Random Stability of a Functional Equation Related to an Inner Product Space

Dong Yun Shin1, Jung Rye Lee2,*, Choonkil Park3

1 Department of Mathematics, University of Seoul, Seoul 130-743, Korea
2 Department of Mathematics, Daejin University, Kyeonggi 487-711, Korea
3 Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Korea

Abstract. In [14], Th.M. Rassias introduced the following equality

$$\sum_{i,j=1}^{n} \|x_i - x_j\|^2 = 2n \sum_{i=1}^{n} \|x_i\|^2, \quad \sum_{i=1}^{n} x_i = 0$$

for a fixed integer $n \geq 3$. For a mapping $f : X \rightarrow Y$, where X is a vector space and Y is a complete random normed space, we consider the following functional equation

$$\sum_{i,j=1}^{n} f(x_i - x_j) = 2n \sum_{i=1}^{n} f(x_i)$$

for all $x_1, \ldots, x_n \in X$ with $\sum_{i=1}^{n} x_i = 0$. In this paper, we prove the Hyers-Ulam stability of the functional equation (1) related to an inner product space.

\textbf{2010 Mathematics Subject Classifications}: 39B52, 46S50, 46C05, 47S50, 26E50.
\textbf{Key Words and Phrases}: random normed space, Hyers-Ulam stability, quadratic functional equation, inner product space.

1. Introduction

A square norm on an inner product space satisfies the parallelogram equality

$$\|x + y\|^2 + \|x - y\|^2 = 2\|x\|^2 + 2\|y\|^2.$$

From the above equation, we consider the following functional equation

$$f(x + y) + f(x - y) = 2f(x) + 2f(y)$$

*Corresponding author.

Email addresses: dyshin@uos.ac.kr (D. Shin), jrllee@daejin.ac.kr (J. Lee), baak@hanyang.ac.kr (C. Park)

http://www.ejpam.com 540 © 2012 EJPAM All rights reserved.

A square norm on an inner product space also satisfies

\[
\sum_{i,j=1}^{3} \|x_i - x_j\|^2 = 6 \sum_{i=1}^{3} \|x_i\|^2
\]

for all \(x_1, x_2, x_3 \in \mathbb{R}\) with \(x_1 + x_2 + x_3 = 0\) [see 14]. From the above equality we can define the functional equation

\[
f(x - y) + f(2x + y) + f(x + 2y) = 3f(x) + 3f(y) + 3f(x + y),
\]

which is called a quadratic functional equation. In fact, \(f(x) = ax^2\) in \(\mathbb{R}\) satisfies the quadratic functional equation.

The aim of this paper is to investigate the Hyers-Ulam stability of additive-quadratic functional equation in a random normed space related to an inner product space.

Throughout this paper, we use the definition of a random normed space as in \([1, 10, 15, 16]\). \(\Delta^+\) is the space of distribution functions that is, the space of all mappings \(F : \mathbb{R} \cup \{-\infty, \infty\} \to [0, 1]\) which is left-continuous and non-decreasing on \(\mathbb{R}\), \(F(0) = 0\) and \(F(+\infty) = 1\). \(D^+\) is a subset of \(\Delta^+\) consisting of all functions \(F\) for which \(\lim_{t \to \infty} F(t) = 1\), where \(l^-F(x)\) denotes the left limit of the function \(F\) at the point \(x\). The space \(\Delta^+\) is partially ordered by the usual point-wise ordering of functions. The maximal element for \(\Delta^+\) in this order is the distribution function \(\varepsilon_0\) given by

\[
\varepsilon_0(t) = \begin{cases}
0, & \text{if } t \leq 0, \\
1, & \text{if } t > 0.
\end{cases}
\]

Definition 1 ([15]). A mapping \(T : [0,1] \times [0,1] \to [0,1]\) is a continuous triangular norm (briefly, a continuous t-norm) if \(T\) satisfies the following conditions:

(a) \(T\) is commutative and associative;
(b) \(T\) is continuous;
(c) \(T(a, 1) = a\) for all \(a \in [0,1]\);
(d) \(T(a, b) \leq T(c, d)\) whenever \(a \leq c\) and \(b \leq d\) for all \(a, b, c, d \in [0,1]\).

Recall that if \(T\) is a t-norm and \(\{x_n\}\) is a sequence of numbers in \([0,1]\), then \(T^n_{i=1} x_i\) is defined recurrently by \(T^1_{i=1} x_i = x_1\) and \(T^n_{i=1} x_i = T(T^{n-1}_{i=1} x_i, x_n)\) for \(n \geq 2\) [see 3]. \(T^\infty_{i=1} x_i\) is defined as \(\lim_{m \to \infty} T^m_{i=1} x_i\).
Definition 2 ([16]). A random normed space (briefly, RN-space) is a triple \((X, \mu, T)\), where \(X\) is a vector space, \(T\) is a continuous \(t\)-norm and \(\mu\) is a mapping from \(X\) into \(D^+\) satisfies the following conditions:

(RN1) \(\mu_x(t) = \varepsilon_0(t)\) for all \(t > 0\) if and only if \(x = 0\);

(RN2) \(\mu_{ax}(t) = \mu_x\left(\frac{t}{|a|}\right)\) for all \(x \in X\), \(a \neq 0\);

(RN3) \(\mu_{x+y}(t + s) \geq T(\mu_x(t), \mu_y(s))\) for all \(x, y \in X\) and \(t, s \geq 0\).

A sequence \(\{x_n\}\) in an RN-space \((X, \mu, T)\) is said to be convergent to \(x\) in \(X\) if, for every \(\varepsilon > 0\) and \(\lambda > 0\), there exists a positive integer \(N\) such that \(\mu_{x_n-x}(\varepsilon) > 1 - \lambda\) whenever \(n \geq N\). An RN-space \((X, \mu, T)\) is said to be complete if and only if every Cauchy sequence in \(X\) is convergent to a point in \(X\).

The Hyers-Ulam stability of functional equations in random normed spaces and fuzzy normed spaces has been studied [see 3, 4, 6, 8, 9, 11, 12]. Let \(V, W\) be vector spaces. It is shown that if a mapping \(f : V \rightarrow W\) satisfies the functional equation (1), then the mapping \(f\) is the sum of an additive mapping and a quadratic mapping [see 2]. In this paper, we investigate the Hyers-Ulam stability of the functional equation (1) in RN-spaces.

Throughout this paper, assume that \(X\) is a vector space and that \((Y, \mu, T)\) is a complete RN-space.

We investigate the functional equation (1) for an odd mapping in RN-spaces.

For a given mapping \(f : X \rightarrow Y\), we define

\[
Df(x_1, \ldots, x_n) := \sum_{i,j=1}^{n} f(x_i - x_j) - 2n \sum_{i=1}^{n} f(x_i)
\]

for all \(x_1, \ldots, x_n \in X\) with \(\sum_{i=1}^{n} x_i = 0\).

For an odd mapping \(f : X \rightarrow Y\), we note that if \(f\) satisfies

\[
Df(x_1, x_2, \ldots, x_n) = 0
\]

for all \(x_1, \ldots, x_n \in X\) with \(\sum_{i=1}^{n} x_i = 0\) then the mapping \(f\) is additive.

We prove the Hyers-Ulam stability of the functional equation (1) of an odd mapping in RN-spaces.

Theorem 1. Let \(f : X \rightarrow Y\) be an odd mapping for which there is a \(\rho : X^n \rightarrow D^+\) \((\rho(x_1, x_2, \ldots, x_n))\) is denoted by \(\rho(x_1, x_2, \ldots, x_n)\) such that

\[
\mu_{Df(x_1, x_2, \ldots, x_n)}(t) \geq \rho(x_1, x_2, \ldots, x_n)(t)
\]

for all \((x_1, x_2, \ldots, x_n) \in X^n\) and all \(t > 0\). If

\[
T_{k=1}^{\infty} \rho\left(\frac{t}{2^{2k+1}}, \frac{t}{2^{2k+1}}, \ldots, \frac{t}{2^{2k+1}}, 0, \ldots, 0\right) \left(\frac{nt}{2^{2k+l-2}}\right) = 1
\]

(3)
for all \(x, y \in X, \) all \(t > 0 \) and all \(l = 0, 1, 2, \ldots \), then there exists a unique additive mapping \(A : X \rightarrow Y \) such that

\[
\mu_{f(x)-A(x)}(t) \geq T_k^{\infty} \rho \left(\frac{t}{2^{2k-2}} \right) \left(\frac{nt}{2^{2k-2}} \right)
\]

for all \(x \in X \) and all \(t > 0 \).

Proof. Putting \(x_1 = x_2 = \frac{x}{2^k}, x_3 = -x, x_4 = \ldots = x_n = 0 \) in (2), we get

\[
\mu_{2^k \cdot f(x)-2^k f \left(\frac{x}{2^k} \right)}(t) \geq \rho \left(\frac{x}{2^k}, -\frac{x}{2^k}, 0, \ldots, 0 \right) (2nt)
\]

which is equivalent to

\[
\mu_{2^k \cdot f(x)-2^k f \left(\frac{x}{2^k} \right)}(t) \geq \rho \left(\frac{x}{2^k}, -\frac{x}{2^k}, 0, \ldots, 0 \right) (2nt)
\]

for all \(x \in X \) and all \(t > 0 \). Replacing \(x \) and \(t \) by \(\frac{x}{2^k} \) and \(\frac{t}{2^k} \), respectively in the above inequality, we get

\[
m_{2^k \cdot f(x)-2^k f \left(\frac{x}{2^k} \right)} \left(\frac{t}{2^k} \right) \geq \rho \left(\frac{x}{2^k}, -\frac{x}{2^k}, 0, \ldots, 0 \right) \left(\frac{nt}{2^{2k-2}} \right)
\]

for all \(x \in X \) and all \(t > 0 \).

Since \(\mu_x(s) \leq \mu_x(t) \) for all \(s \) and \(t \) with \(0 < s \leq t \), we obtain

\[
m_{f(x)-2^m f \left(\frac{x}{2^m} \right)}(t) \geq \mu_{2^m} \left(2^k \cdot f \left(\frac{x}{2^k} \right)-2^k f \left(\frac{x}{2^k} \right) \right) \left(\frac{t}{2^k} \right)
\]

\[
\geq \mu_{2^m} \left(2^k \cdot f \left(\frac{x}{2^k} \right)-2^k f \left(\frac{x}{2^k} \right) \right) \left(\sum_{k=1}^{m} \frac{t}{2^k} \right)
\]

\[
\geq T_k^{m} \rho \left(\frac{x}{2^k}, -\frac{x}{2^k}, 0, \ldots, 0 \right) \left(\frac{nt}{2^{2k-2}} \right)
\]

Replacing \(x \) by \(\frac{x}{2^m} \) in the above inequality, we get

\[
m_{f \left(\frac{x}{2^m} \right)-2^m f \left(\frac{x}{2^m} + \frac{x}{2^{m+l}} \right)}(t) \geq T_k^{m} \rho \left(\frac{x}{2^{2k+l}}, -\frac{x}{2^{2k+l}}, 0, \ldots, 0 \right) \left(\frac{nt}{2^{2k+l-2}} \right)
\]

which is equivalent to

\[
m_{2^l f \left(\frac{x}{2^m} \right)-2^m f \left(\frac{x}{2^m + \frac{x}{2^{m+l}} \right)}(t) \geq T_k^{m} \rho \left(\frac{x}{2^{2k+l}}, -\frac{x}{2^{2k+l}}, 0, \ldots, 0 \right) \left(\frac{nt}{2^{2k+l-2}} \right)
\]

for all \(x \in X, \) all \(t > 0 \) and all \(l = 0, 1, 2, \ldots \).
Since the right hand side of the inequality (6) tends to 1 as $m \to \infty$ by (3), the sequence \(\{2^m f \left(\frac{x}{2^m} \right) \} \) is a Cauchy sequence. Thus we define $A(x) := \lim_{m \to \infty} 2^m f \left(\frac{x}{2^m} \right)$ for all $x \in X$, which is an odd mapping.

Now we show that A is an additive mapping. By (2), we get

$$\mu_{2^m}(f \left(\frac{x+y}{2^m} \right) - f \left(\frac{x}{2^m} \right) - f \left(\frac{y}{2^m} \right)) \geq \rho \left(\left(\frac{x}{2^m}, \frac{y}{2^m}, \ldots, \frac{x+y}{2^m} \right), 0, \ldots, 0 \right) \left(\frac{nt}{2^{m-1}} \right).$$

Taking the limit as $m \to \infty$ in the above inequality, by (4), the mapping A is additive. By letting $l = 0$ and taking the limit as $m \to \infty$ in (6), we get (5).

Finally, to prove the uniqueness of the additive mapping A subject to (5), let us assume that there exists another additive mapping B which satisfies (5). Since

$$\mu_{A(x) - B(x)}(2t) = \mu_{A(x) - 2^m f \left(\frac{x}{2^m} \right) + 2^m f \left(\frac{x}{2^m} \right) - B(x)}(2t) \geq T \left(\mu_{A(x) - 2^m f \left(\frac{x}{2^m} \right)}(t), \mu_{2^m f \left(\frac{x}{2^m} \right) - B(x)}(t) \right)$$

and

$$\lim_{m \to \infty} \mu_{A(x) - 2^m f \left(\frac{x}{2^m} \right)} = \lim_{m \to \infty} \mu_{B(x) - 2^m f \left(\frac{x}{2^m} \right)} = 1$$

for all $x \in X$ and all $t > 0$, we get

$$\lim_{m \to \infty} T \left(\mu_{A(x) - 2^m f \left(\frac{x}{2^m} \right)}(t), \mu_{2^m f \left(\frac{x}{2^m} \right) - B(x)}(t) \right) = 1.$$

Thus we have $A = B$.

Corollary 1. Let $\theta \geq 0$ and let p be a constant with $p > 1$. For a normed vector space X and complete RN-space Y, let $f : X \to Y$ be an odd mapping satisfying

$$\mu_{Df(x_1, x_2, \ldots, x_n)}(t) \geq \frac{t}{t + \theta \sum_{i=1}^n \|x_i\|^p}$$

for all $(x_1, x_2, \ldots, x_n) \in X$ with $\sum_{i=1}^n x_i = 0$ and all $t > 0$. If

$$T_k^{\infty} \left(\frac{2^{(k+1)p} nt}{2^{(k+1)p} nt + 2^{2k+1-2}(2 + 2^p) \theta \|x\|^p} \right) = 1$$

for all $x \in X$, all $t > 0$ and all $l = 0, 1, 2, \ldots$, then there exists a unique additive mapping $A : X \to Y$ such that

$$\mu_{f(x) - A(x)}(t) \geq T_k^{\infty} \left(\frac{2^{kp} nt}{2^{kp} nt + 2^{2k-2}(2 + 2^p) \theta \|x\|^p} \right)$$

for all $x \in X$ and all $t > 0$.

Proof. If we define

\[P(x_1, x_2, \ldots, x_n)(t) = \frac{t}{t + \theta \sum_{i=1}^{n} ||x_i||^p} \]

and apply Theorem 1, then we get the desired result.

Theorem 2. Let \(f : X \to Y \) be an odd mapping for which there is a \(\rho : X^n \to D^+ \) satisfying (2). If

\[T_{k=1}^{\infty} \rho(\sum_{l=0}^{2^k-2} x, 2^{k-l-1} x, -2^{k-l-1} x, 0, \ldots, 0)(2^{l+1} nt) = 1 \] \hspace{1cm} (7)

and

\[\lim_{m \to \infty} \rho(\sum_{l=0}^{2^m} x, 2^{m-l} y, -2^m x + y, 0, \ldots, 0)(2^{m+1} nt) = 1 \] \hspace{1cm} (8)

for all \(x, y \in X, \) all \(t > 0 \) and all \(l = 0, 1, 2, \ldots \), then there exists a unique additive mapping \(A : X \to Y \) such that

\[\mu_{f(x) - A(x)}(t) \geq T_{k=1}^{\infty} \rho(\sum_{l=0}^{2^k-2} x, 2^{k-l-1} x, -2^{k-l-1} x, 0, \ldots, 0)(2^{l+1} nt) \] \hspace{1cm} (9)

for all \(x \in X \) and all \(t > 0 \).

Proof. Putting \(x_1 = x_2 = x, x_3 = -2x, x_4 = \ldots = x_n = 0 \) in (2), we get

\[\mu_{2n(f(2x) - 2f(x))}(t) \geq \rho(x, x, -2x, 0, \ldots, 0)(t) \]

which is equivalent to

\[\mu_{f(x) - \frac{1}{2} f(2x)}(t) \geq \rho\left(\frac{1}{2}, \frac{1}{2}, -x, 0, \ldots, 0\right)(4nt) \]

for all \(x \in X \) and all \(t > 0 \). Replacing \(x \) and \(t \) by \(2^{k-1} x \) and \(2t \), respectively, in the above inequality, we get

\[\mu_{\frac{1}{2^{k-1}} f(2^{k-1} x) - \frac{1}{2} f(2^k x)}\left(\frac{t}{2^k}\right) \geq \rho(2^{k-2} x, 2^{k-2} x, -2^{k-1} x, 0, \ldots, 0)(2nt) \]

for all \(x \in X \) and all \(t > 0 \).

Since \(\mu_x(s) \leq \mu_x(t) \) for all \(s \) and \(t \) with \(0 < s \leq t \), we obtain

\[\mu_{f(x) - \frac{1}{2} f(2^m x)}(t) \leq \sum_{k=1}^{m} \left(\frac{1}{2^{k-1}} f(2^{k-1} x) - \frac{1}{2} f(2^k x)\right)(t) \]

\[\geq \mu_{\sum_{k=1}^{m} \left(\frac{1}{2^{k-1}} f(2^{k-1} x) - \frac{1}{2} f(2^k x)\right) \left(\sum_{k=1}^{m} \frac{t}{2^k}\right) \geq T_{k=1}^{m} \rho(2^{k-2} x, 2^{k-2} x, -2^{k-1} x, 0, \ldots, 0)(2nt) \]

Replacing \(x \) by \(2^k x \) in the above inequality, we get

\[\mu_{f(2^k x) - \frac{1}{2} f(2^{k+m} x)}(t) \geq T_{k=1}^{m} \rho(2^{k+l-2} x, 2^{k+l-2} x, -2^{k+l-1} x, 0, \ldots, 0)(2nt) \]
which is equivalent to
\[
\mu \frac{1}{2^m} f(2^m x) - \frac{1}{2^{m+1}} f(2^{m+1} x)(t) \geq T_{k=1}^m \rho(2^{k+1-2} x, 2^{k+1-2} x, -2^{k+1-1} x, 0, \ldots, 0) \left(2^{l+1} nt\right)
\]
for all \(x \in X\), all \(t > 0\) and all \(l = 0, 1, 2, \ldots\).

Since the right hand side of the inequality (10) tends to 1 as \(m \to \infty\) by (7), the sequence \(\left\{\frac{1}{2^m} f(2^m x)\right\}\) is a Cauchy sequence. Thus we define \(A(x) := \lim_{m \to \infty} \frac{1}{2^m} f(2^m x)\) for all \(x \in X\), which is an odd mapping.

Now we show that \(A\) is an additive mapping. By (2), we get
\[
\mu \frac{1}{2^m} (f(2^m(x+y)) - f(2^m x) - f(2^m y))(t) \geq \rho(2^m x, 2^m y, -2^m(x+y), 0, \ldots, 0) (2^{m+1} nt).
\]
Taking the limit as \(m \to \infty\) in the above inequality, by (8) the mapping \(A\) is additive. By letting \(l = 0\) and taking the limit as \(m \to \infty\) in (10), we get (9).

The rest of the proof is the same as in the proof of Theorem 1.

Corollary 2. Let \(\theta \geq 0\) and let \(p\) be a constant with \(0 < p < 1\). For a normed vector space \(X\) and complete RN-space \(Y\), let \(f : X \to Y\) be an odd mapping satisfying
\[
\mu_D f(x_1, x_2, \ldots, x_n)(t) \geq \frac{t}{t + \theta \sum_{i=1}^n \|x_i\|^p}
\]
for all \((x_1, x_2, \ldots, x_n) \in X\) with \(\sum_{i=1}^n x_i = 0\) and all \(t > 0\). If
\[
T_{k=1}^\infty \left(\frac{2^{l+1} nt}{2^{l+1} nt + 2^{(k+1-1)p}(2^{1-p} + 1)\theta \|x\|^p}\right) = 1
\]
for all \(x \in X\), all \(t > 0\) and all \(l = 0, 1, 2, \ldots\), then there exists a unique additive mapping \(A : X \to Y\) such that
\[
\mu f(x) - A(x)(t) \geq T_{k=1}^\infty \left(\frac{2nt}{2nt + 2^{(k-1)p}(2^{1-p} + 1)\theta \|x\|^p}\right)
\]
for all \(x \in X\) and all \(t > 0\).

Proof. If we define
\[
\rho(x_1, x_2, \ldots, x_p)(t) = \frac{t}{t + \theta \sum_{i=1}^n \|x_i\|^p}
\]
and apply Theorem 2, then we get the desired result.

We prove the Hyers-Ulam stability of the functional equation (1) of an even mapping in RN-spaces.

For an even mapping \(f : X \to Y \) with \(f(0) = 0 \), we note that if \(f \) satisfies
\[
Df(x_1, x_2, \ldots, x_n) = 0
\]
for all \(x_1, \ldots, x_n \in X \) with \(\sum_{i=1}^{n} x_i = 0 \) then the mapping \(f \) is quadratic.

Theorem 3. Let \(f : X \to Y \) be an even mapping with \(f(0) = 0 \) for which there is a \(\rho : X^n \to D^+ \) satisfying (2). If
\[
T_{k=1}^{(n)} \rho \left(\frac{1}{2^{3k+2l-3}}, \ldots, 0 \right) \left(\frac{t}{2^{3k+2l-3}} \right) = 1
\]
and
\[
\lim_{m \to \infty} \rho \left(\frac{1}{2^{3m}}, \frac{x+y}{2^{3m}}, 0, \ldots, 0 \right) \left(\frac{t}{2^{3m}} \right) = 1
\]
for all \(x, y \in X \), all \(t > 0 \) and all \(l = 0, 1, 2, \ldots \), then there exists a unique quadratic mapping \(Q : X \to Y \) such that
\[
\mu_{f(x) - Q(x)}(t) \geq T_{k=1}^{(n)} \rho \left(\frac{1}{2^{3k+2l-3}}, \ldots, 0 \right) \left(\frac{t}{2^{3k+2l-3}} \right)
\]
for all \(x \in X \) and all \(t > 0 \).

Proof. Putting \(x_1 = x, x_2 = -x, x_3 = \ldots = x_n = 0 \) in (2), we get
\[
\mu_{2(f(2x) - 4f(x))}(t) \geq \rho(x, -x, 0, \ldots, 0)(t)
\]
which is equivalent to
\[
\mu_{f(x) - 4f\left(\frac{x}{2} \right)}(t) \geq \rho(x, -x, 0, \ldots, 0)(2t)
\]
for all \(x \in X \) and all \(t > 0 \). Replacing \(x \) and \(t \) by \(\frac{x}{2^{3k-1}} \) and \(\frac{t}{2^{3k-1}} \), respectively in the above inequality, we get
\[
\mu_{4^{k-1}f\left(\frac{x}{2^{3k-1}} \right) - 4^k f\left(\frac{x}{2^k} \right)} \left(\frac{t}{2^k} \right) \geq \rho\left(\frac{x}{2^{3k-1}}, -\frac{x}{2^{3k-1}}, 0, \ldots, 0 \right) \left(\frac{t}{2^{3k-1}} \right)
\]
for all \(x \in X \) and all \(t > 0 \).

Since \(\mu_{x}(s) \leq \mu_{x}(t) \) for all \(s \) and \(t \) with \(0 < s \leq t \), we obtain
\[
\mu_{f(x) - 4^m f\left(\frac{x}{2^m} \right)}(t) = \mu_{\sum_{k=1}^{m} \left(4^{k-1} f\left(\frac{x}{2^{3k-1}} \right) - 4^k f\left(\frac{x}{2^k} \right) \right)}(t)
\]
\[
\geq \mu_{\sum_{k=1}^{m} \left(4^{k-1} f\left(\frac{x}{2^{3k-1}} \right) - 4^k f\left(\frac{x}{2^k} \right) \right)} \left(\sum_{k=1}^{m} \frac{t}{2^k} \right)
\]
\[
\geq T_{k=1}^{(m)} \rho \left(\frac{1}{2^{3m}}, -\frac{1}{2^{3m}}, 0, \ldots, 0 \right) \left(\frac{t}{2^{3m}} \right)
\]
Replacing x by $\frac{x}{2^m}$ in the above inequality, we get

\[
\mu_f\left(\frac{x}{2^m}\right) - 4^m f\left(\frac{x}{2^m}\right)(t) \geq T_{k=1}^{m} \mu_\theta \left(\frac{\frac{x}{2^m}}{2^{k-1}}, \ldots, 0, \ldots, 0\right) \left(\frac{t}{2^{3k-3}}\right)
\]

which is equivalent to

\[
\mu_{4^m} f\left(\frac{x}{2^m}\right) - 4^m f\left(\frac{x}{2^m}\right)(t) \geq T_{k=1}^{m} \mu_\theta \left(\frac{\frac{x}{2^m}}{2^{k-1}}, \ldots, 0, \ldots, 0\right) \left(\frac{t}{2^{3k+2l-3}}\right)
\]

for all $x \in X$, all $t > 0$ and all $l = 0, 1, 2, \ldots$.

Since the right hand side of the inequality (14) tends to 1 as $m \to \infty$ by (11), the sequence $\{4^m f\left(\frac{x}{2^m}\right)\}$ is a Cauchy sequence. Thus we define $Q(x) := \lim_{m \to \infty} 4^m f\left(\frac{x}{2^m}\right)$ for all $x \in X$, which is an even mapping.

Now we show that Q is a quadratic mapping. By (2), we get

\[
\mu_{4^m} \left(f\left(\frac{x}{2^m}\right) + f\left(\frac{2x+y}{2^m}\right) + f\left(\frac{x+2y}{2^m}\right) - 3 f\left(\frac{x+y}{2^m}\right) - 3 f\left(\frac{x}{2^m}\right) - 3 f\left(\frac{y}{2^m}\right)\right)(t)
\]

\[
\geq \mu_\theta \left(\frac{\frac{x}{2^m}, \frac{x+y}{2^m}, \frac{x+2y}{2^m}, 0, \ldots, 0}{2^{2m-1}}\right) \left(\frac{t}{2^{2m-1}}\right).
\]

Taking the limit as $m \to \infty$ in the above inequality, by (12), the mapping Q is quadratic. Moreover, letting $l = 0$ and taking the limit as $m \to \infty$ in (14), we get (13).

The rest of the proof is the same as in the proof of Theorem 1.

Corollary 3. Let $\theta \geq 0$ and let p be a constant with $p > 2$. For a normed vector space X and complete RN-space Y, let $f : X \to Y$ be an even mapping satisfying

\[
\mu_{Df(x_1, x_2, \ldots, x_n)}(t) \geq \frac{t}{t + \theta \sum_{i=1}^{n} ||x_i||^p}
\]

for all $(x_1, x_2, \ldots, x_n) \in X$ with $\sum_{i=1}^{n} x_i = 0$ and all $t > 0$. If

\[
T_{k=1}^{\infty} \left(\frac{2^{(k+1)p} t}{2^{(k+1)p} t + 2^{3k+2l-2} \theta ||x||^p}\right) = 1
\]

for all $x \in X$, all $t > 0$ and all $l = 0, 1, 2, \ldots$, then there exists a unique quadratic mapping $Q : X \to Y$ such that

\[
\mu_{f(x) - Q(x)}(t) \geq T_{k=1}^{\infty} \left(\frac{2^{kp} t}{2^{kp} t + 2^{3k-2} \theta ||x||^p}\right)
\]

for all $x \in X$ and all $t > 0$.

Proof. If we define

\[
\mu_{(x_1, x_2, \ldots, x_p)}(t) = \frac{t}{t + \theta \sum_{i=1}^{n} ||x_i||^p}
\]

and apply Theorem 3, then we get the desired result.
Theorem 4. Let \(f : X \to Y \) be an even mapping with \(f(0) = 0 \) for which there is a \(\rho : X^n \to D^+ \) satisfying (2). If

\[
T_k^\infty \rho(2^{k+i-1}x,-2^{k+i-1}y,0,...,0) \left(2^{k+2l-1}t \right) = 1
\]

and

\[
\lim_{m \to \infty} \rho(2^m x,2^m y,-2^m(x+y),0,...,0) \left(2^{m+1}t \right) = 1
\]

for all \(x, y \in X \), all \(t > 0 \) and all \(l = 0, 1, 2, \ldots \), then there exists a unique quadratic mapping \(Q : X \to Y \) such that

\[
\mu_{f(x)-Q(x)}(t) \geq T_k^\infty \rho(2^k x,0,...,0) \left(2^{k-1}t \right)
\]

for all \(x \in X \) and all \(t > 0 \).

Proof. Letting \(x_1 = x, x_2 = -x, x_3 = \ldots = x_n = 0 \) in (2), we get

\[
\mu_{2^i f(2x)-4^i f(x)}(t) \geq \rho(x,-x,0,...,0)(t)
\]

which is equivalent to

\[
\mu_{f(x)-\frac{1}{4} f(2x)} \left(\frac{t}{4} \right) \geq \rho(x,-x,0,...,0)(2t)
\]

for all \(x \in X \) and all \(t > 0 \). Replacing \(x \) and \(t \) by \(2^{k-1}x \) and \(2^{k-2}t \), respectively in the above inequality, we get

\[
\mu_{\frac{1}{4k} f(2^{k-1}x)-\frac{1}{4k} f(2^k x)} \left(\frac{t}{2^k} \right) \geq \rho(2^{k-1}x,-2^{k-1}x,0,...,0)(2^{k-1}t)
\]

for all \(x \in X \) and all \(t > 0 \).

Since \(\mu_x(s) \leq \mu_x(t) \) for all \(s \) and \(t \) with \(0 < s \leq t \), we obtain

\[
\mu_{\frac{1}{4k} f(2^{k-1}x)-\frac{1}{4k} f(2^k x)} \left(\frac{t}{2^k} \right) \geq \mu_{\frac{1}{4k} f(2^{k-1}x)-\frac{1}{4k} f(2^k x)} \left(t \right)
\]

\[
\geq T_k^\infty \rho(2^{k-1}x,-2^{k-1}x,0,...,0) \left(2^{k-1}t \right)
\]

Replacing \(x \) by \(2^l x \) in the above inequality, we get

\[
\mu_{\frac{1}{4k} f(2^l x)-\frac{1}{4k} f(2^{m+l} x)} \left(t \right) \geq T_k^\infty \rho(2^{k+l-1}x,-2^{k+l-1}x,0,...,0) \left(2^{k+l-1}t \right)
\]

which is equivalent to

\[
\mu_{\frac{1}{4k} f(2^l x)-\frac{1}{4k} f(2^{m+l} x)} \left(t \right) \geq T_k^\infty \rho(2^{k+l-1}x,-2^{k+l-1}x,0,...,0) \left(2^{k+l+2l-1}t \right)
\]

for all \(x \in X \), all \(t > 0 \) and all \(l = 0, 1, 2, \ldots \).
Since the right hand side of the inequality (18) tends to 1 as $m \to \infty$ by (15), the sequence \(\frac{1}{4m} f (2^m x) \) is a Cauchy sequence. Thus we define \(Q(x):= \lim_{m\to\infty} \frac{1}{4m} f (2^m x) \) for all \(x \in X \), which is an even mapping.

Now we show that \(Q \) is a quadratic mapping. By (2), we get
\[
\mu \frac{1}{4^m} (f(2^m(x-y)) + f(2^m(x+y)) + f(2^m(x+2y)) - 3f(2^m(x+y)) - 3f(2^m x) - 3f(2^m y)) (t) \\
\geq \rho (2^m x, 2^m y, -2^m (x+y), 0, \ldots, 0) (2^{m+1} t).
\]
Taking the limit as \(m \to \infty \) in the above inequality, by (16), the mapping \(Q \) is quadratic. Moreover, letting \(l = 0 \) and taking the limit as \(m \to \infty \) in (18), we get (17).

The rest of the proof is the same as in the proof of Theorem 3.

Corollary 4. Let \(\theta \geq 0 \) and let \(p \) be a constant with \(0 < p < 2 \). For a normed vector space \(X \) and complete RN-space \(Y \), let \(f : X \to Y \) be an even mapping satisfying
\[
\mu_{Df(x_1, x_2, \ldots, x_n)} (t) \geq \frac{t}{\theta \sum_{i=1}^{n} ||x_i||^p}
\]
for all \((x_1, x_2, \ldots, x_n) \in X \) with \(\sum_{i=1}^{n} x_i = 0 \) and all \(t > 0 \). If
\[
T^\infty_{k=1} \left(\frac{2^{k+2l-2} t}{2^{k+2l-2} t + 2^{k+l} \rho ||x||^p} \right) = 1
\]
for all \(x \in X \), all \(t > 0 \) and all \(l = 0, 1, 2, \ldots \), then there exists a unique quadratic mapping \(Q : X \to Y \) such that
\[
\mu_{f(x)-Q(x)} (t) \geq \lim_{m\to\infty} T^m_{k=1} \left(\frac{2^{k-2} t}{2^{k-2} t + 2^{k} \rho ||x||^p} \right)
\]
for all \(x \in X \) and all \(t > 0 \).

Proof. If we define
\[
\rho_{(x_1, x_2, \ldots, x_n)} (t) = \frac{t}{\theta \sum_{i=1}^{n} ||x_i||^p}
\]
and apply Theorem 4, then we get the desired result.

4. Hyers-Ulam Stability of the Functional Equation (1)

We note that if a mapping \(f : X \to Y \) satisfies the functional equation (1), then the mapping \(f \) is realized as the sum of an additive mapping and a quadratic mapping [see 2, Lemma 2.1].

Here, we let \(g(x) := \frac{1}{2} (f(x) - f(-x)) \) and \(h(x) := \frac{1}{2} (f(x) + f(-x)) \) for all \(x \in X \). Then \(g(x) \) is an odd mapping and \(h(x) \) is an even mapping satisfying \(f(x) = g(x) + h(x) \). Moreover, we get the following:
\[
Dg(x_1, x_2, \ldots, x_n) = \frac{1}{2} \{ Df(x_1, x_2, \ldots, x_n) - Df(-x_1, -x_2, \ldots, -x_n) \}.
\]
\[Dh(x_1, x_2, \ldots, x_n) = \frac{1}{2} \{ Df(x_1, x_2, \ldots, x_n) + Df(-x_1, -x_2, \ldots, -x_n) \}\]

for all \(x_1, x_2, \ldots, x_n \in X \).

Note that \(Df(x_1, \ldots, x_n) = 0 \) implies that \(Dg(x_1, \ldots, x_n) = 0 \) and \(Dh(x_1, \ldots, x_n) = 0 \).

Theorem 5. Let \(f: X \to Y \) be a mapping with \(f(0) = 0 \) for which there is a \(\rho : X^n \to D^+ \) such that

\[
\mu_{Df(x_1, x_2, \ldots, x_n) + Df(-x_1, -x_2, \ldots, -x_n)}(2t) \geq \rho(x_1, x_2, \ldots, x_n)(t)
\]

\[
\mu_{Df(x_1, x_2, \ldots, x_n) - Df(-x_1, -x_2, \ldots, -x_n)}(2t) \geq \rho(x_1, x_2, \ldots, x_n)(t)
\]

for all \(x_1, x_2, \ldots, x_n \in X^n \) and all \(t > 0 \). If \(\rho \) satisfies (3), (11) and (12), then there exists an additive mapping \(A: X \to Y \) and a quadratic mapping \(Q: X \to Y \) such that

\[
\mu_{f(x) - A(x) - Q(x)}(2t) \geq T \left(T_{k=1}^{\infty} \rho \left(\frac{nt}{2^{2k-2}} \right), T_{k=1}^{\infty} \rho \left(\frac{t}{2^{3k-3}} \right) \right)
\]

for all \(x \in X \) and all \(t > 0 \).

Proof. Consider an odd mapping \(g(x) := \frac{1}{2}(f(x) - f(-x)) \) and an even mapping \(h(x) := \frac{1}{2}(f(x) + f(-x)) \) for all \(x \in X \) with \(f(x) = g(x) + h(x) \). By Theorem 1, there exists a unique additive mapping \(A: X \to Y \) such that

\[
\mu_{g(x) - A(x)}(t) \geq T_{k=1}^{\infty} \rho \left(\frac{nt}{2^{2k-3}} \right)
\]

for all \(x \in X \) and all \(t > 0 \). And by Theorem 3, there exists a unique quadratic mapping \(Q: X \to Y \) such that

\[
\mu_{h(x) - Q(x)}(t) \geq T_{k=1}^{\infty} \rho \left(\frac{t}{2^{3k-3}} \right)
\]

for all \(x \in X \) and all \(t > 0 \). Since \(f(x) = g(x) + h(x) \), we obtain

\[
\mu_{f(x) - A(x) - Q(x)}(2t) = \mu_{g(x) - A(x) + h(x) - Q(x)}(2t)
\]

\[
\geq T \left(\mu_{g(x) - A(x)}(t), \mu_{h(x) - Q(x)}(t) \right)
\]

\[
\geq T \left(T_{k=1}^{\infty} \rho \left(\frac{nt}{2^{2k-2}} \right), T_{k=1}^{\infty} \rho \left(\frac{t}{2^{3k-3}} \right) \right)
\]

for all \(x \in X \) and all \(t > 0 \), as desired.

Similarly, we can obtain the following. We will omit the proof.

Theorem 6. Let \(f: X \to Y \) be a mapping with \(f(0) = 0 \) for which there is a \(\rho : X^n \to D^+ \) satisfying (19) and (20). If \(\rho \) satisfies (7), (15) and (16), then there exists an additive mapping \(A: X \to Y \) and a quadratic mapping \(Q: X \to Y \) such that

\[
\mu_{f(x) - A(x) - Q(x)}(2t) \geq T \left(T_{k=1}^{\infty} \rho \left(2^{k-1}x, 2^{k-2}x, -2^{k-1}x, 0, \ldots, 0 \right)(2nt), T_{k=1}^{\infty} \rho \left(2^{k-1}x, 2^{k-2}x, 0, \ldots, 0 \right) \left(2^{k-1}t \right) \right)
\]

for all \(x \in X \) and all \(t > 0 \).
ACKNOWLEDGEMENTS D. Y. Shin was supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (NRF-2010-0021792).

References

