@article{(1 âˆ’ 2u_2)-Constacylic Codes over F_p + uF_p + u^2F_p_2016, place={Maryland, USA}, volume={9}, url={https://ejpam.com/index.php/ejpam/article/view/2571}, abstractNote={Let F_p be a finite field, where p is an odd prime, and let u be anÂ indeterminate. This article studiesÂ (1 âˆ’ 2u^2)-constacyclic codes over the ringÂ F_p + uF_p + u^2F_p, where u^3 = u. We describe generator polynomials of this kind ofÂ codes and investigate the structural properties of these codes by a decompositionÂ theorem.}, number={1}, journal={European Journal of Pure and Applied Mathematics}, year={2016}, month={Jan.}, pages={39–47} }