \(f_{\gamma_i}(G \circ H) = 0 \). Suppose that \(G \) does not have a unique \(\alpha \)-set. Let \(A \) be an \(\alpha \)-set of \(G \) and let \(D_A \) be a forcing subset for \(A \) such that \(f_{\alpha}(G) = f_{\alpha}(A) = |D_A| \). Let \(C = A \cup \left(\bigcup_{v \in V(G) \setminus A} R_v \right) \). Then, by Theorem 3.18, \(C \) is a \(\gamma_i \)-set of \(G \circ H \). Since each \(H^v \) has a unique \(\gamma_i \)-set \(R_v \), it follows that \(D_A \) is a forcing subset for \(C \). Thus,

\[
f_{\gamma_i}(G \circ H) \leq f_{\gamma_i}(C) \leq |D_A| = f_{\alpha}(G).
\]
Next, let C_0 be a γ_i-set of $G \circ H$ such that $f\gamma_i(G \circ H) = f\gamma_i(C_0)$. Then $C_0 = A_0 \cup \left(\bigcup_{v \in V(G) \setminus A_0} R_v \right)$, where A_0 is an α-set of G. Let S be a forcing subset for C_0 such that $f\gamma_i(C_0) = |S|$. Since each H^v has a unique γ_i-set R_v, $S \subseteq A_0$. Since S is a forcing subset for C_0, S must be a forcing subset for the α-set A_0. Thus,

$$f\gamma_i(G \circ H) = f\gamma_i(C_0) = |S| \geq f\alpha(A_0) \geq f\alpha(G).$$

Therefore, $f\gamma_i(G \circ H) = f\alpha(G)$.

Case 2: Suppose that H does not have a unique γ_i-set.

Let Q be a γ_i-set of H with $f\gamma_i(H) = f\gamma_i(Q)$ and let P_Q be a forcing subset for Q with $f\gamma_i(Q) = |P_Q|$. For each $v \in V(G)$, let $Q_v \subseteq V(H^v)$ and $P_{Q_v} \subseteq Q_v$ such that \langle Q_v \rangle \cong \langle Q \rangle$ and \langle P_{Q_v} \rangle \cong \langle P_Q \rangle$. Let A_Q be an α-set of G. Then by Theorem 3.18, $C_Q = A_Q \cup \left(\bigcup_{v \in V(G) \setminus A_Q} Q_v \right)$ is a γ_i-set of $G \circ H$. Let $S = \bigcup_{v \in V(G) \setminus A_Q} P_{Q_v}$. Then S is a forcing subset for C_Q. Thus,

$$f\gamma_i(G \circ H) \leq f\gamma_i(C_Q) \leq |S| = |n - \alpha(G)|f\gamma_i(H).$$

Next, let C' be a γ_i-set of $G \circ H$ such that $f\gamma_i(G \circ H) = f\gamma_i(C')$. Then by Theorem 3.18, $C' = A' \cup \left(\bigcup_{v \in V(G) \setminus A'} R_v \right)$, where A' is an α-set of G and R_v is a γ_i-set of H^v for each $v \in V(G) \setminus A'$. Let S' be a forcing subset for C' such that $f\gamma_i(C') = |S'|$. Suppose that there exists $w \in V(G) \setminus A'$ such that $S' \cap R_w = S_w$ is not a forcing subset for R_w. Let R'_w be a γ_i-set of H^w with $R'_w \neq R_w$. Then $C'' = A' \cup \left(\bigcup_{v \in V(G) \setminus (A' \cup \{w\})} R_v \right) \cup R'_w$ is a γ_i-set of $G \circ H$ with $C'' \neq C'$ and $S' \subseteq C''$, a contradiction. Thus, $S_v = S' \cap R_v$ is a forcing subset for R_v for each $v \in V(G) \setminus A'$. Let $S_0 = \bigcup_{v \in V(G) \setminus A'} S_v$. Then

$$f\gamma_i(G \circ H) = |S'| \geq |S_0| = \sum_{v \in V(G) \setminus A'} |S_v| \geq \sum_{v \in V(G) \setminus A'} f\gamma_i(H) = |n - \alpha(G)|f\gamma_i(H).$$

Therefore, $f\gamma_i(G \circ H) = |n - \alpha(G)|f\gamma_i(H)$. \hfill \Box

Theorem 3.21. Let G and H be connected graphs. Then

$$f\gamma_i(G[H]) = \begin{cases} f\gamma_i(G), & \text{if } H \text{ has a unique } \gamma_i\text{-set}, \\ [\gamma_i(G)][f\gamma_i(H)], & \text{if } H \text{ has no unique } \gamma_i\text{-sets}. \end{cases}$$

In particular, $f\gamma_i(G[H]) = 0$ if G and H have unique γ_i-sets. Also, $f\gamma_i(G[H]) = \gamma_i(G[H])$ if $f\gamma_i(H) = \gamma_i(H)$.

Case 1: Suppose that H has a unique γ_i-set, say R.
Let S be a γ_i-set of G and let U be a forcing subset for S such that $f_{\gamma_i}(G) = f_{\gamma_i}(S) = |U|$. By Theorem 2.5, $C = S \times R$ is a γ_i-set of $G[H]$. Now, since U is a forcing subset for S, $U_c = U \times \{c\}$ is a forcing subset for C for each $c \in R$. Hence, for each $c \in R$,

$$f_{\gamma_i}(G[H]) \leq f_{\gamma_i}(C) \leq |U_c| = |U| = f_{\gamma_i}(G).$$

Let $C_0 = S_0 \times R$ be a γ_i-set of $G[H]$ such that $f_{\gamma_i}(G[H]) = f_{\gamma_i}(C_0)$. By Theorem 2.5, S_0 is a γ_i-set of G. Let Q_0 be a forcing subset for C_0 with $f_{\gamma_i}(C_0) = |Q_0|$. Let $Q_0 = \bigcup_{x \in K} \{x\} \times T_x$, where $K \subseteq S_0$ and $T_x \subseteq R$ for all $x \in K$. Since Q_0 is a forcing subset for C_0, it follows that K is a forcing subset for S_0. Choose any $x \in K$ and $a \in T_x$. Then $Q_a = K \times \{a\} \subseteq Q_0$. Thus,

$$f_{\gamma_i}(G[H]) = f_{\gamma_i}(C_0) = |Q_0| \geq |Q_a| = |K| \geq f_{\gamma_i}(S_0) \geq f_{\gamma_i}(G).$$

Therefore, $f_{\gamma_i}(G[H]) = f_{\gamma_i}(G)$.

Case 2: Suppose that H does not have a unique γ_i-set.
Let R_0 be a γ_i-set of H and T_0 be a forcing subset for R_0 such that $f_{\gamma_i}(H) = f_{\gamma_i}(R_0) = |T_0|$. Let S_0 be a γ_i-set of G. For each $x \in S_0$, let $T_x = T_0$ and $R_x = R_0$. By Theorem 2.5, $C = \bigcup_{x \in S_0} \{x\} \times R_x$ is a γ_i-set of $G[H]$. Then $C_0 = \bigcup_{x \in S_0} \{x\} \times T_x = S_0 \times T_0$ is a forcing subset for C. Hence,

$$f_{\gamma_i}(G[H]) \leq f_{\gamma_i}(C_0) \leq |C_0| = |S_0 \times T_0| = f_{\gamma_i}(G)f_{\gamma_i}(H).$$

Next, let $C = \bigcup_{x \in S} \{x\} \times T_x$ be a γ_i-set of $G[H]$ and let D be a forcing subset for C such that $f_{\gamma_i}(G[H]) = f_{\gamma_i}(C) = |D|$. Then by Theorem 2.5, S is a γ_i-set of G and T_x is a γ_i-set of H for each $x \in S$. Let $D = \bigcup_{x \in K} \{x\} \times E_x$ where $K \subseteq S$ and $E_x \subseteq T_x$ for each $x \in S$. Suppose that $K \neq S$, say $v \in S \setminus K$. Let T_v be a γ_i-set of H with $T_v \neq T_v$. Then $C' = \bigcup_{x \in S \setminus \{v\}} \{x\} \times T_x \cup \{v\} \times T_v$ is a γ_i-set of $G[H]$ and $D \subseteq C' \neq C$, a contradiction. Thus, $K = S$ and since D is a forcing subset for C, E_x must be a forcing subset for T_x for each $x \in S$. Hence,

$$f_{\gamma_i}(G[H]) = |D| = \sum_{x \in S} |E_x| \geq f_{\gamma_i}(G)f_{\gamma_i}(H).$$

Therefore, $f_{\gamma_i}(G[H]) = f_{\gamma_i}(G)f_{\gamma_i}(H)$. In particular, if $f_{\gamma_i}(H) = \gamma_i(H)$, then $f_{\gamma_i}(G[H]) = \gamma_i(G)f_{\gamma_i}(H) = \gamma_i(G[H])$. \hfill \Box

Since the complete graph K_n has no unique γ_i-sets and $f_{\gamma_i}(K_n) = 1$ except when $n = 1$, the following result is immediate from Theorem 3.21.

Corollary 3.22. Let G be a connected graph and K_n the complete graph of order $n \geq 1$. Then

$$f_{\gamma_i}(G[K_n]) = \begin{cases} f_{\gamma_i}(G), & n = 1 \\ \gamma_i(G), & n > 1 \end{cases}$$
Acknowledgements

The authors would like to thank the referees for their invaluable suggestions and comments which greatly contributed in the improvement of the paper. The authors would like to thank also the following funding agencies: Department of Science and Technology-Science Education Institute-Accelerated Science and Technology Human Resource Development Program (DOST-SEI-ASTHRDP), Mindanao State University-Iligan Institute of Technology and Cebu Normal University.

References

